mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-11-29 07:58:28 +00:00
379 lines
10 KiB
EmacsLisp
379 lines
10 KiB
EmacsLisp
|
;; Calculator for GNU Emacs, part II [calc-mat.el]
|
||
|
;; Copyright (C) 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
|
||
|
;; Written by Dave Gillespie, daveg@synaptics.com.
|
||
|
|
||
|
;; This file is part of GNU Emacs.
|
||
|
|
||
|
;; GNU Emacs is distributed in the hope that it will be useful,
|
||
|
;; but WITHOUT ANY WARRANTY. No author or distributor
|
||
|
;; accepts responsibility to anyone for the consequences of using it
|
||
|
;; or for whether it serves any particular purpose or works at all,
|
||
|
;; unless he says so in writing. Refer to the GNU Emacs General Public
|
||
|
;; License for full details.
|
||
|
|
||
|
;; Everyone is granted permission to copy, modify and redistribute
|
||
|
;; GNU Emacs, but only under the conditions described in the
|
||
|
;; GNU Emacs General Public License. A copy of this license is
|
||
|
;; supposed to have been given to you along with GNU Emacs so you
|
||
|
;; can know your rights and responsibilities. It should be in a
|
||
|
;; file named COPYING. Among other things, the copyright notice
|
||
|
;; and this notice must be preserved on all copies.
|
||
|
|
||
|
|
||
|
|
||
|
;; This file is autoloaded from calc-ext.el.
|
||
|
(require 'calc-ext)
|
||
|
|
||
|
(require 'calc-macs)
|
||
|
|
||
|
(defun calc-Need-calc-mat () nil)
|
||
|
|
||
|
|
||
|
(defun calc-mdet (arg)
|
||
|
(interactive "P")
|
||
|
(calc-slow-wrapper
|
||
|
(calc-unary-op "mdet" 'calcFunc-det arg))
|
||
|
)
|
||
|
|
||
|
(defun calc-mtrace (arg)
|
||
|
(interactive "P")
|
||
|
(calc-slow-wrapper
|
||
|
(calc-unary-op "mtr" 'calcFunc-tr arg))
|
||
|
)
|
||
|
|
||
|
(defun calc-mlud (arg)
|
||
|
(interactive "P")
|
||
|
(calc-slow-wrapper
|
||
|
(calc-unary-op "mlud" 'calcFunc-lud arg))
|
||
|
)
|
||
|
|
||
|
|
||
|
;;; Coerce row vector A to be a matrix. [V V]
|
||
|
(defun math-row-matrix (a)
|
||
|
(if (and (Math-vectorp a)
|
||
|
(not (math-matrixp a)))
|
||
|
(list 'vec a)
|
||
|
a)
|
||
|
)
|
||
|
|
||
|
;;; Coerce column vector A to be a matrix. [V V]
|
||
|
(defun math-col-matrix (a)
|
||
|
(if (and (Math-vectorp a)
|
||
|
(not (math-matrixp a)))
|
||
|
(cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a)))
|
||
|
a)
|
||
|
)
|
||
|
|
||
|
|
||
|
|
||
|
;;; Multiply matrices A and B. [V V V]
|
||
|
(defun math-mul-mats (a b)
|
||
|
(let ((mat nil)
|
||
|
(cols (length (nth 1 b)))
|
||
|
row col ap bp accum)
|
||
|
(while (setq a (cdr a))
|
||
|
(setq col cols
|
||
|
row nil)
|
||
|
(while (> (setq col (1- col)) 0)
|
||
|
(setq ap (cdr (car a))
|
||
|
bp (cdr b)
|
||
|
accum (math-mul (car ap) (nth col (car bp))))
|
||
|
(while (setq ap (cdr ap) bp (cdr bp))
|
||
|
(setq accum (math-add accum (math-mul (car ap) (nth col (car bp))))))
|
||
|
(setq row (cons accum row)))
|
||
|
(setq mat (cons (cons 'vec row) mat)))
|
||
|
(cons 'vec (nreverse mat)))
|
||
|
)
|
||
|
|
||
|
(defun math-mul-mat-vec (a b)
|
||
|
(cons 'vec (mapcar (function (lambda (row)
|
||
|
(math-dot-product row b)))
|
||
|
(cdr a)))
|
||
|
)
|
||
|
|
||
|
|
||
|
|
||
|
(defun calcFunc-tr (mat) ; [Public]
|
||
|
(if (math-square-matrixp mat)
|
||
|
(math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat)))
|
||
|
(math-reject-arg mat 'square-matrixp))
|
||
|
)
|
||
|
|
||
|
(defun math-matrix-trace-step (n size mat sum)
|
||
|
(if (<= n size)
|
||
|
(math-matrix-trace-step (1+ n) size mat
|
||
|
(math-add sum (nth n (nth n mat))))
|
||
|
sum)
|
||
|
)
|
||
|
|
||
|
|
||
|
;;; Matrix inverse and determinant.
|
||
|
(defun math-matrix-inv-raw (m)
|
||
|
(let ((n (1- (length m))))
|
||
|
(if (<= n 3)
|
||
|
(let ((det (math-det-raw m)))
|
||
|
(and (not (math-zerop det))
|
||
|
(math-div
|
||
|
(cond ((= n 1) 1)
|
||
|
((= n 2)
|
||
|
(list 'vec
|
||
|
(list 'vec
|
||
|
(nth 2 (nth 2 m))
|
||
|
(math-neg (nth 2 (nth 1 m))))
|
||
|
(list 'vec
|
||
|
(math-neg (nth 1 (nth 2 m)))
|
||
|
(nth 1 (nth 1 m)))))
|
||
|
((= n 3)
|
||
|
(list 'vec
|
||
|
(list 'vec
|
||
|
(math-sub (math-mul (nth 3 (nth 3 m))
|
||
|
(nth 2 (nth 2 m)))
|
||
|
(math-mul (nth 3 (nth 2 m))
|
||
|
(nth 2 (nth 3 m))))
|
||
|
(math-sub (math-mul (nth 3 (nth 1 m))
|
||
|
(nth 2 (nth 3 m)))
|
||
|
(math-mul (nth 3 (nth 3 m))
|
||
|
(nth 2 (nth 1 m))))
|
||
|
(math-sub (math-mul (nth 3 (nth 2 m))
|
||
|
(nth 2 (nth 1 m)))
|
||
|
(math-mul (nth 3 (nth 1 m))
|
||
|
(nth 2 (nth 2 m)))))
|
||
|
(list 'vec
|
||
|
(math-sub (math-mul (nth 3 (nth 2 m))
|
||
|
(nth 1 (nth 3 m)))
|
||
|
(math-mul (nth 3 (nth 3 m))
|
||
|
(nth 1 (nth 2 m))))
|
||
|
(math-sub (math-mul (nth 3 (nth 3 m))
|
||
|
(nth 1 (nth 1 m)))
|
||
|
(math-mul (nth 3 (nth 1 m))
|
||
|
(nth 1 (nth 3 m))))
|
||
|
(math-sub (math-mul (nth 3 (nth 1 m))
|
||
|
(nth 1 (nth 2 m)))
|
||
|
(math-mul (nth 3 (nth 2 m))
|
||
|
(nth 1 (nth 1 m)))))
|
||
|
(list 'vec
|
||
|
(math-sub (math-mul (nth 2 (nth 3 m))
|
||
|
(nth 1 (nth 2 m)))
|
||
|
(math-mul (nth 2 (nth 2 m))
|
||
|
(nth 1 (nth 3 m))))
|
||
|
(math-sub (math-mul (nth 2 (nth 1 m))
|
||
|
(nth 1 (nth 3 m)))
|
||
|
(math-mul (nth 2 (nth 3 m))
|
||
|
(nth 1 (nth 1 m))))
|
||
|
(math-sub (math-mul (nth 2 (nth 2 m))
|
||
|
(nth 1 (nth 1 m)))
|
||
|
(math-mul (nth 2 (nth 1 m))
|
||
|
(nth 1 (nth 2 m))))))))
|
||
|
det)))
|
||
|
(let ((lud (math-matrix-lud m)))
|
||
|
(and lud
|
||
|
(math-lud-solve lud (calcFunc-idn 1 n))))))
|
||
|
)
|
||
|
|
||
|
(defun calcFunc-det (m)
|
||
|
(if (math-square-matrixp m)
|
||
|
(math-with-extra-prec 2 (math-det-raw m))
|
||
|
(if (and (eq (car-safe m) 'calcFunc-idn)
|
||
|
(or (math-zerop (nth 1 m))
|
||
|
(math-equal-int (nth 1 m) 1)))
|
||
|
(nth 1 m)
|
||
|
(math-reject-arg m 'square-matrixp)))
|
||
|
)
|
||
|
|
||
|
(defun math-det-raw (m)
|
||
|
(let ((n (1- (length m))))
|
||
|
(cond ((= n 1)
|
||
|
(nth 1 (nth 1 m)))
|
||
|
((= n 2)
|
||
|
(math-sub (math-mul (nth 1 (nth 1 m))
|
||
|
(nth 2 (nth 2 m)))
|
||
|
(math-mul (nth 2 (nth 1 m))
|
||
|
(nth 1 (nth 2 m)))))
|
||
|
((= n 3)
|
||
|
(math-sub
|
||
|
(math-sub
|
||
|
(math-sub
|
||
|
(math-add
|
||
|
(math-add
|
||
|
(math-mul (nth 1 (nth 1 m))
|
||
|
(math-mul (nth 2 (nth 2 m))
|
||
|
(nth 3 (nth 3 m))))
|
||
|
(math-mul (nth 2 (nth 1 m))
|
||
|
(math-mul (nth 3 (nth 2 m))
|
||
|
(nth 1 (nth 3 m)))))
|
||
|
(math-mul (nth 3 (nth 1 m))
|
||
|
(math-mul (nth 1 (nth 2 m))
|
||
|
(nth 2 (nth 3 m)))))
|
||
|
(math-mul (nth 3 (nth 1 m))
|
||
|
(math-mul (nth 2 (nth 2 m))
|
||
|
(nth 1 (nth 3 m)))))
|
||
|
(math-mul (nth 1 (nth 1 m))
|
||
|
(math-mul (nth 3 (nth 2 m))
|
||
|
(nth 2 (nth 3 m)))))
|
||
|
(math-mul (nth 2 (nth 1 m))
|
||
|
(math-mul (nth 1 (nth 2 m))
|
||
|
(nth 3 (nth 3 m))))))
|
||
|
(t (let ((lud (math-matrix-lud m)))
|
||
|
(if lud
|
||
|
(let ((lu (car lud)))
|
||
|
(math-det-step n (nth 2 lud)))
|
||
|
0)))))
|
||
|
)
|
||
|
|
||
|
(defun math-det-step (n prod)
|
||
|
(if (> n 0)
|
||
|
(math-det-step (1- n) (math-mul prod (nth n (nth n lu))))
|
||
|
prod)
|
||
|
)
|
||
|
|
||
|
;;; This returns a list (LU index d), or NIL if not possible.
|
||
|
;;; Argument M must be a square matrix.
|
||
|
(defun math-matrix-lud (m)
|
||
|
(let ((old (assoc m math-lud-cache))
|
||
|
(context (list calc-internal-prec calc-prefer-frac)))
|
||
|
(if (and old (equal (nth 1 old) context))
|
||
|
(cdr (cdr old))
|
||
|
(let* ((lud (catch 'singular (math-do-matrix-lud m)))
|
||
|
(entry (cons context lud)))
|
||
|
(if old
|
||
|
(setcdr old entry)
|
||
|
(setq math-lud-cache (cons (cons m entry) math-lud-cache)))
|
||
|
lud)))
|
||
|
)
|
||
|
(defvar math-lud-cache nil)
|
||
|
|
||
|
;;; Numerical Recipes section 2.3; implicit pivoting omitted.
|
||
|
(defun math-do-matrix-lud (m)
|
||
|
(let* ((lu (math-copy-matrix m))
|
||
|
(n (1- (length lu)))
|
||
|
i (j 1) k imax sum big
|
||
|
(d 1) (index nil))
|
||
|
(while (<= j n)
|
||
|
(setq i 1
|
||
|
big 0
|
||
|
imax j)
|
||
|
(while (< i j)
|
||
|
(math-working "LUD step" (format "%d/%d" j i))
|
||
|
(setq sum (nth j (nth i lu))
|
||
|
k 1)
|
||
|
(while (< k i)
|
||
|
(setq sum (math-sub sum (math-mul (nth k (nth i lu))
|
||
|
(nth j (nth k lu))))
|
||
|
k (1+ k)))
|
||
|
(setcar (nthcdr j (nth i lu)) sum)
|
||
|
(setq i (1+ i)))
|
||
|
(while (<= i n)
|
||
|
(math-working "LUD step" (format "%d/%d" j i))
|
||
|
(setq sum (nth j (nth i lu))
|
||
|
k 1)
|
||
|
(while (< k j)
|
||
|
(setq sum (math-sub sum (math-mul (nth k (nth i lu))
|
||
|
(nth j (nth k lu))))
|
||
|
k (1+ k)))
|
||
|
(setcar (nthcdr j (nth i lu)) sum)
|
||
|
(let ((dum (math-abs-approx sum)))
|
||
|
(if (Math-lessp big dum)
|
||
|
(setq big dum
|
||
|
imax i)))
|
||
|
(setq i (1+ i)))
|
||
|
(if (> imax j)
|
||
|
(setq lu (math-swap-rows lu j imax)
|
||
|
d (- d)))
|
||
|
(setq index (cons imax index))
|
||
|
(let ((pivot (nth j (nth j lu))))
|
||
|
(if (math-zerop pivot)
|
||
|
(throw 'singular nil)
|
||
|
(setq i j)
|
||
|
(while (<= (setq i (1+ i)) n)
|
||
|
(setcar (nthcdr j (nth i lu))
|
||
|
(math-div (nth j (nth i lu)) pivot)))))
|
||
|
(setq j (1+ j)))
|
||
|
(list lu (nreverse index) d))
|
||
|
)
|
||
|
|
||
|
(defun math-swap-rows (m r1 r2)
|
||
|
(or (= r1 r2)
|
||
|
(let* ((r1prev (nthcdr (1- r1) m))
|
||
|
(row1 (cdr r1prev))
|
||
|
(r2prev (nthcdr (1- r2) m))
|
||
|
(row2 (cdr r2prev))
|
||
|
(r2next (cdr row2)))
|
||
|
(setcdr r2prev row1)
|
||
|
(setcdr r1prev row2)
|
||
|
(setcdr row2 (cdr row1))
|
||
|
(setcdr row1 r2next)))
|
||
|
m
|
||
|
)
|
||
|
|
||
|
|
||
|
(defun math-lud-solve (lud b &optional need)
|
||
|
(if lud
|
||
|
(let* ((x (math-copy-matrix b))
|
||
|
(n (1- (length x)))
|
||
|
(m (1- (length (nth 1 x))))
|
||
|
(lu (car lud))
|
||
|
(col 1)
|
||
|
i j ip ii index sum)
|
||
|
(while (<= col m)
|
||
|
(math-working "LUD solver step" col)
|
||
|
(setq i 1
|
||
|
ii nil
|
||
|
index (nth 1 lud))
|
||
|
(while (<= i n)
|
||
|
(setq ip (car index)
|
||
|
index (cdr index)
|
||
|
sum (nth col (nth ip x)))
|
||
|
(setcar (nthcdr col (nth ip x)) (nth col (nth i x)))
|
||
|
(if (null ii)
|
||
|
(or (math-zerop sum)
|
||
|
(setq ii i))
|
||
|
(setq j ii)
|
||
|
(while (< j i)
|
||
|
(setq sum (math-sub sum (math-mul (nth j (nth i lu))
|
||
|
(nth col (nth j x))))
|
||
|
j (1+ j))))
|
||
|
(setcar (nthcdr col (nth i x)) sum)
|
||
|
(setq i (1+ i)))
|
||
|
(while (>= (setq i (1- i)) 1)
|
||
|
(setq sum (nth col (nth i x))
|
||
|
j i)
|
||
|
(while (<= (setq j (1+ j)) n)
|
||
|
(setq sum (math-sub sum (math-mul (nth j (nth i lu))
|
||
|
(nth col (nth j x))))))
|
||
|
(setcar (nthcdr col (nth i x))
|
||
|
(math-div sum (nth i (nth i lu)))))
|
||
|
(setq col (1+ col)))
|
||
|
x)
|
||
|
(and need
|
||
|
(math-reject-arg need "*Singular matrix")))
|
||
|
)
|
||
|
|
||
|
(defun calcFunc-lud (m)
|
||
|
(if (math-square-matrixp m)
|
||
|
(or (math-with-extra-prec 2
|
||
|
(let ((lud (math-matrix-lud m)))
|
||
|
(and lud
|
||
|
(let* ((lmat (math-copy-matrix (car lud)))
|
||
|
(umat (math-copy-matrix (car lud)))
|
||
|
(n (1- (length (car lud))))
|
||
|
(perm (calcFunc-idn 1 n))
|
||
|
i (j 1))
|
||
|
(while (<= j n)
|
||
|
(setq i 1)
|
||
|
(while (< i j)
|
||
|
(setcar (nthcdr j (nth i lmat)) 0)
|
||
|
(setq i (1+ i)))
|
||
|
(setcar (nthcdr j (nth j lmat)) 1)
|
||
|
(while (<= (setq i (1+ i)) n)
|
||
|
(setcar (nthcdr j (nth i umat)) 0))
|
||
|
(setq j (1+ j)))
|
||
|
(while (>= (setq j (1- j)) 1)
|
||
|
(let ((pos (nth (1- j) (nth 1 lud))))
|
||
|
(or (= pos j)
|
||
|
(setq perm (math-swap-rows perm j pos)))))
|
||
|
(list 'vec perm lmat umat)))))
|
||
|
(math-reject-arg m "*Singular matrix"))
|
||
|
(math-reject-arg m 'square-matrixp))
|
||
|
)
|
||
|
|