;;; calc-alg.el --- algebraic functions for Calc ;; Copyright (C) 1990, 1991, 1992, 1993, 2001 Free Software Foundation, Inc. ;; Author: David Gillespie ;; Maintainers: D. Goel ;; Colin Walters ;; This file is part of GNU Emacs. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY. No author or distributor ;; accepts responsibility to anyone for the consequences of using it ;; or for whether it serves any particular purpose or works at all, ;; unless he says so in writing. Refer to the GNU Emacs General Public ;; License for full details. ;; Everyone is granted permission to copy, modify and redistribute ;; GNU Emacs, but only under the conditions described in the ;; GNU Emacs General Public License. A copy of this license is ;; supposed to have been given to you along with GNU Emacs so you ;; can know your rights and responsibilities. It should be in a ;; file named COPYING. Among other things, the copyright notice ;; and this notice must be preserved on all copies. ;;; Commentary: ;;; Code: ;; This file is autoloaded from calc-ext.el. (require 'calc-ext) (require 'calc-macs) (defun calc-Need-calc-alg () nil) ;;; Algebra commands. (defun calc-alg-evaluate (arg) (interactive "p") (calc-slow-wrapper (calc-with-default-simplification (let ((math-simplify-only nil)) (calc-modify-simplify-mode arg) (calc-enter-result 1 "dsmp" (calc-top 1)))))) (defun calc-modify-simplify-mode (arg) (if (= (math-abs arg) 2) (setq calc-simplify-mode 'alg) (if (>= (math-abs arg) 3) (setq calc-simplify-mode 'ext))) (if (< arg 0) (setq calc-simplify-mode (list calc-simplify-mode)))) (defun calc-simplify () (interactive) (calc-slow-wrapper (calc-with-default-simplification (calc-enter-result 1 "simp" (math-simplify (calc-top-n 1)))))) (defun calc-simplify-extended () (interactive) (calc-slow-wrapper (calc-with-default-simplification (calc-enter-result 1 "esmp" (math-simplify-extended (calc-top-n 1)))))) (defun calc-expand-formula (arg) (interactive "p") (calc-slow-wrapper (calc-with-default-simplification (let ((math-simplify-only nil)) (calc-modify-simplify-mode arg) (calc-enter-result 1 "expf" (if (> arg 0) (let ((math-expand-formulas t)) (calc-top-n 1)) (let ((top (calc-top-n 1))) (or (math-expand-formula top) top)))))))) (defun calc-factor (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "fctr" (if (calc-is-hyperbolic) 'calcFunc-factors 'calcFunc-factor) arg))) (defun calc-expand (n) (interactive "P") (calc-slow-wrapper (calc-enter-result 1 "expa" (append (list 'calcFunc-expand (calc-top-n 1)) (and n (list (prefix-numeric-value n))))))) (defun calc-collect (&optional var) (interactive "sCollect terms involving: ") (calc-slow-wrapper (if (or (equal var "") (equal var "$") (null var)) (calc-enter-result 2 "clct" (cons 'calcFunc-collect (calc-top-list-n 2))) (let ((var (math-read-expr var))) (if (eq (car-safe var) 'error) (error "Bad format in expression: %s" (nth 1 var))) (calc-enter-result 1 "clct" (list 'calcFunc-collect (calc-top-n 1) var)))))) (defun calc-apart (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "aprt" 'calcFunc-apart arg))) (defun calc-normalize-rat (arg) (interactive "P") (calc-slow-wrapper (calc-unary-op "nrat" 'calcFunc-nrat arg))) (defun calc-poly-gcd (arg) (interactive "P") (calc-slow-wrapper (calc-binary-op "pgcd" 'calcFunc-pgcd arg))) (defun calc-poly-div (arg) (interactive "P") (calc-slow-wrapper (setq calc-poly-div-remainder nil) (calc-binary-op "pdiv" 'calcFunc-pdiv arg) (if (and calc-poly-div-remainder (null arg)) (progn (calc-clear-command-flag 'clear-message) (calc-record calc-poly-div-remainder "prem") (if (not (Math-zerop calc-poly-div-remainder)) (message "(Remainder was %s)" (math-format-flat-expr calc-poly-div-remainder 0)) (message "(No remainder)")))))) (defun calc-poly-rem (arg) (interactive "P") (calc-slow-wrapper (calc-binary-op "prem" 'calcFunc-prem arg))) (defun calc-poly-div-rem (arg) (interactive "P") (calc-slow-wrapper (if (calc-is-hyperbolic) (calc-binary-op "pdvr" 'calcFunc-pdivide arg) (calc-binary-op "pdvr" 'calcFunc-pdivrem arg)))) (defun calc-substitute (&optional oldname newname) (interactive "sSubstitute old: ") (calc-slow-wrapper (let (old new (num 1) expr) (if (or (equal oldname "") (equal oldname "$") (null oldname)) (setq new (calc-top-n 1) old (calc-top-n 2) expr (calc-top-n 3) num 3) (or newname (progn (calc-unread-command ?\C-a) (setq newname (read-string (concat "Substitute old: " oldname ", new: ") oldname)))) (if (or (equal newname "") (equal newname "$") (null newname)) (setq new (calc-top-n 1) expr (calc-top-n 2) num 2) (setq new (if (stringp newname) (math-read-expr newname) newname)) (if (eq (car-safe new) 'error) (error "Bad format in expression: %s" (nth 1 new))) (setq expr (calc-top-n 1))) (setq old (if (stringp oldname) (math-read-expr oldname) oldname)) (if (eq (car-safe old) 'error) (error "Bad format in expression: %s" (nth 1 old))) (or (math-expr-contains expr old) (error "No occurrences found"))) (calc-enter-result num "sbst" (math-expr-subst expr old new))))) (defun calc-has-rules (name) (setq name (calc-var-value name)) (and (consp name) (memq (car name) '(vec calcFunc-assign calcFunc-condition)) name)) (defun math-recompile-eval-rules () (setq math-eval-rules-cache (and (calc-has-rules 'var-EvalRules) (math-compile-rewrites '(var EvalRules var-EvalRules))) math-eval-rules-cache-other (assq nil math-eval-rules-cache) math-eval-rules-cache-tag (calc-var-value 'var-EvalRules))) ;;; Try to expand a formula according to its definition. (defun math-expand-formula (expr) (and (consp expr) (symbolp (car expr)) (or (get (car expr) 'calc-user-defn) (get (car expr) 'math-expandable)) (let ((res (let ((math-expand-formulas t)) (apply (car expr) (cdr expr))))) (and (not (eq (car-safe res) (car expr))) res)))) ;;; True if A comes before B in a canonical ordering of expressions. [P X X] (defun math-beforep (a b) ; [Public] (cond ((and (Math-realp a) (Math-realp b)) (let ((comp (math-compare a b))) (or (eq comp -1) (and (eq comp 0) (not (equal a b)) (> (length (memq (car-safe a) '(bigneg nil bigpos frac float))) (length (memq (car-safe b) '(bigneg nil bigpos frac float)))))))) ((equal b '(neg (var inf var-inf))) nil) ((equal a '(neg (var inf var-inf))) t) ((equal a '(var inf var-inf)) nil) ((equal b '(var inf var-inf)) t) ((Math-realp a) (if (and (eq (car-safe b) 'intv) (math-intv-constp b)) (if (or (math-beforep a (nth 2 b)) (Math-equal a (nth 2 b))) t nil) t)) ((Math-realp b) (if (and (eq (car-safe a) 'intv) (math-intv-constp a)) (if (math-beforep (nth 2 a) b) t nil) nil)) ((and (eq (car a) 'intv) (eq (car b) 'intv) (math-intv-constp a) (math-intv-constp b)) (let ((comp (math-compare (nth 2 a) (nth 2 b)))) (cond ((eq comp -1) t) ((eq comp 1) nil) ((and (memq (nth 1 a) '(2 3)) (memq (nth 1 b) '(0 1))) t) ((and (memq (nth 1 a) '(0 1)) (memq (nth 1 b) '(2 3))) nil) ((eq (setq comp (math-compare (nth 3 a) (nth 3 b))) -1) t) ((eq comp 1) nil) ((and (memq (nth 1 a) '(0 2)) (memq (nth 1 b) '(1 3))) t) (t nil)))) ((not (eq (not (Math-objectp a)) (not (Math-objectp b)))) (Math-objectp a)) ((eq (car a) 'var) (if (eq (car b) 'var) (string-lessp (symbol-name (nth 1 a)) (symbol-name (nth 1 b))) (not (Math-numberp b)))) ((eq (car b) 'var) (Math-numberp a)) ((eq (car a) (car b)) (while (and (setq a (cdr a) b (cdr b)) a (equal (car a) (car b)))) (and b (or (null a) (math-beforep (car a) (car b))))) (t (string-lessp (symbol-name (car a)) (symbol-name (car b)))))) (defsubst math-simplify-extended (a) (let ((math-living-dangerously t)) (math-simplify a))) (defalias 'calcFunc-esimplify 'math-simplify-extended) (defun math-simplify (top-expr) (let ((math-simplifying t) (top-only (consp calc-simplify-mode)) (simp-rules (append (and (calc-has-rules 'var-AlgSimpRules) '((var AlgSimpRules var-AlgSimpRules))) (and math-living-dangerously (calc-has-rules 'var-ExtSimpRules) '((var ExtSimpRules var-ExtSimpRules))) (and math-simplifying-units (calc-has-rules 'var-UnitSimpRules) '((var UnitSimpRules var-UnitSimpRules))) (and math-integrating (calc-has-rules 'var-IntegSimpRules) '((var IntegSimpRules var-IntegSimpRules))))) res) (if top-only (let ((r simp-rules)) (setq res (math-simplify-step (math-normalize top-expr)) calc-simplify-mode '(nil) top-expr (math-normalize res)) (while r (setq top-expr (math-rewrite top-expr (car r) '(neg (var inf var-inf))) r (cdr r)))) (calc-with-default-simplification (while (let ((r simp-rules)) (setq res (math-normalize top-expr)) (while r (setq res (math-rewrite res (car r)) r (cdr r))) (not (equal top-expr (setq res (math-simplify-step res))))) (setq top-expr res))))) top-expr) (defalias 'calcFunc-simplify 'math-simplify) ;;; The following has a "bug" in that if any recursive simplifications ;;; occur only the first handler will be tried; this doesn't really ;;; matter, since math-simplify-step is iterated to a fixed point anyway. (defun math-simplify-step (a) (if (Math-primp a) a (let ((aa (if (or top-only (memq (car a) '(calcFunc-quote calcFunc-condition calcFunc-evalto))) a (cons (car a) (mapcar 'math-simplify-step (cdr a)))))) (and (symbolp (car aa)) (let ((handler (get (car aa) 'math-simplify))) (and handler (while (and handler (equal (setq aa (or (funcall (car handler) aa) aa)) a)) (setq handler (cdr handler)))))) aa))) ;; Placeholder, to synchronize autoloading. (defun math-need-std-simps () nil) (math-defsimplify (+ -) (math-simplify-plus)) (defun math-simplify-plus () (cond ((and (memq (car-safe (nth 1 expr)) '(+ -)) (Math-numberp (nth 2 (nth 1 expr))) (not (Math-numberp (nth 2 expr)))) (let ((x (nth 2 expr)) (op (car expr))) (setcar (cdr (cdr expr)) (nth 2 (nth 1 expr))) (setcar expr (car (nth 1 expr))) (setcar (cdr (cdr (nth 1 expr))) x) (setcar (nth 1 expr) op))) ((and (eq (car expr) '+) (Math-numberp (nth 1 expr)) (not (Math-numberp (nth 2 expr)))) (let ((x (nth 2 expr))) (setcar (cdr (cdr expr)) (nth 1 expr)) (setcar (cdr expr) x)))) (let ((aa expr) aaa temp) (while (memq (car-safe (setq aaa (nth 1 aa))) '(+ -)) (if (setq temp (math-combine-sum (nth 2 aaa) (nth 2 expr) (eq (car aaa) '-) (eq (car expr) '-) t)) (progn (setcar (cdr (cdr expr)) temp) (setcar expr '+) (setcar (cdr (cdr aaa)) 0))) (setq aa (nth 1 aa))) (if (setq temp (math-combine-sum aaa (nth 2 expr) nil (eq (car expr) '-) t)) (progn (setcar (cdr (cdr expr)) temp) (setcar expr '+) (setcar (cdr aa) 0))) expr)) (math-defsimplify * (math-simplify-times)) (defun math-simplify-times () (if (eq (car-safe (nth 2 expr)) '*) (and (math-beforep (nth 1 (nth 2 expr)) (nth 1 expr)) (or (math-known-scalarp (nth 1 expr) t) (math-known-scalarp (nth 1 (nth 2 expr)) t)) (let ((x (nth 1 expr))) (setcar (cdr expr) (nth 1 (nth 2 expr))) (setcar (cdr (nth 2 expr)) x))) (and (math-beforep (nth 2 expr) (nth 1 expr)) (or (math-known-scalarp (nth 1 expr) t) (math-known-scalarp (nth 2 expr) t)) (let ((x (nth 2 expr))) (setcar (cdr (cdr expr)) (nth 1 expr)) (setcar (cdr expr) x)))) (let ((aa expr) aaa temp (safe t) (scalar (math-known-scalarp (nth 1 expr)))) (if (and (Math-ratp (nth 1 expr)) (setq temp (math-common-constant-factor (nth 2 expr)))) (progn (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) temp)) (setcar (cdr expr) (math-mul (nth 1 expr) temp)))) (while (and (eq (car-safe (setq aaa (nth 2 aa))) '*) safe) (if (setq temp (math-combine-prod (nth 1 expr) (nth 1 aaa) nil nil t)) (progn (setcar (cdr expr) temp) (setcar (cdr aaa) 1))) (setq safe (or scalar (math-known-scalarp (nth 1 aaa) t)) aa (nth 2 aa))) (if (and (setq temp (math-combine-prod aaa (nth 1 expr) nil nil t)) safe) (progn (setcar (cdr expr) temp) (setcar (cdr (cdr aa)) 1))) (if (and (eq (car-safe (nth 1 expr)) 'frac) (memq (nth 1 (nth 1 expr)) '(1 -1))) (math-div (math-mul (nth 2 expr) (nth 1 (nth 1 expr))) (nth 2 (nth 1 expr))) expr))) (math-defsimplify / (math-simplify-divide)) (defun math-simplify-divide () (let ((np (cdr expr)) (nover nil) (nn (and (or (eq (car expr) '/) (not (Math-realp (nth 2 expr)))) (math-common-constant-factor (nth 2 expr)))) n op) (if nn (progn (setq n (and (or (eq (car expr) '/) (not (Math-realp (nth 1 expr)))) (math-common-constant-factor (nth 1 expr)))) (if (and (eq (car-safe nn) 'frac) (eq (nth 1 nn) 1) (not n)) (progn (setcar (cdr expr) (math-mul (nth 2 nn) (nth 1 expr))) (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) nn)) (if (and (math-negp nn) (setq op (assq (car expr) calc-tweak-eqn-table))) (setcar expr (nth 1 op)))) (if (and n (not (eq (setq n (math-frac-gcd n nn)) 1))) (progn (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) n)) (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) n)) (if (and (math-negp n) (setq op (assq (car expr) calc-tweak-eqn-table))) (setcar expr (nth 1 op)))))))) (if (and (eq (car-safe (car np)) '/) (math-known-scalarp (nth 2 expr) t)) (progn (setq np (cdr (nth 1 expr))) (while (eq (car-safe (setq n (car np))) '*) (and (math-known-scalarp (nth 2 n) t) (math-simplify-divisor (cdr n) (cdr (cdr expr)) nil t)) (setq np (cdr (cdr n)))) (math-simplify-divisor np (cdr (cdr expr)) nil t) (setq nover t np (cdr (cdr (nth 1 expr)))))) (while (eq (car-safe (setq n (car np))) '*) (and (math-known-scalarp (nth 2 n) t) (math-simplify-divisor (cdr n) (cdr (cdr expr)) nover t)) (setq np (cdr (cdr n)))) (math-simplify-divisor np (cdr (cdr expr)) nover t) expr)) (defun math-simplify-divisor (np dp nover dover) (cond ((eq (car-safe (car dp)) '/) (math-simplify-divisor np (cdr (car dp)) nover dover) (and (math-known-scalarp (nth 1 (car dp)) t) (math-simplify-divisor np (cdr (cdr (car dp))) nover (not dover)))) ((or (or (eq (car expr) '/) (let ((signs (math-possible-signs (car np)))) (or (memq signs '(1 4)) (and (memq (car expr) '(calcFunc-eq calcFunc-neq)) (eq signs 5)) math-living-dangerously))) (math-numberp (car np))) (let ((n (car np)) d dd temp op (safe t) (scalar (math-known-scalarp n))) (while (and (eq (car-safe (setq d (car dp))) '*) safe) (math-simplify-one-divisor np (cdr d)) (setq safe (or scalar (math-known-scalarp (nth 1 d) t)) dp (cdr (cdr d)))) (if safe (math-simplify-one-divisor np dp)))))) (defun math-simplify-one-divisor (np dp) (if (setq temp (math-combine-prod (car np) (car dp) nover dover t)) (progn (and (not (memq (car expr) '(/ calcFunc-eq calcFunc-neq))) (math-known-negp (car dp)) (setq op (assq (car expr) calc-tweak-eqn-table)) (setcar expr (nth 1 op))) (setcar np (if nover (math-div 1 temp) temp)) (setcar dp 1)) (and dover (not nover) (eq (car expr) '/) (eq (car-safe (car dp)) 'calcFunc-sqrt) (Math-integerp (nth 1 (car dp))) (progn (setcar np (math-mul (car np) (list 'calcFunc-sqrt (nth 1 (car dp))))) (setcar dp (nth 1 (car dp))))))) (defun math-common-constant-factor (expr) (if (Math-realp expr) (if (Math-ratp expr) (and (not (memq expr '(0 1 -1))) (math-abs expr)) (if (math-ratp (setq expr (math-to-simple-fraction expr))) (math-common-constant-factor expr))) (if (memq (car expr) '(+ - cplx sdev)) (let ((f1 (math-common-constant-factor (nth 1 expr))) (f2 (math-common-constant-factor (nth 2 expr)))) (and f1 f2 (not (eq (setq f1 (math-frac-gcd f1 f2)) 1)) f1)) (if (memq (car expr) '(* polar)) (math-common-constant-factor (nth 1 expr)) (if (eq (car expr) '/) (or (math-common-constant-factor (nth 1 expr)) (and (Math-integerp (nth 2 expr)) (list 'frac 1 (math-abs (nth 2 expr)))))))))) (defun math-cancel-common-factor (expr val) (if (memq (car-safe expr) '(+ - cplx sdev)) (progn (setcar (cdr expr) (math-cancel-common-factor (nth 1 expr) val)) (setcar (cdr (cdr expr)) (math-cancel-common-factor (nth 2 expr) val)) expr) (if (eq (car-safe expr) '*) (math-mul (math-cancel-common-factor (nth 1 expr) val) (nth 2 expr)) (math-div expr val)))) (defun math-frac-gcd (a b) (if (Math-zerop a) b (if (Math-zerop b) a (if (and (Math-integerp a) (Math-integerp b)) (math-gcd a b) (and (Math-integerp a) (setq a (list 'frac a 1))) (and (Math-integerp b) (setq b (list 'frac b 1))) (math-make-frac (math-gcd (nth 1 a) (nth 1 b)) (math-gcd (nth 2 a) (nth 2 b))))))) (math-defsimplify % (math-simplify-mod)) (defun math-simplify-mod () (and (Math-realp (nth 2 expr)) (Math-posp (nth 2 expr)) (let ((lin (math-is-linear (nth 1 expr))) t1 t2 t3) (or (and lin (or (math-negp (car lin)) (not (Math-lessp (car lin) (nth 2 expr)))) (list '% (list '+ (math-mul (nth 1 lin) (nth 2 lin)) (math-mod (car lin) (nth 2 expr))) (nth 2 expr))) (and lin (not (math-equal-int (nth 1 lin) 1)) (math-num-integerp (nth 1 lin)) (math-num-integerp (nth 2 expr)) (setq t1 (calcFunc-gcd (nth 1 lin) (nth 2 expr))) (not (math-equal-int t1 1)) (list '* t1 (list '% (list '+ (math-mul (math-div (nth 1 lin) t1) (nth 2 lin)) (let ((calc-prefer-frac t)) (math-div (car lin) t1))) (math-div (nth 2 expr) t1)))) (and (math-equal-int (nth 2 expr) 1) (math-known-integerp (if lin (math-mul (nth 1 lin) (nth 2 lin)) (nth 1 expr))) (if lin (math-mod (car lin) 1) 0)))))) (math-defsimplify (calcFunc-eq calcFunc-neq calcFunc-lt calcFunc-gt calcFunc-leq calcFunc-geq) (if (= (length expr) 3) (math-simplify-ineq))) (defun math-simplify-ineq () (let ((np (cdr expr)) n) (while (memq (car-safe (setq n (car np))) '(+ -)) (math-simplify-add-term (cdr (cdr n)) (cdr (cdr expr)) (eq (car n) '-) nil) (setq np (cdr n))) (math-simplify-add-term np (cdr (cdr expr)) nil (eq np (cdr expr))) (math-simplify-divide) (let ((signs (math-possible-signs (cons '- (cdr expr))))) (or (cond ((eq (car expr) 'calcFunc-eq) (or (and (eq signs 2) 1) (and (memq signs '(1 4 5)) 0))) ((eq (car expr) 'calcFunc-neq) (or (and (eq signs 2) 0) (and (memq signs '(1 4 5)) 1))) ((eq (car expr) 'calcFunc-lt) (or (and (eq signs 1) 1) (and (memq signs '(2 4 6)) 0))) ((eq (car expr) 'calcFunc-gt) (or (and (eq signs 4) 1) (and (memq signs '(1 2 3)) 0))) ((eq (car expr) 'calcFunc-leq) (or (and (eq signs 4) 0) (and (memq signs '(1 2 3)) 1))) ((eq (car expr) 'calcFunc-geq) (or (and (eq signs 1) 0) (and (memq signs '(2 4 6)) 1)))) expr)))) (defun math-simplify-add-term (np dp minus lplain) (or (math-vectorp (car np)) (let ((rplain t) n d dd temp) (while (memq (car-safe (setq n (car np) d (car dp))) '(+ -)) (setq rplain nil) (if (setq temp (math-combine-sum n (nth 2 d) minus (eq (car d) '+) t)) (if (or lplain (eq (math-looks-negp temp) minus)) (progn (setcar np (setq n (if minus (math-neg temp) temp))) (setcar (cdr (cdr d)) 0)) (progn (setcar np 0) (setcar (cdr (cdr d)) (setq n (if (eq (car d) '+) (math-neg temp) temp)))))) (setq dp (cdr d))) (if (setq temp (math-combine-sum n d minus t t)) (if (or lplain (and (not rplain) (eq (math-looks-negp temp) minus))) (progn (setcar np (setq n (if minus (math-neg temp) temp))) (setcar dp 0)) (progn (setcar np 0) (setcar dp (setq n (math-neg temp))))))))) (math-defsimplify calcFunc-sin (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-sin (math-neg (nth 1 expr))))) (and (eq calc-angle-mode 'rad) (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) (and n (math-known-sin (car n) (nth 1 n) 120 0)))) (and (eq calc-angle-mode 'deg) (let ((n (math-integer-plus (nth 1 expr)))) (and n (math-known-sin (car n) (nth 1 n) '(frac 2 3) 0)))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) (math-div (nth 1 (nth 1 expr)) (list 'calcFunc-sqrt (math-add 1 (math-sqr (nth 1 (nth 1 expr))))))) (let ((m (math-should-expand-trig (nth 1 expr)))) (and m (integerp (car m)) (let ((n (car m)) (a (nth 1 m))) (list '+ (list '* (list 'calcFunc-sin (list '* (1- n) a)) (list 'calcFunc-cos a)) (list '* (list 'calcFunc-cos (list '* (1- n) a)) (list 'calcFunc-sin a)))))))) (math-defsimplify calcFunc-cos (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (list 'calcFunc-cos (math-neg (nth 1 expr)))) (and (eq calc-angle-mode 'rad) (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) (and n (math-known-sin (car n) (nth 1 n) 120 300)))) (and (eq calc-angle-mode 'deg) (let ((n (math-integer-plus (nth 1 expr)))) (and n (math-known-sin (car n) (nth 1 n) '(frac 2 3) 300)))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr)))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) (math-div 1 (list 'calcFunc-sqrt (math-add 1 (math-sqr (nth 1 (nth 1 expr))))))) (let ((m (math-should-expand-trig (nth 1 expr)))) (and m (integerp (car m)) (let ((n (car m)) (a (nth 1 m))) (list '- (list '* (list 'calcFunc-cos (list '* (1- n) a)) (list 'calcFunc-cos a)) (list '* (list 'calcFunc-sin (list '* (1- n) a)) (list 'calcFunc-sin a)))))))) (defun math-should-expand-trig (x &optional hyperbolic) (let ((m (math-is-multiple x))) (and math-living-dangerously m (or (and (integerp (car m)) (> (car m) 1)) (equal (car m) '(frac 1 2))) (or math-integrating (memq (car-safe (nth 1 m)) (if hyperbolic '(calcFunc-arcsinh calcFunc-arccosh calcFunc-arctanh) '(calcFunc-arcsin calcFunc-arccos calcFunc-arctan))) (and (eq (car-safe (nth 1 m)) 'calcFunc-ln) (eq hyperbolic 'exp))) m))) (defun math-known-sin (plus n mul off) (setq n (math-mul n mul)) (and (math-num-integerp n) (setq n (math-mod (math-add (math-trunc n) off) 240)) (if (>= n 120) (and (setq n (math-known-sin plus (- n 120) 1 0)) (math-neg n)) (if (> n 60) (setq n (- 120 n))) (if (math-zerop plus) (and (or calc-symbolic-mode (memq n '(0 20 60))) (cdr (assq n '( (0 . 0) (10 . (/ (calcFunc-sqrt (- 2 (calcFunc-sqrt 3))) 2)) (12 . (/ (- (calcFunc-sqrt 5) 1) 4)) (15 . (/ (calcFunc-sqrt (- 2 (calcFunc-sqrt 2))) 2)) (20 . (/ 1 2)) (24 . (* (^ (/ 1 2) (/ 3 2)) (calcFunc-sqrt (- 5 (calcFunc-sqrt 5))))) (30 . (/ (calcFunc-sqrt 2) 2)) (36 . (/ (+ (calcFunc-sqrt 5) 1) 4)) (40 . (/ (calcFunc-sqrt 3) 2)) (45 . (/ (calcFunc-sqrt (+ 2 (calcFunc-sqrt 2))) 2)) (48 . (* (^ (/ 1 2) (/ 3 2)) (calcFunc-sqrt (+ 5 (calcFunc-sqrt 5))))) (50 . (/ (calcFunc-sqrt (+ 2 (calcFunc-sqrt 3))) 2)) (60 . 1))))) (cond ((eq n 0) (math-normalize (list 'calcFunc-sin plus))) ((eq n 60) (math-normalize (list 'calcFunc-cos plus))) (t nil)))))) (math-defsimplify calcFunc-tan (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctan) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-tan (math-neg (nth 1 expr))))) (and (eq calc-angle-mode 'rad) (let ((n (math-linear-in (nth 1 expr) '(var pi var-pi)))) (and n (math-known-tan (car n) (nth 1 n) 120)))) (and (eq calc-angle-mode 'deg) (let ((n (math-integer-plus (nth 1 expr)))) (and n (math-known-tan (car n) (nth 1 n) '(frac 2 3))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsin) (math-div (nth 1 (nth 1 expr)) (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccos) (math-div (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))) (nth 1 (nth 1 expr)))) (let ((m (math-should-expand-trig (nth 1 expr)))) (and m (if (equal (car m) '(frac 1 2)) (math-div (math-sub 1 (list 'calcFunc-cos (nth 1 m))) (list 'calcFunc-sin (nth 1 m))) (math-div (list 'calcFunc-sin (nth 1 expr)) (list 'calcFunc-cos (nth 1 expr)))))))) (defun math-known-tan (plus n mul) (setq n (math-mul n mul)) (and (math-num-integerp n) (setq n (math-mod (math-trunc n) 120)) (if (> n 60) (and (setq n (math-known-tan plus (- 120 n) 1)) (math-neg n)) (if (math-zerop plus) (and (or calc-symbolic-mode (memq n '(0 30 60))) (cdr (assq n '( (0 . 0) (10 . (- 2 (calcFunc-sqrt 3))) (12 . (calcFunc-sqrt (- 1 (* (/ 2 5) (calcFunc-sqrt 5))))) (15 . (- (calcFunc-sqrt 2) 1)) (20 . (/ (calcFunc-sqrt 3) 3)) (24 . (calcFunc-sqrt (- 5 (* 2 (calcFunc-sqrt 5))))) (30 . 1) (36 . (calcFunc-sqrt (+ 1 (* (/ 2 5) (calcFunc-sqrt 5))))) (40 . (calcFunc-sqrt 3)) (45 . (+ (calcFunc-sqrt 2) 1)) (48 . (calcFunc-sqrt (+ 5 (* 2 (calcFunc-sqrt 5))))) (50 . (+ 2 (calcFunc-sqrt 3))) (60 . (var uinf var-uinf)))))) (cond ((eq n 0) (math-normalize (list 'calcFunc-tan plus))) ((eq n 60) (math-normalize (list '/ -1 (list 'calcFunc-tan plus)))) (t nil)))))) (math-defsimplify calcFunc-sinh (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-sinh (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) math-living-dangerously (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) math-living-dangerously (math-div (nth 1 (nth 1 expr)) (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) (let ((m (math-should-expand-trig (nth 1 expr) t))) (and m (integerp (car m)) (let ((n (car m)) (a (nth 1 m))) (if (> n 1) (list '+ (list '* (list 'calcFunc-sinh (list '* (1- n) a)) (list 'calcFunc-cosh a)) (list '* (list 'calcFunc-cosh (list '* (1- n) a)) (list 'calcFunc-sinh a))))))))) (math-defsimplify calcFunc-cosh (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (list 'calcFunc-cosh (math-neg (nth 1 expr)))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) math-living-dangerously (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) math-living-dangerously (math-div 1 (list 'calcFunc-sqrt (math-sub 1 (math-sqr (nth 1 (nth 1 expr))))))) (let ((m (math-should-expand-trig (nth 1 expr) t))) (and m (integerp (car m)) (let ((n (car m)) (a (nth 1 m))) (if (> n 1) (list '+ (list '* (list 'calcFunc-cosh (list '* (1- n) a)) (list 'calcFunc-cosh a)) (list '* (list 'calcFunc-sinh (list '* (1- n) a)) (list 'calcFunc-sinh a))))))))) (math-defsimplify calcFunc-tanh (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-arctanh) (nth 1 (nth 1 expr))) (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-tanh (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arcsinh) math-living-dangerously (math-div (nth 1 (nth 1 expr)) (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 (nth 1 expr))) 1)))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-arccosh) math-living-dangerously (math-div (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 (nth 1 expr))) 1)) (nth 1 (nth 1 expr)))) (let ((m (math-should-expand-trig (nth 1 expr) t))) (and m (if (equal (car m) '(frac 1 2)) (math-div (math-sub (list 'calcFunc-cosh (nth 1 m)) 1) (list 'calcFunc-sinh (nth 1 m))) (math-div (list 'calcFunc-sinh (nth 1 expr)) (list 'calcFunc-cosh (nth 1 expr)))))))) (math-defsimplify calcFunc-arcsin (or (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-arcsin (math-neg (nth 1 expr))))) (and (eq (nth 1 expr) 1) (math-quarter-circle t)) (and (equal (nth 1 expr) '(frac 1 2)) (math-div (math-half-circle t) 6)) (and math-living-dangerously (eq (car-safe (nth 1 expr)) 'calcFunc-sin) (nth 1 (nth 1 expr))) (and math-living-dangerously (eq (car-safe (nth 1 expr)) 'calcFunc-cos) (math-sub (math-quarter-circle t) (nth 1 (nth 1 expr)))))) (math-defsimplify calcFunc-arccos (or (and (eq (nth 1 expr) 0) (math-quarter-circle t)) (and (eq (nth 1 expr) -1) (math-half-circle t)) (and (equal (nth 1 expr) '(frac 1 2)) (math-div (math-half-circle t) 3)) (and (equal (nth 1 expr) '(frac -1 2)) (math-div (math-mul (math-half-circle t) 2) 3)) (and math-living-dangerously (eq (car-safe (nth 1 expr)) 'calcFunc-cos) (nth 1 (nth 1 expr))) (and math-living-dangerously (eq (car-safe (nth 1 expr)) 'calcFunc-sin) (math-sub (math-quarter-circle t) (nth 1 (nth 1 expr)))))) (math-defsimplify calcFunc-arctan (or (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-arctan (math-neg (nth 1 expr))))) (and (eq (nth 1 expr) 1) (math-div (math-half-circle t) 4)) (and math-living-dangerously (eq (car-safe (nth 1 expr)) 'calcFunc-tan) (nth 1 (nth 1 expr))))) (math-defsimplify calcFunc-arcsinh (or (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-arcsinh (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh) (or math-living-dangerously (math-known-realp (nth 1 (nth 1 expr)))) (nth 1 (nth 1 expr))))) (math-defsimplify calcFunc-arccosh (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh) (or math-living-dangerously (math-known-realp (nth 1 (nth 1 expr)))) (nth 1 (nth 1 expr)))) (math-defsimplify calcFunc-arctanh (or (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-arctanh (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-tanh) (or math-living-dangerously (math-known-realp (nth 1 (nth 1 expr)))) (nth 1 (nth 1 expr))))) (math-defsimplify calcFunc-sqrt (math-simplify-sqrt)) (defun math-simplify-sqrt () (or (and (eq (car-safe (nth 1 expr)) 'frac) (math-div (list 'calcFunc-sqrt (math-mul (nth 1 (nth 1 expr)) (nth 2 (nth 1 expr)))) (nth 2 (nth 1 expr)))) (let ((fac (if (math-objectp (nth 1 expr)) (math-squared-factor (nth 1 expr)) (math-common-constant-factor (nth 1 expr))))) (and fac (not (eq fac 1)) (math-mul (math-normalize (list 'calcFunc-sqrt fac)) (math-normalize (list 'calcFunc-sqrt (math-cancel-common-factor (nth 1 expr) fac)))))) (and math-living-dangerously (or (and (eq (car-safe (nth 1 expr)) '-) (math-equal-int (nth 1 (nth 1 expr)) 1) (eq (car-safe (nth 2 (nth 1 expr))) '^) (math-equal-int (nth 2 (nth 2 (nth 1 expr))) 2) (or (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr)))) 'calcFunc-sin) (list 'calcFunc-cos (nth 1 (nth 1 (nth 2 (nth 1 expr)))))) (and (eq (car-safe (nth 1 (nth 2 (nth 1 expr)))) 'calcFunc-cos) (list 'calcFunc-sin (nth 1 (nth 1 (nth 2 (nth 1 expr)))))))) (and (eq (car-safe (nth 1 expr)) '-) (math-equal-int (nth 2 (nth 1 expr)) 1) (eq (car-safe (nth 1 (nth 1 expr))) '^) (math-equal-int (nth 2 (nth 1 (nth 1 expr))) 2) (and (eq (car-safe (nth 1 (nth 1 (nth 1 expr)))) 'calcFunc-cosh) (list 'calcFunc-sinh (nth 1 (nth 1 (nth 1 (nth 1 expr))))))) (and (eq (car-safe (nth 1 expr)) '+) (let ((a (nth 1 (nth 1 expr))) (b (nth 2 (nth 1 expr)))) (and (or (and (math-equal-int a 1) (setq a b b (nth 1 (nth 1 expr)))) (math-equal-int b 1)) (eq (car-safe a) '^) (math-equal-int (nth 2 a) 2) (or (and (eq (car-safe (nth 1 a)) 'calcFunc-sinh) (list 'calcFunc-cosh (nth 1 (nth 1 a)))) (and (eq (car-safe (nth 1 a)) 'calcFunc-tan) (list '/ 1 (list 'calcFunc-cos (nth 1 (nth 1 a))))))))) (and (eq (car-safe (nth 1 expr)) '^) (list '^ (nth 1 (nth 1 expr)) (math-div (nth 2 (nth 1 expr)) 2))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt) (list '^ (nth 1 (nth 1 expr)) (math-div 1 4))) (and (memq (car-safe (nth 1 expr)) '(* /)) (list (car (nth 1 expr)) (list 'calcFunc-sqrt (nth 1 (nth 1 expr))) (list 'calcFunc-sqrt (nth 2 (nth 1 expr))))) (and (memq (car-safe (nth 1 expr)) '(+ -)) (not (math-any-floats (nth 1 expr))) (let ((f (calcFunc-factors (calcFunc-expand (nth 1 expr))))) (and (math-vectorp f) (or (> (length f) 2) (> (nth 2 (nth 1 f)) 1)) (let ((out 1) (rest 1) (sums 1) fac pow) (while (setq f (cdr f)) (setq fac (nth 1 (car f)) pow (nth 2 (car f))) (if (> pow 1) (setq out (math-mul out (math-pow fac (/ pow 2))) pow (% pow 2))) (if (> pow 0) (if (memq (car-safe fac) '(+ -)) (setq sums (math-mul-thru sums fac)) (setq rest (math-mul rest fac))))) (and (not (and (eq out 1) (memq rest '(1 -1)))) (math-mul out (list 'calcFunc-sqrt (math-mul sums rest)))))))))))) ;;; Rather than factoring x into primes, just check for the first ten primes. (defun math-squared-factor (x) (if (Math-integerp x) (let ((prsqr '(4 9 25 49 121 169 289 361 529 841)) (fac 1) res) (while prsqr (if (eq (cdr (setq res (math-idivmod x (car prsqr)))) 0) (setq x (car res) fac (math-mul fac (car prsqr))) (setq prsqr (cdr prsqr)))) fac))) (math-defsimplify calcFunc-exp (math-simplify-exp (nth 1 expr))) (defun math-simplify-exp (x) (or (and (eq (car-safe x) 'calcFunc-ln) (nth 1 x)) (and math-living-dangerously (or (and (eq (car-safe x) 'calcFunc-arcsinh) (math-add (nth 1 x) (list 'calcFunc-sqrt (math-add (math-sqr (nth 1 x)) 1)))) (and (eq (car-safe x) 'calcFunc-arccosh) (math-add (nth 1 x) (list 'calcFunc-sqrt (math-sub (math-sqr (nth 1 x)) 1)))) (and (eq (car-safe x) 'calcFunc-arctanh) (math-div (list 'calcFunc-sqrt (math-add 1 (nth 1 x))) (list 'calcFunc-sqrt (math-sub 1 (nth 1 x))))) (let ((m (math-should-expand-trig x 'exp))) (and m (integerp (car m)) (list '^ (list 'calcFunc-exp (nth 1 m)) (car m)))))) (and calc-symbolic-mode (math-known-imagp x) (let* ((ip (calcFunc-im x)) (n (math-linear-in ip '(var pi var-pi))) s c) (and n (setq s (math-known-sin (car n) (nth 1 n) 120 0)) (setq c (math-known-sin (car n) (nth 1 n) 120 300)) (list '+ c (list '* s '(var i var-i)))))))) (math-defsimplify calcFunc-ln (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp) (or math-living-dangerously (math-known-realp (nth 1 (nth 1 expr)))) (nth 1 (nth 1 expr))) (and (eq (car-safe (nth 1 expr)) '^) (equal (nth 1 (nth 1 expr)) '(var e var-e)) (or math-living-dangerously (math-known-realp (nth 2 (nth 1 expr)))) (nth 2 (nth 1 expr))) (and calc-symbolic-mode (math-known-negp (nth 1 expr)) (math-add (list 'calcFunc-ln (math-neg (nth 1 expr))) '(* (var pi var-pi) (var i var-i)))) (and calc-symbolic-mode (math-known-imagp (nth 1 expr)) (let* ((ip (calcFunc-im (nth 1 expr))) (ips (math-possible-signs ip))) (or (and (memq ips '(4 6)) (math-add (list 'calcFunc-ln ip) '(/ (* (var pi var-pi) (var i var-i)) 2))) (and (memq ips '(1 3)) (math-sub (list 'calcFunc-ln (math-neg ip)) '(/ (* (var pi var-pi) (var i var-i)) 2)))))))) (math-defsimplify ^ (math-simplify-pow)) (defun math-simplify-pow () (or (and math-living-dangerously (or (and (eq (car-safe (nth 1 expr)) '^) (list '^ (nth 1 (nth 1 expr)) (math-mul (nth 2 expr) (nth 2 (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-sqrt) (list '^ (nth 1 (nth 1 expr)) (math-div (nth 2 expr) 2))) (and (memq (car-safe (nth 1 expr)) '(* /)) (list (car (nth 1 expr)) (list '^ (nth 1 (nth 1 expr)) (nth 2 expr)) (list '^ (nth 2 (nth 1 expr)) (nth 2 expr)))))) (and (math-equal-int (nth 1 expr) 10) (eq (car-safe (nth 2 expr)) 'calcFunc-log10) (nth 1 (nth 2 expr))) (and (equal (nth 1 expr) '(var e var-e)) (math-simplify-exp (nth 2 expr))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-exp) (not math-integrating) (list 'calcFunc-exp (math-mul (nth 1 (nth 1 expr)) (nth 2 expr)))) (and (equal (nth 1 expr) '(var i var-i)) (math-imaginary-i) (math-num-integerp (nth 2 expr)) (let ((x (math-mod (math-trunc (nth 2 expr)) 4))) (cond ((eq x 0) 1) ((eq x 1) (nth 1 expr)) ((eq x 2) -1) ((eq x 3) (math-neg (nth 1 expr)))))) (and math-integrating (integerp (nth 2 expr)) (>= (nth 2 expr) 2) (or (and (eq (car-safe (nth 1 expr)) 'calcFunc-cos) (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2)) (math-sub 1 (math-sqr (list 'calcFunc-sin (nth 1 (nth 1 expr))))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-cosh) (math-mul (math-pow (nth 1 expr) (- (nth 2 expr) 2)) (math-add 1 (math-sqr (list 'calcFunc-sinh (nth 1 (nth 1 expr))))))))) (and (eq (car-safe (nth 2 expr)) 'frac) (Math-ratp (nth 1 expr)) (Math-posp (nth 1 expr)) (if (equal (nth 2 expr) '(frac 1 2)) (list 'calcFunc-sqrt (nth 1 expr)) (let ((flr (math-floor (nth 2 expr)))) (and (not (Math-zerop flr)) (list '* (list '^ (nth 1 expr) flr) (list '^ (nth 1 expr) (math-sub (nth 2 expr) flr))))))) (and (eq (math-quarter-integer (nth 2 expr)) 2) (let ((temp (math-simplify-sqrt))) (and temp (list '^ temp (math-mul (nth 2 expr) 2))))))) (math-defsimplify calcFunc-log10 (and (eq (car-safe (nth 1 expr)) '^) (math-equal-int (nth 1 (nth 1 expr)) 10) (or math-living-dangerously (math-known-realp (nth 2 (nth 1 expr)))) (nth 2 (nth 1 expr)))) (math-defsimplify calcFunc-erf (or (and (math-looks-negp (nth 1 expr)) (math-neg (list 'calcFunc-erf (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj) (list 'calcFunc-conj (list 'calcFunc-erf (nth 1 (nth 1 expr))))))) (math-defsimplify calcFunc-erfc (or (and (math-looks-negp (nth 1 expr)) (math-sub 2 (list 'calcFunc-erfc (math-neg (nth 1 expr))))) (and (eq (car-safe (nth 1 expr)) 'calcFunc-conj) (list 'calcFunc-conj (list 'calcFunc-erfc (nth 1 (nth 1 expr))))))) (defun math-linear-in (expr term &optional always) (if (math-expr-contains expr term) (let* ((calc-prefer-frac t) (p (math-is-polynomial expr term 1))) (and (cdr p) p)) (and always (list expr 0)))) (defun math-multiple-of (expr term) (let ((p (math-linear-in expr term))) (and p (math-zerop (car p)) (nth 1 p)))) ; not perfect, but it'll do (defun math-integer-plus (expr) (cond ((Math-integerp expr) (list 0 expr)) ((and (memq (car expr) '(+ -)) (Math-integerp (nth 1 expr))) (list (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr))) (nth 1 expr))) ((and (memq (car expr) '(+ -)) (Math-integerp (nth 2 expr))) (list (nth 1 expr) (if (eq (car expr) '+) (nth 2 expr) (math-neg (nth 2 expr))))) (t nil))) (defun math-is-linear (expr &optional always) (let ((offset nil) (coef nil)) (if (eq (car-safe expr) '+) (if (Math-objectp (nth 1 expr)) (setq offset (nth 1 expr) expr (nth 2 expr)) (if (Math-objectp (nth 2 expr)) (setq offset (nth 2 expr) expr (nth 1 expr)))) (if (eq (car-safe expr) '-) (if (Math-objectp (nth 1 expr)) (setq offset (nth 1 expr) expr (math-neg (nth 2 expr))) (if (Math-objectp (nth 2 expr)) (setq offset (math-neg (nth 2 expr)) expr (nth 1 expr)))))) (setq coef (math-is-multiple expr always)) (if offset (list offset (or (car coef) 1) (or (nth 1 coef) expr)) (if coef (cons 0 coef))))) (defun math-is-multiple (expr &optional always) (or (if (eq (car-safe expr) '*) (if (Math-objectp (nth 1 expr)) (list (nth 1 expr) (nth 2 expr))) (if (eq (car-safe expr) '/) (if (and (Math-objectp (nth 1 expr)) (not (math-equal-int (nth 1 expr) 1))) (list (nth 1 expr) (math-div 1 (nth 2 expr))) (if (Math-objectp (nth 2 expr)) (list (math-div 1 (nth 2 expr)) (nth 1 expr)) (let ((res (math-is-multiple (nth 1 expr)))) (if res (list (car res) (math-div (nth 2 (nth 1 expr)) (nth 2 expr))) (setq res (math-is-multiple (nth 2 expr))) (if res (list (math-div 1 (car res)) (math-div (nth 1 expr) (nth 2 (nth 2 expr))))))))) (if (eq (car-safe expr) 'neg) (list -1 (nth 1 expr))))) (if (Math-objvecp expr) (and (eq always 1) (list expr 1)) (and always (list 1 expr))))) (defun calcFunc-lin (expr &optional var) (if var (let ((res (math-linear-in expr var t))) (or res (math-reject-arg expr "Linear term expected")) (list 'vec (car res) (nth 1 res) var)) (let ((res (math-is-linear expr t))) (or res (math-reject-arg expr "Linear term expected")) (cons 'vec res)))) (defun calcFunc-linnt (expr &optional var) (if var (let ((res (math-linear-in expr var))) (or res (math-reject-arg expr "Linear term expected")) (list 'vec (car res) (nth 1 res) var)) (let ((res (math-is-linear expr))) (or res (math-reject-arg expr "Linear term expected")) (cons 'vec res)))) (defun calcFunc-islin (expr &optional var) (if (and (Math-objvecp expr) (not var)) 0 (calcFunc-lin expr var) 1)) (defun calcFunc-islinnt (expr &optional var) (if (Math-objvecp expr) 0 (calcFunc-linnt expr var) 1)) ;;; Simple operations on expressions. ;;; Return number of occurrences of thing in expr, or nil if none. (defun math-expr-contains-count (expr thing) (cond ((equal expr thing) 1) ((Math-primp expr) nil) (t (let ((num 0)) (while (setq expr (cdr expr)) (setq num (+ num (or (math-expr-contains-count (car expr) thing) 0)))) (and (> num 0) num))))) (defun math-expr-contains (expr thing) (cond ((equal expr thing) 1) ((Math-primp expr) nil) (t (while (and (setq expr (cdr expr)) (not (math-expr-contains (car expr) thing)))) expr))) ;;; Return non-nil if any variable of thing occurs in expr. (defun math-expr-depends (expr thing) (if (Math-primp thing) (and (eq (car-safe thing) 'var) (math-expr-contains expr thing)) (while (and (setq thing (cdr thing)) (not (math-expr-depends expr (car thing))))) thing)) ;;; Substitute all occurrences of old for new in expr (non-destructive). (defun math-expr-subst (expr old new) (math-expr-subst-rec expr)) (defalias 'calcFunc-subst 'math-expr-subst) (defun math-expr-subst-rec (expr) (cond ((equal expr old) new) ((Math-primp expr) expr) ((memq (car expr) '(calcFunc-deriv calcFunc-tderiv)) (if (= (length expr) 2) (if (equal (nth 1 expr) old) (append expr (list new)) expr) (list (car expr) (nth 1 expr) (math-expr-subst-rec (nth 2 expr))))) (t (cons (car expr) (mapcar 'math-expr-subst-rec (cdr expr)))))) ;;; Various measures of the size of an expression. (defun math-expr-weight (expr) (if (Math-primp expr) 1 (let ((w 1)) (while (setq expr (cdr expr)) (setq w (+ w (math-expr-weight (car expr))))) w))) (defun math-expr-height (expr) (if (Math-primp expr) 0 (let ((h 0)) (while (setq expr (cdr expr)) (setq h (max h (math-expr-height (car expr))))) (1+ h)))) ;;; Polynomial operations (to support the integrator and solve-for). (defun calcFunc-collect (expr base) (let ((p (math-is-polynomial expr base 50 t))) (if (cdr p) (math-normalize ; fix selection bug (math-build-polynomial-expr p base)) expr))) ;;; If expr is of the form "a + bx + cx^2 + ...", return the list (a b c ...), ;;; else return nil if not in polynomial form. If "loose", coefficients ;;; may contain x, e.g., sin(x) + cos(x) x^2 is a loose polynomial in x. (defun math-is-polynomial (expr var &optional degree loose) (let* ((math-poly-base-variable (if loose (if (eq loose 'gen) var '(var XXX XXX)) math-poly-base-variable)) (poly (math-is-poly-rec expr math-poly-neg-powers))) (and (or (null degree) (<= (length poly) (1+ degree))) poly))) (defun math-is-poly-rec (expr negpow) (math-poly-simplify (or (cond ((or (equal expr var) (eq (car-safe expr) '^)) (let ((pow 1) (expr expr)) (or (equal expr var) (setq pow (nth 2 expr) expr (nth 1 expr))) (or (eq math-poly-mult-powers 1) (setq pow (let ((m (math-is-multiple pow 1))) (and (eq (car-safe (car m)) 'cplx) (Math-zerop (nth 1 (car m))) (setq m (list (nth 2 (car m)) (math-mul (nth 1 m) '(var i var-i))))) (and (if math-poly-mult-powers (equal math-poly-mult-powers (nth 1 m)) (setq math-poly-mult-powers (nth 1 m))) (or (equal expr var) (eq math-poly-mult-powers 1)) (car m))))) (if (consp pow) (progn (setq pow (math-to-simple-fraction pow)) (and (eq (car-safe pow) 'frac) math-poly-frac-powers (equal expr var) (setq math-poly-frac-powers (calcFunc-lcm math-poly-frac-powers (nth 2 pow)))))) (or (memq math-poly-frac-powers '(1 nil)) (setq pow (math-mul pow math-poly-frac-powers))) (if (integerp pow) (if (and (= pow 1) (equal expr var)) (list 0 1) (if (natnump pow) (let ((p1 (if (equal expr var) (list 0 1) (math-is-poly-rec expr nil))) (n pow) (accum (list 1))) (and p1 (or (null degree) (<= (* (1- (length p1)) n) degree)) (progn (while (>= n 1) (setq accum (math-poly-mul accum p1) n (1- n))) accum))) (and negpow (math-is-poly-rec expr nil) (setq math-poly-neg-powers (cons (math-pow expr (- pow)) math-poly-neg-powers)) (list (list '^ expr pow)))))))) ((Math-objectp expr) (list expr)) ((memq (car expr) '(+ -)) (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) (and p1 (let ((p2 (math-is-poly-rec (nth 2 expr) negpow))) (and p2 (math-poly-mix p1 1 p2 (if (eq (car expr) '+) 1 -1))))))) ((eq (car expr) 'neg) (mapcar 'math-neg (math-is-poly-rec (nth 1 expr) negpow))) ((eq (car expr) '*) (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) (and p1 (let ((p2 (math-is-poly-rec (nth 2 expr) negpow))) (and p2 (or (null degree) (<= (- (+ (length p1) (length p2)) 2) degree)) (math-poly-mul p1 p2)))))) ((eq (car expr) '/) (and (or (not (math-poly-depends (nth 2 expr) var)) (and negpow (math-is-poly-rec (nth 2 expr) nil) (setq math-poly-neg-powers (cons (nth 2 expr) math-poly-neg-powers)))) (not (Math-zerop (nth 2 expr))) (let ((p1 (math-is-poly-rec (nth 1 expr) negpow))) (mapcar (function (lambda (x) (math-div x (nth 2 expr)))) p1)))) ((and (eq (car expr) 'calcFunc-exp) (equal var '(var e var-e))) (math-is-poly-rec (list '^ var (nth 1 expr)) negpow)) ((and (eq (car expr) 'calcFunc-sqrt) math-poly-frac-powers) (math-is-poly-rec (list '^ (nth 1 expr) '(frac 1 2)) negpow)) (t nil)) (and (or (not (math-poly-depends expr var)) loose) (not (eq (car expr) 'vec)) (list expr))))) ;;; Check if expr is a polynomial in var; if so, return its degree. (defun math-polynomial-p (expr var) (cond ((equal expr var) 1) ((Math-primp expr) 0) ((memq (car expr) '(+ -)) (let ((p1 (math-polynomial-p (nth 1 expr) var)) p2) (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var)) (max p1 p2)))) ((eq (car expr) '*) (let ((p1 (math-polynomial-p (nth 1 expr) var)) p2) (and p1 (setq p2 (math-polynomial-p (nth 2 expr) var)) (+ p1 p2)))) ((eq (car expr) 'neg) (math-polynomial-p (nth 1 expr) var)) ((and (eq (car expr) '/) (not (math-poly-depends (nth 2 expr) var))) (math-polynomial-p (nth 1 expr) var)) ((and (eq (car expr) '^) (natnump (nth 2 expr))) (let ((p1 (math-polynomial-p (nth 1 expr) var))) (and p1 (* p1 (nth 2 expr))))) ((math-poly-depends expr var) nil) (t 0))) (defun math-poly-depends (expr var) (if math-poly-base-variable (math-expr-contains expr math-poly-base-variable) (math-expr-depends expr var))) ;;; Find the variable (or sub-expression) which is the base of polynomial expr. (defun math-polynomial-base (mpb-top-expr &optional mpb-pred) (or mpb-pred (setq mpb-pred (function (lambda (base) (math-polynomial-p mpb-top-expr base))))) (or (let ((const-ok nil)) (math-polynomial-base-rec mpb-top-expr)) (let ((const-ok t)) (math-polynomial-base-rec mpb-top-expr)))) (defun math-polynomial-base-rec (mpb-expr) (and (not (Math-objvecp mpb-expr)) (or (and (memq (car mpb-expr) '(+ - *)) (or (math-polynomial-base-rec (nth 1 mpb-expr)) (math-polynomial-base-rec (nth 2 mpb-expr)))) (and (memq (car mpb-expr) '(/ neg)) (math-polynomial-base-rec (nth 1 mpb-expr))) (and (eq (car mpb-expr) '^) (math-polynomial-base-rec (nth 1 mpb-expr))) (and (eq (car mpb-expr) 'calcFunc-exp) (math-polynomial-base-rec '(var e var-e))) (and (or const-ok (math-expr-contains-vars mpb-expr)) (funcall mpb-pred mpb-expr) mpb-expr)))) ;;; Return non-nil if expr refers to any variables. (defun math-expr-contains-vars (expr) (or (eq (car-safe expr) 'var) (and (not (Math-primp expr)) (progn (while (and (setq expr (cdr expr)) (not (math-expr-contains-vars (car expr))))) expr)))) ;;; Simplify a polynomial in list form by stripping off high-end zeros. ;;; This always leaves the constant part, i.e., nil->nil and nonnil->nonnil. (defun math-poly-simplify (p) (and p (if (Math-zerop (nth (1- (length p)) p)) (let ((pp (copy-sequence p))) (while (and (cdr pp) (Math-zerop (nth (1- (length pp)) pp))) (setcdr (nthcdr (- (length pp) 2) pp) nil)) pp) p))) ;;; Compute ac*a + bc*b for polynomials in list form a, b and ;;; coefficients ac, bc. Result may be unsimplified. (defun math-poly-mix (a ac b bc) (and (or a b) (cons (math-add (math-mul (or (car a) 0) ac) (math-mul (or (car b) 0) bc)) (math-poly-mix (cdr a) ac (cdr b) bc)))) (defun math-poly-zerop (a) (or (null a) (and (null (cdr a)) (Math-zerop (car a))))) ;;; Multiply two polynomials in list form. (defun math-poly-mul (a b) (and a b (math-poly-mix b (car a) (math-poly-mul (cdr a) (cons 0 b)) 1))) ;;; Build an expression from a polynomial list. (defun math-build-polynomial-expr (p var) (if p (if (Math-numberp var) (math-with-extra-prec 1 (let* ((rp (reverse p)) (accum (car rp))) (while (setq rp (cdr rp)) (setq accum (math-add (car rp) (math-mul accum var)))) accum)) (let* ((rp (reverse p)) (n (1- (length rp))) (accum (math-mul (car rp) (math-pow var n))) term) (while (setq rp (cdr rp)) (setq n (1- n)) (or (math-zerop (car rp)) (setq accum (list (if (math-looks-negp (car rp)) '- '+) accum (math-mul (if (math-looks-negp (car rp)) (math-neg (car rp)) (car rp)) (math-pow var n)))))) accum)) 0)) (defun math-to-simple-fraction (f) (or (and (eq (car-safe f) 'float) (or (and (>= (nth 2 f) 0) (math-scale-int (nth 1 f) (nth 2 f))) (and (integerp (nth 1 f)) (> (nth 1 f) -1000) (< (nth 1 f) 1000) (math-make-frac (nth 1 f) (math-scale-int 1 (- (nth 2 f))))))) f)) ;;; arch-tag: 52e7dcdf-9688-464d-a02b-4bbe789348d0 ;;; calc-alg.el ends here