From a8774f05b2dde025df92369667f157c0c46899be Mon Sep 17 00:00:00 2001 From: Glenn Morris Date: Thu, 20 Mar 2008 04:40:18 +0000 Subject: [PATCH] (chinese-calendar-celestial-stem, chinese-calendar-terrestrial-branch): Make defcustoms. --- lisp/calendar/cal-china.el | 40 ++++++++++++++++++++++++++++++-------- 1 file changed, 32 insertions(+), 8 deletions(-) diff --git a/lisp/calendar/cal-china.el b/lisp/calendar/cal-china.el index 69aa91f2137..c46f8bfc9eb 100644 --- a/lisp/calendar/cal-china.el +++ b/lisp/calendar/cal-china.el @@ -128,17 +128,41 @@ Default is for no daylight saving time." :type 'integer :group 'chinese-calendar) +(defcustom chinese-calendar-celestial-stem + ["Jia" "Yi" "Bing" "Ding" "Wu" "Ji" "Geng" "Xin" "Ren" "Gui"] + "Prefixes used by `calendar-chinese-sexagesimal-name'." + :group 'chinese-calendar + :type '(vector (string :tag "Jia") + (string :tag "Yi") + (string :tag "Bing") + (string :tag "Ding") + (string :tag "Wu") + (string :tag "Ji") + (string :tag "Geng") + (string :tag "Xin") + (string :tag "Ren") + (string :tag "Gui"))) + +(defcustom chinese-calendar-terrestrial-branch + ["Zi" "Chou" "Yin" "Mao" "Chen" "Si" "Wu" "Wei" "Shen" "You" "Xu" "Hai"] + "Suffixes used by `calendar-chinese-sexagesimal-name'." + :group 'chinese-calendar + :type '(vector (string :tag "Zi") + (string :tag "Chou") + (string :tag "Yin") + (string :tag "Mao") + (string :tag "Chen") + (string :tag "Si") + (string :tag "Wu") + (string :tag "Wei") + (string :tag "Shen") + (string :tag "You") + (string :tag "Xu") + (string :tag "Hai"))) + ;;; End of user options. -(defconst chinese-calendar-celestial-stem - ["Jia" "Yi" "Bing" "Ding" "Wu" "Ji" "Geng" "Xin" "Ren" "Gui"] - "Prefixes used by `calendar-chinese-sexagesimal-name'.") - -(defconst chinese-calendar-terrestrial-branch - ["Zi" "Chou" "Yin" "Mao" "Chen" "Si" "Wu" "Wei" "Shen" "You" "Xu" "Hai"] - "Suffixes used by `calendar-chinese-sexagesimal-name'.") - (defun calendar-chinese-sexagesimal-name (n) "The N-th name of the Chinese sexagesimal cycle. N congruent to 1 gives the first name, N congruent to 2 gives the second name,