@c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1997-2012 Free Software Foundation, Inc. @c See the file elisp.texi for copying conditions. @setfilename ../../info/customize @node Customization, Loading, Macros, Top @chapter Writing Customization Definitions @cindex customization definitions This chapter describes how to declare user options for customization, and also customization groups for classifying them. We use the term @dfn{customization item} to include both kinds of customization definitions---as well as face definitions (@pxref{Defining Faces}). @menu * Common Keywords:: Common keyword arguments for all kinds of customization declarations. * Group Definitions:: Writing customization group definitions. * Variable Definitions:: Declaring user options. * Customization Types:: Specifying the type of a user option. @end menu @node Common Keywords @section Common Item Keywords @cindex customization keywords The customization declarations that we will describe in the next few sections (@code{defcustom}, @code{defgroup}, etc.) all accept keyword arguments for specifying various information. This section describes keywords that apply to all types of customization declarations. All of these keywords, except @code{:tag}, can be used more than once in a given item. Each use of the keyword has an independent effect. The keyword @code{:tag} is an exception because any given item can only display one name. @table @code @item :tag @var{label} @kindex tag@r{, customization keyword} Use @var{label}, a string, instead of the item's name, to label the item in customization menus and buffers. @strong{Don't use a tag which is substantially different from the item's real name; that would cause confusion.} @kindex group@r{, customization keyword} @item :group @var{group} Put this customization item in group @var{group}. When you use @code{:group} in a @code{defgroup}, it makes the new group a subgroup of @var{group}. If you use this keyword more than once, you can put a single item into more than one group. Displaying any of those groups will show this item. Please don't overdo this, since the result would be annoying. @item :link @var{link-data} @kindex link@r{, customization keyword} Include an external link after the documentation string for this item. This is a sentence containing an active field which references some other documentation. There are several alternatives you can use for @var{link-data}: @table @code @item (custom-manual @var{info-node}) Link to an Info node; @var{info-node} is a string which specifies the node name, as in @code{"(emacs)Top"}. The link appears as @samp{[Manual]} in the customization buffer and enters the built-in Info reader on @var{info-node}. @item (info-link @var{info-node}) Like @code{custom-manual} except that the link appears in the customization buffer with the Info node name. @item (url-link @var{url}) Link to a web page; @var{url} is a string which specifies the @acronym{URL}. The link appears in the customization buffer as @var{url} and invokes the WWW browser specified by @code{browse-url-browser-function}. @item (emacs-commentary-link @var{library}) Link to the commentary section of a library; @var{library} is a string which specifies the library name. @item (emacs-library-link @var{library}) Link to an Emacs Lisp library file; @var{library} is a string which specifies the library name. @item (file-link @var{file}) Link to a file; @var{file} is a string which specifies the name of the file to visit with @code{find-file} when the user invokes this link. @item (function-link @var{function}) Link to the documentation of a function; @var{function} is a string which specifies the name of the function to describe with @code{describe-function} when the user invokes this link. @item (variable-link @var{variable}) Link to the documentation of a variable; @var{variable} is a string which specifies the name of the variable to describe with @code{describe-variable} when the user invokes this link. @item (custom-group-link @var{group}) Link to another customization group. Invoking it creates a new customization buffer for @var{group}. @end table You can specify the text to use in the customization buffer by adding @code{:tag @var{name}} after the first element of the @var{link-data}; for example, @code{(info-link :tag "foo" "(emacs)Top")} makes a link to the Emacs manual which appears in the buffer as @samp{foo}. You can use this keyword more than once, to add multiple links. @item :load @var{file} @kindex load@r{, customization keyword} Load file @var{file} (a string) before displaying this customization item (@pxref{Loading}). Loading is done with @code{load}, and only if the file is not already loaded. @item :require @var{feature} @kindex require@r{, customization keyword} Execute @code{(require '@var{feature})} when your saved customizations set the value of this item. @var{feature} should be a symbol. The most common reason to use @code{:require} is when a variable enables a feature such as a minor mode, and just setting the variable won't have any effect unless the code which implements the mode is loaded. @item :version @var{version} @kindex version@r{, customization keyword} This keyword specifies that the item was first introduced in Emacs version @var{version}, or that its default value was changed in that version. The value @var{version} must be a string. @item :package-version '(@var{package} . @var{version}) @kindex package-version@r{, customization keyword} This keyword specifies that the item was first introduced in @var{package} version @var{version}, or that its meaning or default value was changed in that version. This keyword takes priority over @code{:version}. @var{package} should be the official name of the package, as a symbol (e.g.@: @code{MH-E}). @var{version} should be a string. If the package @var{package} is released as part of Emacs, @var{package} and @var{version} should appear in the value of @code{customize-package-emacs-version-alist}. @end table Packages distributed as part of Emacs that use the @code{:package-version} keyword must also update the @code{customize-package-emacs-version-alist} variable. @defvar customize-package-emacs-version-alist This alist provides a mapping for the versions of Emacs that are associated with versions of a package listed in the @code{:package-version} keyword. Its elements look like this: @example (@var{package} (@var{pversion} . @var{eversion})@dots{}) @end example For each @var{package}, which is a symbol, there are one or more elements that contain a package version @var{pversion} with an associated Emacs version @var{eversion}. These versions are strings. For example, the MH-E package updates this alist with the following: @smallexample (add-to-list 'customize-package-emacs-version-alist '(MH-E ("6.0" . "22.1") ("6.1" . "22.1") ("7.0" . "22.1") ("7.1" . "22.1") ("7.2" . "22.1") ("7.3" . "22.1") ("7.4" . "22.1") ("8.0" . "22.1"))) @end smallexample The value of @var{package} needs to be unique and it needs to match the @var{package} value appearing in the @code{:package-version} keyword. Since the user might see the value in an error message, a good choice is the official name of the package, such as MH-E or Gnus. @end defvar @node Group Definitions @section Defining Customization Groups @cindex define customization group @cindex customization groups, defining Each Emacs Lisp package should have one main customization group which contains all the options, faces and other groups in the package. If the package has a small number of options and faces, use just one group and put everything in it. When there are more than twelve or so options and faces, then you should structure them into subgroups, and put the subgroups under the package's main customization group. It is OK to put some of the options and faces in the package's main group alongside the subgroups. The package's main or only group should be a member of one or more of the standard customization groups. (To display the full list of them, use @kbd{M-x customize}.) Choose one or more of them (but not too many), and add your group to each of them using the @code{:group} keyword. The way to declare new customization groups is with @code{defgroup}. @defmac defgroup group members doc [keyword value]@dots{} Declare @var{group} as a customization group containing @var{members}. Do not quote the symbol @var{group}. The argument @var{doc} specifies the documentation string for the group. The argument @var{members} is a list specifying an initial set of customization items to be members of the group. However, most often @var{members} is @code{nil}, and you specify the group's members by using the @code{:group} keyword when defining those members. If you want to specify group members through @var{members}, each element should have the form @code{(@var{name} @var{widget})}. Here @var{name} is a symbol, and @var{widget} is a widget type for editing that symbol. Useful widgets are @code{custom-variable} for a variable, @code{custom-face} for a face, and @code{custom-group} for a group. When you introduce a new group into Emacs, use the @code{:version} keyword in the @code{defgroup}; then you need not use it for the individual members of the group. In addition to the common keywords (@pxref{Common Keywords}), you can also use this keyword in @code{defgroup}: @table @code @item :prefix @var{prefix} @kindex prefix@r{, @code{defgroup} keyword} If the name of an item in the group starts with @var{prefix}, and the customizable variable @code{custom-unlispify-remove-prefixes} is non-@code{nil}, the item's tag will omit @var{prefix}. A group can have any number of prefixes. @end table @end defmac @defopt custom-unlispify-remove-prefixes If this variable is non-@code{nil}, the prefixes specified by a group's @code{:prefix} keyword are omitted from tag names, whenever the user customizes the group. The default value is @code{nil}, i.e.@: the prefix-discarding feature is disabled. This is because discarding prefixes often leads to confusing names for options and faces. @end defopt @node Variable Definitions @section Defining Customization Variables @cindex define customization options @cindex customization variables, how to define @defmac defcustom option standard doc [keyword value]@dots{} This macro declares @var{option} as a user option (i.e.@: a customizable variable). You should not quote @var{option}. The argument @var{standard} is an expression that specifies the standard value for @var{option}. Evaluating the @code{defcustom} form evaluates @var{standard}, but does not necessarily install the standard value. If @var{option} already has a default value, @code{defcustom} does not change it. If the user has saved a customization for @var{option}, @code{defcustom} installs the user's customized value as @var{option}'s default value. If neither of those cases applies, @code{defcustom} installs the result of evaluating @var{standard} as the default value. The expression @var{standard} can be evaluated at various other times, too---whenever the customization facility needs to know @var{option}'s standard value. So be sure to use an expression which is harmless to evaluate at any time. The argument @var{doc} specifies the documentation string for the variable. Every @code{defcustom} should specify @code{:group} at least once. When you evaluate a @code{defcustom} form with @kbd{C-M-x} in Emacs Lisp mode (@code{eval-defun}), a special feature of @code{eval-defun} arranges to set the variable unconditionally, without testing whether its value is void. (The same feature applies to @code{defvar}.) @xref{Defining Variables}. If you put a @code{defcustom} in a pre-loaded Emacs Lisp file (@pxref{Building Emacs}), the standard value installed at dump time might be incorrect, e.g.@: because another variable that it depends on has not been assigned the right value yet. In that case, use @code{custom-reevaluate-setting}, described below, to re-evaluate the standard value after Emacs starts up. @end defmac @code{defcustom} accepts the following additional keywords: @table @code @item :type @var{type} Use @var{type} as the data type for this option. It specifies which values are legitimate, and how to display the value. @xref{Customization Types}, for more information. @item :options @var{value-list} @kindex options@r{, @code{defcustom} keyword} Specify the list of reasonable values for use in this option. The user is not restricted to using only these values, but they are offered as convenient alternatives. This is meaningful only for certain types, currently including @code{hook}, @code{plist} and @code{alist}. See the definition of the individual types for a description of how to use @code{:options}. @item :set @var{setfunction} @kindex set@r{, @code{defcustom} keyword} Specify @var{setfunction} as the way to change the value of this option when using the Customize user interface. The function @var{setfunction} should take two arguments, a symbol (the option name) and the new value, and should do whatever is necessary to update the value properly for this option (which may not mean simply setting the option as a Lisp variable). The default for @var{setfunction} is @code{set-default}. If you specify this keyword, the variable's documentation string should describe how to do the same job in hand-written Lisp code. @item :get @var{getfunction} @kindex get@r{, @code{defcustom} keyword} Specify @var{getfunction} as the way to extract the value of this option. The function @var{getfunction} should take one argument, a symbol, and should return whatever customize should use as the ``current value'' for that symbol (which need not be the symbol's Lisp value). The default is @code{default-value}. You have to really understand the workings of Custom to use @code{:get} correctly. It is meant for values that are treated in Custom as variables but are not actually stored in Lisp variables. It is almost surely a mistake to specify @var{getfunction} for a value that really is stored in a Lisp variable. @item :initialize @var{function} @kindex initialize@r{, @code{defcustom} keyword} @var{function} should be a function used to initialize the variable when the @code{defcustom} is evaluated. It should take two arguments, the option name (a symbol) and the value. Here are some predefined functions meant for use in this way: @table @code @item custom-initialize-set Use the variable's @code{:set} function to initialize the variable, but do not reinitialize it if it is already non-void. @item custom-initialize-default Like @code{custom-initialize-set}, but use the function @code{set-default} to set the variable, instead of the variable's @code{:set} function. This is the usual choice for a variable whose @code{:set} function enables or disables a minor mode; with this choice, defining the variable will not call the minor mode function, but customizing the variable will do so. @item custom-initialize-reset Always use the @code{:set} function to initialize the variable. If the variable is already non-void, reset it by calling the @code{:set} function using the current value (returned by the @code{:get} method). This is the default @code{:initialize} function. @item custom-initialize-changed Use the @code{:set} function to initialize the variable, if it is already set or has been customized; otherwise, just use @code{set-default}. @item custom-initialize-safe-set @itemx custom-initialize-safe-default These functions behave like @code{custom-initialize-set} (@code{custom-initialize-default}, respectively), but catch errors. If an error occurs during initialization, they set the variable to @code{nil} using @code{set-default}, and signal no error. These functions are meant for options defined in pre-loaded files, where the @var{standard} expression may signal an error because some required variable or function is not yet defined. The value normally gets updated in @file{startup.el}, ignoring the value computed by @code{defcustom}. After startup, if one unsets the value and reevaluates the @code{defcustom}, the @var{standard} expression can be evaluated without error. @end table @item :risky @var{value} @kindex risky@r{, @code{defcustom} keyword} Set the variable's @code{risky-local-variable} property to @var{value} (@pxref{File Local Variables}). @item :safe @var{function} @kindex safe@r{, @code{defcustom} keyword} Set the variable's @code{safe-local-variable} property to @var{function} (@pxref{File Local Variables}). @item :set-after @var{variables} @kindex set-after@r{, @code{defcustom} keyword} When setting variables according to saved customizations, make sure to set the variables @var{variables} before this one; in other words, delay setting this variable until after those others have been handled. Use @code{:set-after} if setting this variable won't work properly unless those other variables already have their intended values. @end table It is useful to specify the @code{:require} keyword for an option that ``turns on'' a certain feature. This causes Emacs to load the feature, if it is not already loaded, whenever the option is set. @xref{Common Keywords}. Here is an example, from the library @file{saveplace.el}: @example (defcustom save-place nil "Non-nil means automatically save place in each file..." :type 'boolean :require 'saveplace :group 'save-place) @end example If a customization item has a type such as @code{hook} or @code{alist}, which supports @code{:options}, you can add additional values to the list from outside the @code{defcustom} declaration by calling @code{custom-add-frequent-value}. For example, if you define a function @code{my-lisp-mode-initialization} intended to be called from @code{emacs-lisp-mode-hook}, you might want to add that to the list of reasonable values for @code{emacs-lisp-mode-hook}, but not by editing its definition. You can do it thus: @example (custom-add-frequent-value 'emacs-lisp-mode-hook 'my-lisp-mode-initialization) @end example @defun custom-add-frequent-value symbol value For the customization option @var{symbol}, add @var{value} to the list of reasonable values. The precise effect of adding a value depends on the customization type of @var{symbol}. @end defun Internally, @code{defcustom} uses the symbol property @code{standard-value} to record the expression for the standard value, @code{saved-value} to record the value saved by the user with the customization buffer, and @code{customized-value} to record the value set by the user with the customization buffer, but not saved. @xref{Property Lists}. These properties are lists, the car of which is an expression that evaluates to the value. @defun custom-reevaluate-setting symbol This function re-evaluates the standard value of @var{symbol}, which should be a user option declared via @code{defcustom}. If the variable was customized, this function re-evaluates the saved value instead. Then it sets the user option to that value (using the option's @code{:set} property if that is defined). This is useful for customizable options that are defined before their value could be computed correctly. For example, during startup Emacs calls this function for some user options that were defined in pre-loaded Emacs Lisp files, but whose initial values depend on information available only at run-time. @end defun @defun custom-variable-p arg This function returns non-@code{nil} if @var{arg} is a customizable variable. A customizable variable is either a variable that has a @code{standard-value} or @code{custom-autoload} property (usually meaning it was declared with @code{defcustom}), or an alias for another customizable variable. @end defun @defun user-variable-p arg This function is like @code{custom-variable-p}, except it also returns @code{t} if the first character of the variable's documentation string is the character @samp{*}. That is an obsolete way of indicating a user option, so for most purposes you may consider @code{user-variable-p} as equivalent to @code{custom-variable-p}. @end defun @node Customization Types @section Customization Types @cindex customization types When you define a user option with @code{defcustom}, you must specify its @dfn{customization type}. That is a Lisp object which describes (1) which values are legitimate and (2) how to display the value in the customization buffer for editing. @kindex type@r{, @code{defcustom} keyword} You specify the customization type in @code{defcustom} with the @code{:type} keyword. The argument of @code{:type} is evaluated, but only once when the @code{defcustom} is executed, so it isn't useful for the value to vary. Normally we use a quoted constant. For example: @example (defcustom diff-command "diff" "The command to use to run diff." :type '(string) :group 'diff) @end example In general, a customization type is a list whose first element is a symbol, one of the customization type names defined in the following sections. After this symbol come a number of arguments, depending on the symbol. Between the type symbol and its arguments, you can optionally write keyword-value pairs (@pxref{Type Keywords}). Some type symbols do not use any arguments; those are called @dfn{simple types}. For a simple type, if you do not use any keyword-value pairs, you can omit the parentheses around the type symbol. For example just @code{string} as a customization type is equivalent to @code{(string)}. All customization types are implemented as widgets; see @ref{Top, , Introduction, widget, The Emacs Widget Library}, for details. @menu * Simple Types:: Simple customization types: sexp, integer, etc. * Composite Types:: Build new types from other types or data. * Splicing into Lists:: Splice elements into list with @code{:inline}. * Type Keywords:: Keyword-argument pairs in a customization type. * Defining New Types:: Give your type a name. @end menu @node Simple Types @subsection Simple Types This section describes all the simple customization types. For several of these customization types, the customization widget provides inline completion with @kbd{C-M-i} or @kbd{M-@key{TAB}}. @table @code @item sexp The value may be any Lisp object that can be printed and read back. You can use @code{sexp} as a fall-back for any option, if you don't want to take the time to work out a more specific type to use. @item integer The value must be an integer. @item number The value must be a number (floating point or integer). @item float The value must be a floating point number. @item string The value must be a string. The customization buffer shows the string without delimiting @samp{"} characters or @samp{\} quotes. @item regexp Like @code{string} except that the string must be a valid regular expression. @item character The value must be a character code. A character code is actually an integer, but this type shows the value by inserting the character in the buffer, rather than by showing the number. @item file The value must be a file name. The widget provides completion. @item (file :must-match t) The value must be a file name for an existing file. The widget provides completion. @item directory The value must be a directory name. The widget provides completion. @item hook The value must be a list of functions. This customization type is used for hook variables. You can use the @code{:options} keyword in a hook variable's @code{defcustom} to specify a list of functions recommended for use in the hook; @xref{Variable Definitions}. @item symbol The value must be a symbol. It appears in the customization buffer as the symbol name. The widget provides completion. @item function The value must be either a lambda expression or a function name. The widget provides completion for function names. @item variable The value must be a variable name. The widget provides completion. @item face The value must be a symbol which is a face name. The widget provides completion. @item boolean The value is boolean---either @code{nil} or @code{t}. Note that by using @code{choice} and @code{const} together (see the next section), you can specify that the value must be @code{nil} or @code{t}, but also specify the text to describe each value in a way that fits the specific meaning of the alternative. @item coding-system The value must be a coding-system name, and you can do completion with @kbd{M-@key{TAB}}. @item color The value must be a valid color name. The widget provides completion for color names, as well as a sample and a button for selecting a color name from a list of color names shown in a @samp{*Colors*} buffer. @end table @node Composite Types @subsection Composite Types @cindex composite types (customization) When none of the simple types is appropriate, you can use composite types, which build new types from other types or from specified data. The specified types or data are called the @dfn{arguments} of the composite type. The composite type normally looks like this: @example (@var{constructor} @var{arguments}@dots{}) @end example @noindent but you can also add keyword-value pairs before the arguments, like this: @example (@var{constructor} @r{@{}@var{keyword} @var{value}@r{@}}@dots{} @var{arguments}@dots{}) @end example Here is a table of constructors and how to use them to write composite types: @table @code @item (cons @var{car-type} @var{cdr-type}) The value must be a cons cell, its @sc{car} must fit @var{car-type}, and its @sc{cdr} must fit @var{cdr-type}. For example, @code{(cons string symbol)} is a customization type which matches values such as @code{("foo" . foo)}. In the customization buffer, the @sc{car} and @sc{cdr} are displayed and edited separately, each according to their specified type. @item (list @var{element-types}@dots{}) The value must be a list with exactly as many elements as the @var{element-types} given; and each element must fit the corresponding @var{element-type}. For example, @code{(list integer string function)} describes a list of three elements; the first element must be an integer, the second a string, and the third a function. In the customization buffer, each element is displayed and edited separately, according to the type specified for it. @item (group @var{element-types}@dots{}) This works like @code{list} except for the formatting of text in the Custom buffer. @code{list} labels each element value with its tag; @code{group} does not. @item (vector @var{element-types}@dots{}) Like @code{list} except that the value must be a vector instead of a list. The elements work the same as in @code{list}. @item (alist :key-type @var{key-type} :value-type @var{value-type}) The value must be a list of cons-cells, the @sc{car} of each cell representing a key of customization type @var{key-type}, and the @sc{cdr} of the same cell representing a value of customization type @var{value-type}. The user can add and delete key/value pairs, and edit both the key and the value of each pair. If omitted, @var{key-type} and @var{value-type} default to @code{sexp}. The user can add any key matching the specified key type, but you can give some keys a preferential treatment by specifying them with the @code{:options} (see @ref{Variable Definitions}). The specified keys will always be shown in the customize buffer (together with a suitable value), with a checkbox to include or exclude or disable the key/value pair from the alist. The user will not be able to edit the keys specified by the @code{:options} keyword argument. The argument to the @code{:options} keywords should be a list of specifications for reasonable keys in the alist. Ordinarily, they are simply atoms, which stand for themselves. For example: @smallexample :options '("foo" "bar" "baz") @end smallexample @noindent specifies that there are three ``known'' keys, namely @code{"foo"}, @code{"bar"} and @code{"baz"}, which will always be shown first. You may want to restrict the value type for specific keys, for example, the value associated with the @code{"bar"} key can only be an integer. You can specify this by using a list instead of an atom in the list. The first element will specify the key, like before, while the second element will specify the value type. For example: @smallexample :options '("foo" ("bar" integer) "baz") @end smallexample Finally, you may want to change how the key is presented. By default, the key is simply shown as a @code{const}, since the user cannot change the special keys specified with the @code{:options} keyword. However, you may want to use a more specialized type for presenting the key, like @code{function-item} if you know it is a symbol with a function binding. This is done by using a customization type specification instead of a symbol for the key. @smallexample :options '("foo" ((function-item some-function) integer) "baz") @end smallexample Many alists use lists with two elements, instead of cons cells. For example, @smallexample (defcustom list-alist '(("foo" 1) ("bar" 2) ("baz" 3)) "Each element is a list of the form (KEY VALUE).") @end smallexample @noindent instead of @smallexample (defcustom cons-alist '(("foo" . 1) ("bar" . 2) ("baz" . 3)) "Each element is a cons-cell (KEY . VALUE).") @end smallexample Because of the way lists are implemented on top of cons cells, you can treat @code{list-alist} in the example above as a cons cell alist, where the value type is a list with a single element containing the real value. @smallexample (defcustom list-alist '(("foo" 1) ("bar" 2) ("baz" 3)) "Each element is a list of the form (KEY VALUE)." :type '(alist :value-type (group integer))) @end smallexample The @code{group} widget is used here instead of @code{list} only because the formatting is better suited for the purpose. Similarly, you can have alists with more values associated with each key, using variations of this trick: @smallexample (defcustom person-data '(("brian" 50 t) ("dorith" 55 nil) ("ken" 52 t)) "Alist of basic info about people. Each element has the form (NAME AGE MALE-FLAG)." :type '(alist :value-type (group integer boolean))) @end smallexample @item (plist :key-type @var{key-type} :value-type @var{value-type}) This customization type is similar to @code{alist} (see above), except that (i) the information is stored as a property list, (@pxref{Property Lists}), and (ii) @var{key-type}, if omitted, defaults to @code{symbol} rather than @code{sexp}. @item (choice @var{alternative-types}@dots{}) The value must fit one of @var{alternative-types}. For example, @code{(choice integer string)} allows either an integer or a string. In the customization buffer, the user selects an alternative using a menu, and can then edit the value in the usual way for that alternative. Normally the strings in this menu are determined automatically from the choices; however, you can specify different strings for the menu by including the @code{:tag} keyword in the alternatives. For example, if an integer stands for a number of spaces, while a string is text to use verbatim, you might write the customization type this way, @example (choice (integer :tag "Number of spaces") (string :tag "Literal text")) @end example @noindent so that the menu offers @samp{Number of spaces} and @samp{Literal text}. In any alternative for which @code{nil} is not a valid value, other than a @code{const}, you should specify a valid default for that alternative using the @code{:value} keyword. @xref{Type Keywords}. If some values are covered by more than one of the alternatives, customize will choose the first alternative that the value fits. This means you should always list the most specific types first, and the most general last. Here's an example of proper usage: @example (choice (const :tag "Off" nil) symbol (sexp :tag "Other")) @end example @noindent This way, the special value @code{nil} is not treated like other symbols, and symbols are not treated like other Lisp expressions. @item (radio @var{element-types}@dots{}) This is similar to @code{choice}, except that the choices are displayed using `radio buttons' rather than a menu. This has the advantage of displaying documentation for the choices when applicable and so is often a good choice for a choice between constant functions (@code{function-item} customization types). @item (const @var{value}) The value must be @var{value}---nothing else is allowed. The main use of @code{const} is inside of @code{choice}. For example, @code{(choice integer (const nil))} allows either an integer or @code{nil}. @code{:tag} is often used with @code{const}, inside of @code{choice}. For example, @example (choice (const :tag "Yes" t) (const :tag "No" nil) (const :tag "Ask" foo)) @end example @noindent describes a variable for which @code{t} means yes, @code{nil} means no, and @code{foo} means ``ask.'' @item (other @var{value}) This alternative can match any Lisp value, but if the user chooses this alternative, that selects the value @var{value}. The main use of @code{other} is as the last element of @code{choice}. For example, @example (choice (const :tag "Yes" t) (const :tag "No" nil) (other :tag "Ask" foo)) @end example @noindent describes a variable for which @code{t} means yes, @code{nil} means no, and anything else means ``ask.'' If the user chooses @samp{Ask} from the menu of alternatives, that specifies the value @code{foo}; but any other value (not @code{t}, @code{nil} or @code{foo}) displays as @samp{Ask}, just like @code{foo}. @item (function-item @var{function}) Like @code{const}, but used for values which are functions. This displays the documentation string as well as the function name. The documentation string is either the one you specify with @code{:doc}, or @var{function}'s own documentation string. @item (variable-item @var{variable}) Like @code{const}, but used for values which are variable names. This displays the documentation string as well as the variable name. The documentation string is either the one you specify with @code{:doc}, or @var{variable}'s own documentation string. @item (set @var{types}@dots{}) The value must be a list, and each element of the list must match one of the @var{types} specified. This appears in the customization buffer as a checklist, so that each of @var{types} may have either one corresponding element or none. It is not possible to specify two different elements that match the same one of @var{types}. For example, @code{(set integer symbol)} allows one integer and/or one symbol in the list; it does not allow multiple integers or multiple symbols. As a result, it is rare to use nonspecific types such as @code{integer} in a @code{set}. Most often, the @var{types} in a @code{set} are @code{const} types, as shown here: @example (set (const :bold) (const :italic)) @end example Sometimes they describe possible elements in an alist: @example (set (cons :tag "Height" (const height) integer) (cons :tag "Width" (const width) integer)) @end example @noindent That lets the user specify a height value optionally and a width value optionally. @item (repeat @var{element-type}) The value must be a list and each element of the list must fit the type @var{element-type}. This appears in the customization buffer as a list of elements, with @samp{[INS]} and @samp{[DEL]} buttons for adding more elements or removing elements. @item (restricted-sexp :match-alternatives @var{criteria}) This is the most general composite type construct. The value may be any Lisp object that satisfies one of @var{criteria}. @var{criteria} should be a list, and each element should be one of these possibilities: @itemize @bullet @item A predicate---that is, a function of one argument that has no side effects, and returns either @code{nil} or non-@code{nil} according to the argument. Using a predicate in the list says that objects for which the predicate returns non-@code{nil} are acceptable. @item A quoted constant---that is, @code{'@var{object}}. This sort of element in the list says that @var{object} itself is an acceptable value. @end itemize For example, @example (restricted-sexp :match-alternatives (integerp 't 'nil)) @end example @noindent allows integers, @code{t} and @code{nil} as legitimate values. The customization buffer shows all legitimate values using their read syntax, and the user edits them textually. @end table Here is a table of the keywords you can use in keyword-value pairs in a composite type: @table @code @item :tag @var{tag} Use @var{tag} as the name of this alternative, for user communication purposes. This is useful for a type that appears inside of a @code{choice}. @item :match-alternatives @var{criteria} @kindex match-alternatives@r{, customization keyword} Use @var{criteria} to match possible values. This is used only in @code{restricted-sexp}. @item :args @var{argument-list} @kindex args@r{, customization keyword} Use the elements of @var{argument-list} as the arguments of the type construct. For instance, @code{(const :args (foo))} is equivalent to @code{(const foo)}. You rarely need to write @code{:args} explicitly, because normally the arguments are recognized automatically as whatever follows the last keyword-value pair. @end table @node Splicing into Lists @subsection Splicing into Lists The @code{:inline} feature lets you splice a variable number of elements into the middle of a @code{list} or @code{vector} customization type. You use it by adding @code{:inline t} to a type specification which is contained in a @code{list} or @code{vector} specification. Normally, each entry in a @code{list} or @code{vector} type specification describes a single element type. But when an entry contains @code{:inline t}, the value it matches is merged directly into the containing sequence. For example, if the entry matches a list with three elements, those become three elements of the overall sequence. This is analogous to @samp{,@@} in a backquote construct (@pxref{Backquote}). For example, to specify a list whose first element must be @code{baz} and whose remaining arguments should be zero or more of @code{foo} and @code{bar}, use this customization type: @example (list (const baz) (set :inline t (const foo) (const bar))) @end example @noindent This matches values such as @code{(baz)}, @code{(baz foo)}, @code{(baz bar)} and @code{(baz foo bar)}. When the element-type is a @code{choice}, you use @code{:inline} not in the @code{choice} itself, but in (some of) the alternatives of the @code{choice}. For example, to match a list which must start with a file name, followed either by the symbol @code{t} or two strings, use this customization type: @example (list file (choice (const t) (list :inline t string string))) @end example @noindent If the user chooses the first alternative in the choice, then the overall list has two elements and the second element is @code{t}. If the user chooses the second alternative, then the overall list has three elements and the second and third must be strings. @node Type Keywords @subsection Type Keywords You can specify keyword-argument pairs in a customization type after the type name symbol. Here are the keywords you can use, and their meanings: @table @code @item :value @var{default} Provide a default value. If @code{nil} is not a valid value for the alternative, then it is essential to specify a valid default with @code{:value}. If you use this for a type that appears as an alternative inside of @code{choice}; it specifies the default value to use, at first, if and when the user selects this alternative with the menu in the customization buffer. Of course, if the actual value of the option fits this alternative, it will appear showing the actual value, not @var{default}. @item :format @var{format-string} @kindex format@r{, customization keyword} This string will be inserted in the buffer to represent the value corresponding to the type. The following @samp{%} escapes are available for use in @var{format-string}: @table @samp @item %[@var{button}%] Display the text @var{button} marked as a button. The @code{:action} attribute specifies what the button will do if the user invokes it; its value is a function which takes two arguments---the widget which the button appears in, and the event. There is no way to specify two different buttons with different actions. @item %@{@var{sample}%@} Show @var{sample} in a special face specified by @code{:sample-face}. @item %v Substitute the item's value. How the value is represented depends on the kind of item, and (for variables) on the customization type. @item %d Substitute the item's documentation string. @item %h Like @samp{%d}, but if the documentation string is more than one line, add an active field to control whether to show all of it or just the first line. @item %t Substitute the tag here. You specify the tag with the @code{:tag} keyword. @item %% Display a literal @samp{%}. @end table @item :action @var{action} @kindex action@r{, customization keyword} Perform @var{action} if the user clicks on a button. @item :button-face @var{face} @kindex button-face@r{, customization keyword} Use the face @var{face} (a face name or a list of face names) for button text displayed with @samp{%[@dots{}%]}. @item :button-prefix @var{prefix} @itemx :button-suffix @var{suffix} @kindex button-prefix@r{, customization keyword} @kindex button-suffix@r{, customization keyword} These specify the text to display before and after a button. Each can be: @table @asis @item @code{nil} No text is inserted. @item a string The string is inserted literally. @item a symbol The symbol's value is used. @end table @item :tag @var{tag} Use @var{tag} (a string) as the tag for the value (or part of the value) that corresponds to this type. @item :doc @var{doc} @kindex doc@r{, customization keyword} Use @var{doc} as the documentation string for this value (or part of the value) that corresponds to this type. In order for this to work, you must specify a value for @code{:format}, and use @samp{%d} or @samp{%h} in that value. The usual reason to specify a documentation string for a type is to provide more information about the meanings of alternatives inside a @code{:choice} type or the parts of some other composite type. @item :help-echo @var{motion-doc} @kindex help-echo@r{, customization keyword} When you move to this item with @code{widget-forward} or @code{widget-backward}, it will display the string @var{motion-doc} in the echo area. In addition, @var{motion-doc} is used as the mouse @code{help-echo} string and may actually be a function or form evaluated to yield a help string. If it is a function, it is called with one argument, the widget. @item :match @var{function} @kindex match@r{, customization keyword} Specify how to decide whether a value matches the type. The corresponding value, @var{function}, should be a function that accepts two arguments, a widget and a value; it should return non-@code{nil} if the value is acceptable. @item :validate @var{function} Specify a validation function for input. @var{function} takes a widget as an argument, and should return @code{nil} if the widget's current value is valid for the widget. Otherwise, it should return the widget containing the invalid data, and set that widget's @code{:error} property to a string explaining the error. @ignore @item :indent @var{columns} Indent this item by @var{columns} columns. The indentation is used for @samp{%n}, and automatically for group names, for checklists and radio buttons, and for editable lists. It affects the whole of the item except for the first line. @item :offset @var{extra} Indent the subitems of this item @var{extra} columns more than this item itself. By default, subitems are indented the same as their parent. @item :extra-offset @var{n} Add @var{n} extra spaces to this item's indentation, compared to its parent's indentation. @item :notify @var{function} Call @var{function} each time the item or a subitem is changed. The function gets two or three arguments. The first argument is the item itself, the second argument is the item that was changed, and the third argument is the event leading to the change, if any. @item :menu-tag @var{tag-string} Use @var{tag-string} in the menu when the widget is used as an option in a @code{menu-choice} widget. @item :menu-tag-get A function used for finding the tag when the widget is used as an option in a @code{menu-choice} widget. By default, the tag used will be either the @code{:menu-tag} or @code{:tag} property if present, or the @code{princ} representation of the @code{:value} property if not. @item :tab-order Specify the order in which widgets are traversed with @code{widget-forward} or @code{widget-backward}. This is only partially implemented. @enumerate a @item Widgets with tabbing order @code{-1} are ignored. @item (Unimplemented) When on a widget with tabbing order @var{n}, go to the next widget in the buffer with tabbing order @var{n+1} or @code{nil}, whichever comes first. @item When on a widget with no tabbing order specified, go to the next widget in the buffer with a positive tabbing order, or @code{nil} @end enumerate @item :parent The parent of a nested widget (e.g., a @code{menu-choice} item or an element of a @code{editable-list} widget). @item :sibling-args This keyword is only used for members of a @code{radio-button-choice} or @code{checklist}. The value should be a list of extra keyword arguments, which will be used when creating the @code{radio-button} or @code{checkbox} associated with this item. @end ignore @end table @node Defining New Types @subsection Defining New Types In the previous sections we have described how to construct elaborate type specifications for @code{defcustom}. In some cases you may want to give such a type specification a name. The obvious case is when you are using the same type for many user options: rather than repeat the specification for each option, you can give the type specification a name, and use that name each @code{defcustom}. The other case is when a user option's value is a recursive data structure. To make it possible for a datatype to refer to itself, it needs to have a name. Since custom types are implemented as widgets, the way to define a new customize type is to define a new widget. We are not going to describe the widget interface here in details, see @ref{Top, , Introduction, widget, The Emacs Widget Library}, for that. Instead we are going to demonstrate the minimal functionality needed for defining new customize types by a simple example. @example (define-widget 'binary-tree-of-string 'lazy "A binary tree made of cons-cells and strings." :offset 4 :tag "Node" :type '(choice (string :tag "Leaf" :value "") (cons :tag "Interior" :value ("" . "") binary-tree-of-string binary-tree-of-string))) (defcustom foo-bar "" "Sample variable holding a binary tree of strings." :type 'binary-tree-of-string) @end example The function to define a new widget is called @code{define-widget}. The first argument is the symbol we want to make a new widget type. The second argument is a symbol representing an existing widget, the new widget is going to be defined in terms of difference from the existing widget. For the purpose of defining new customization types, the @code{lazy} widget is perfect, because it accepts a @code{:type} keyword argument with the same syntax as the keyword argument to @code{defcustom} with the same name. The third argument is a documentation string for the new widget. You will be able to see that string with the @kbd{M-x widget-browse @key{RET} binary-tree-of-string @key{RET}} command. After these mandatory arguments follow the keyword arguments. The most important is @code{:type}, which describes the data type we want to match with this widget. Here a @code{binary-tree-of-string} is described as being either a string, or a cons-cell whose car and cdr are themselves both @code{binary-tree-of-string}. Note the reference to the widget type we are currently in the process of defining. The @code{:tag} attribute is a string to name the widget in the user interface, and the @code{:offset} argument is there to ensure that child nodes are indented four spaces relative to the parent node, making the tree structure apparent in the customization buffer. The @code{defcustom} shows how the new widget can be used as an ordinary customization type. The reason for the name @code{lazy} is that the other composite widgets convert their inferior widgets to internal form when the widget is instantiated in a buffer. This conversion is recursive, so the inferior widgets will convert @emph{their} inferior widgets. If the data structure is itself recursive, this conversion is an infinite recursion. The @code{lazy} widget prevents the recursion: it convert its @code{:type} argument only when needed.