;;; comp.el --- compilation of Lisp code into native code -*- lexical-binding: t -*- ;; Author: Andrea Corallo ;; Copyright (C) 2019-2020 Free Software Foundation, Inc. ;; Keywords: lisp ;; Package: emacs ;; This file is part of GNU Emacs. ;; GNU Emacs is free software: you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation, either version 3 of the License, or ;; (at your option) any later version. ;; GNU Emacs is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU Emacs. If not, see . ;;; Commentary: ;; This code is an attempt to make the pig fly. ;; Or, to put it another way to make a 911 out of a turbocharged VW Bug. ;;; Code: (require 'bytecomp) (require 'cl-extra) (require 'cl-lib) (require 'cl-macs) (require 'cl-seq) (require 'gv) (require 'rx) (require 'subr-x) (require 'warnings) (require 'comp-cstr) (defgroup comp nil "Emacs Lisp native compiler." :group 'lisp) (defcustom comp-speed 2 "Compiler optimization level. From -1 to 3. - -1 functions are kept in bytecode form and no native compilation is performed. - 0 native compilation is performed with no optimizations. - 1 lite optimizations. - 2 max optimization level fully adherent to the language semantic. - 3 max optimization level, to be used only when necessary. Warning: the compiler is free to perform dangerous optimizations." :type 'number :safe #'numberp :group 'comp) (defcustom comp-debug 0 "Compiler debug level. From 0 to 3. This intended for debugging the compiler itself. - 0 no debug facility. This is the recommended value unless you are debugging the compiler itself. - 1 emit debug symbols and dump pseudo C code. - 2 dump gcc passes and libgccjit log file. - 3 dump libgccjit reproducers." :type 'number :safe #'numberp :group 'comp) (defcustom comp-verbose 0 "Compiler verbosity. From 0 to 3. This intended for debugging the compiler itself. - 0 no logging. - 1 final limple is logged. - 2 LAP and final limple and some pass info are logged. - 3 max verbosity." :type 'number) (defcustom comp-always-compile nil "Unconditionally (re-)compile all files." :type 'boolean) (defcustom comp-deferred-compilation-deny-list '() "List of regexps to exclude files from deferred native compilation. Skip if any is matching." :type 'list) (defcustom comp-bootstrap-deny-list '() "List of regexps to exclude files from native compilation during bootstrap. Skip if any is matching." :type 'list) (defcustom comp-never-optimize-functions '(;; The following two are mandatory for Emacs to be working ;; correctly (see comment in `advice--add-function'). DO NOT ;; REMOVE. macroexpand rename-buffer) "Primitive functions for which we do not perform trampoline optimization." :type 'list) (defcustom comp-async-jobs-number 0 "Default number of processes used for async compilation. When zero use half of the CPUs or at least one." :type 'number) ;; FIXME: This an abnormal hook, and should be renamed to something ;; like `comp-async-cu-done-function'. (defcustom comp-async-cu-done-hook nil "Hook run after asynchronously compiling a single compilation unit. The argument FILE passed to the function is the filename used as compilation input." :type 'hook) (defcustom comp-async-all-done-hook nil "Hook run after asynchronously compiling all input files." :type 'hook) (defcustom comp-async-env-modifier-form nil "Form evaluated before compilation by each asynchronous compilation worker. Usable to modify the compiler environment." :type 'list) (defcustom comp-async-report-warnings-errors t "Report warnings and errors from native asynchronous compilation." :type 'boolean) (defcustom comp-native-driver-options nil "Options passed verbatim to the native compiler's backend driver. Note that not all options are meaningful; typically only the options affecting the assembler and linker are likely to be useful. Passing these options is only available in libgccjit version 9 and above." :type 'list) (defvar comp-dry-run nil "If non-nil, run everything but the C back-end.") (defconst comp-valid-source-re (rx ".el" (? ".gz") eos) "Regexp to match filename of valid input source files.") (defconst comp-log-buffer-name "*Native-compile-Log*" "Name of the native-compiler log buffer.") (defconst comp-async-buffer-name "*Async-native-compile-log*" "Name of the async compilation buffer log.") (defvar comp-native-compiling nil "This gets bound to t while native compilation. Can be used by code that wants to expand differently in this case.") (defvar comp-pass nil "Every pass has the right to bind what it likes here.") (defvar comp-curr-allocation-class 'd-default "Current allocation class. Can be one of: 'd-default', 'd-impure' or 'd-ephemeral'. See `comp-ctxt'.") (defconst comp-passes '(comp-spill-lap comp-limplify comp-fwprop comp-call-optim comp-ipa-pure comp-add-cstrs comp-fwprop comp-dead-code comp-tco comp-fwprop comp-remove-type-hints comp-final) "Passes to be executed in order.") (defvar comp-disabled-passes '() "List of disabled passes. For internal use only by the testsuite.") (defvar comp-post-pass-hooks '() "Alist PASS FUNCTIONS. Each function in FUNCTIONS is run after PASS. Useful to hook into pass checkers.") ;; FIXME this probably should not be here but... good for now. (defconst comp-known-type-specifiers `((cons (function (t t) cons)) (1+ (function ((or number marker)) number)) (1- (function ((or number marker)) number)) (+ (function (&rest (or number marker)) number)) (- (function (&rest (or number marker)) number)) (* (function (&rest (or number marker)) number)) (/ (function ((or number marker) &rest (or number marker)) number)) (% (function ((or number marker) (or number marker)) number)) (concat (function (&rest sequence) string)) (regexp-opt (function (list) string)) (string-to-char (function (string) integer)) (symbol-name (function (symbol) string)) (eq (function (t t) boolean)) (eql (function (t t) boolean)) (= (function ((or number marker) &rest (or number marker)) boolean)) (/= (function ((or number marker) (or number marker)) boolean)) (< (function ((or number marker) &rest (or number marker)) boolean)) (<= (function ((or number marker) &rest (or number marker)) boolean)) (>= (function ((or number marker) &rest (or number marker)) boolean)) (> (function ((or number marker) &rest (or number marker)) boolean)) (min (function ((or number marker) &rest (or number marker)) number)) (max (function ((or number marker) &rest (or number marker)) number)) (mod (function ((or number marker) (or number marker)) (or (integer 0 *) (float 0 *)))) (abs (function (number) number)) (ash (function (integer integer) integer)) (sqrt (function (number) float)) (logand (function (&rest (or integer marker)) integer)) (logior (function (&rest (or integer marker)) integer)) (lognot (function (integer) integer)) (logxor (function (&rest (or integer marker)) integer)) (logcount (function (integer) integer)) (copysign (function (float float) float)) (isnan (function (float) boolean)) (ldexp (function (number integer) float)) (float (function (number) float)) (logb (function (number) integer)) (floor (function (number &optional number) integer)) (ceiling (function (number &optional number) integer)) (round (function (number &optional number) integer)) (truncate (function (number &optional number) integer)) (ffloor (function (float) float)) (fceiling (function (float) float)) (fround (function (float) float)) (ftruncate (function (float) float)) (string= (function ((or string symbol) (or string symbol)) boolean)) (string-equal (function ((or string symbol) (or string symbol)) boolean)) (string< (function ((or string symbol) (or string symbol)) boolean)) (string-lessp (function ((or string symbol) (or string symbol)) boolean)) (string-search (function (string string &optional integer) integer)) (string-to-char (function (string) integer)) (string-to-number (function (string &optional integer) number)) (string-to-syntax (function (string) cons)) (substring (function ((or string vector) &optional integer integer) (or string vector))) (sxhash (function (t) integer)) (sxhash-equal (function (t) integer)) (sxhash-eq (function (t) integer)) (sxhash-eql (function (t) integer)) (symbol-function (function (symbol) t)) (symbol-name (function (symbol) string)) (symbol-plist (function (symbol) list)) (symbol-value (function (symbol) t)) (string-make-unibyte (function (string) string)) (string-make-multibyte (function (string) string)) (string-as-multibyte (function (string) string)) (string-as-unibyte (function (string) string)) (string-to-multibyte (function (string) string)) (tan (function (number) float)) (time-convert (function (t &optional (or boolean integer)) cons)) (unibyte-char-to-multibyte (function (fixnum) fixnum)) ;; byte is fixnum (upcase (function ((or fixnum string)) (or fixnum string))) (user-full-name (function (&optional integer) string)) (user-login-name (function (&optional integer) (or string null))) (user-original-login-name (function (&optional integer) (or string null))) (custom-variable-p (function (symbol) boolean)) (vconcat (function (&rest sequence) vector)) ;; TODO all window-* :x (zerop (function (number) boolean)) ;; Type hints (comp-hint-fixnum (function (t) fixnum)) (comp-hint-cons (function (t) cons))) "Alist used for type propagation.") (defconst comp-known-func-cstr-h (cl-loop with comp-ctxt = (make-comp-cstr-ctxt) with h = (make-hash-table :test #'eq) for (f type-spec) in comp-known-type-specifiers for cstr = (comp-type-spec-to-cstr type-spec) do (puthash f cstr h) finally return h) "Hash table function -> `comp-constraint'") (defconst comp-symbol-values-optimizable '(most-positive-fixnum most-negative-fixnum) "Symbol values we can resolve in the compile-time.") (defconst comp-type-hints '(comp-hint-fixnum comp-hint-cons) "List of fake functions used to give compiler hints.") (defconst comp-limple-sets '(set setimm set-par-to-local set-args-to-local set-rest-args-to-local) "Limple set operators.") (defconst comp-limple-assignments `(assume fetch-handler ,@comp-limple-sets) "Limple operators that clobbers the first m-var argument.") (defconst comp-limple-calls '(call callref direct-call direct-callref) "Limple operators use to call subrs.") (defconst comp-limple-branches '(jump cond-jump) "Limple operators use for conditional and unconditional branches.") (defconst comp-limple-ops `(,@comp-limple-calls ,@comp-limple-assignments ,@comp-limple-branches return) "All limple operators.") (defvar comp-func nil "Bound to the current function by most passes.") (define-error 'native-compiler-error-dyn-func "can't native compile a non-lexically-scoped function" 'native-compiler-error) (define-error 'native-compiler-error-empty-byte "empty byte compiler output" 'native-compiler-error) (eval-when-compile (defconst comp-op-stack-info (cl-loop with h = (make-hash-table) for k across byte-code-vector for v across byte-stack+-info when k do (puthash k v h) finally return h) "Hash table lap-op -> stack adjustment.")) (cl-defstruct comp-data-container "Data relocation container structure." (l () :type list :documentation "Constant objects used by functions.") (idx (make-hash-table :test #'equal) :type hash-table :documentation "Obj -> position into the previous field.")) (cl-defstruct (comp-ctxt (:include comp-cstr-ctxt)) "Lisp side of the compiler context." (output nil :type string :documentation "Target output file-name for the compilation.") (speed comp-speed :type number :documentation "Default speed for this compilation unit.") (debug comp-debug :type number :documentation "Default debug level for this compilation unit.") (top-level-forms () :type list :documentation "List of spilled top level forms.") (funcs-h (make-hash-table :test #'equal) :type hash-table :documentation "c-name -> comp-func.") (sym-to-c-name-h (make-hash-table :test #'eq) :type hash-table :documentation "symbol-function -> c-name. This is only for optimizing intra CU calls at speed 3.") (byte-func-to-func-h (make-hash-table :test #'equal) :type hash-table :documentation "byte-function -> comp-func. Needed to replace immediate byte-compiled lambdas with the compiled reference.") (lambda-fixups-h (make-hash-table :test #'equal) :type hash-table :documentation "Hash table byte-func -> mvar to fixup.") (function-docs (make-hash-table :test #'eql) :type (or hash-table vector) :documentation "Documentation index -> documentation") (d-default (make-comp-data-container) :type comp-data-container :documentation "Standard data relocated in use by functions.") (d-impure (make-comp-data-container) :type comp-data-container :documentation "Relocated data that cannot be moved into pure space. This is typically for top-level forms other than defun.") (d-ephemeral (make-comp-data-container) :type comp-data-container :documentation "Relocated data not necessary after load.") (with-late-load nil :type boolean :documentation "When non-nil support late load.")) (cl-defstruct comp-args-base (min nil :type number :documentation "Minimum number of arguments allowed.")) (cl-defstruct (comp-args (:include comp-args-base)) (max nil :type number :documentation "Maximum number of arguments allowed. To be used when ncall-conv is nil.")) (cl-defstruct (comp-nargs (:include comp-args-base)) "Describe args when the function signature is of kind: (ptrdiff_t nargs, Lisp_Object *args)." (nonrest nil :type number :documentation "Number of non rest arguments.") (rest nil :type boolean :documentation "t if rest argument is present.")) (cl-defstruct (comp-block (:copier nil) (:constructor nil)) "A base class for basic blocks." (name nil :type symbol) (insns () :type list :documentation "List of instructions.") (closed nil :type boolean :documentation "t if closed.") ;; All the following are for SSA and CGF analysis. ;; Keep in sync with `comp-clean-ssa'!! (in-edges () :type list :documentation "List of incoming edges.") (out-edges () :type list :documentation "List of out-coming edges.") (dom nil :type (or null comp-block) :documentation "Immediate dominator.") (df (make-hash-table) :type (or null hash-table) :documentation "Dominance frontier set. Block-name -> block") (post-num nil :type (or null number) :documentation "Post order number.") (final-frame nil :type (or null vector) :documentation "This is a copy of the frame when leaving the block. Is in use to help the SSA rename pass.")) (cl-defstruct (comp-block-lap (:copier nil) (:include comp-block) (:constructor make--comp-block-lap (addr sp name))) ; Positional "A basic block created from lap." ;; These two slots are used during limplification. (sp nil :type number :documentation "When non-nil indicates the sp value while entering into it.") (addr nil :type number :documentation "Start block LAP address.")) (cl-defstruct (comp-latch (:copier nil) (:include comp-block)) "A basic block for a latch loop.") (cl-defstruct (comp-block-cstr (:copier nil) (:include comp-block)) "A basic block holding only constraints.") (cl-defstruct (comp-edge (:copier nil) (:constructor make--comp-edge)) "An edge connecting two basic blocks." (src nil :type (or null comp-block)) (dst nil :type (or null comp-block)) (number nil :type number :documentation "The index number corresponding to this edge in the edge hash.")) (defun make-comp-edge (&rest args) "Create a `comp-edge' with basic blocks SRC and DST." (let ((n (funcall (comp-func-edge-cnt-gen comp-func)))) (puthash n (apply #'make--comp-edge :number n args) (comp-func-edges-h comp-func)))) (defun comp-block-preds (basic-block) "Given BASIC-BLOCK return the list of its predecessors." (mapcar #'comp-edge-src (comp-block-in-edges basic-block))) (defun comp-gen-counter () "Return a sequential number generator." (let ((n -1)) (lambda () (cl-incf n)))) (cl-defstruct (comp-func (:copier nil)) "LIMPLE representation of a function." (name nil :type symbol :documentation "Function symbol name. Nil indicates anonymous.") (c-name nil :type string :documentation "The function name in the native world.") (byte-func nil :documentation "Byte-compiled version.") (doc nil :type string :documentation "Doc string.") (int-spec nil :type list :documentation "Interactive form.") (lap () :type list :documentation "LAP assembly representation.") (ssa-status nil :type symbol :documentation "SSA status either: 'nil', 'dirty' or 't'. Once in SSA form this *must* be set to 'dirty' every time the topology of the CFG is mutated by a pass.") (frame-size nil :type number) (blocks (make-hash-table :test #'eq) :type hash-table :documentation "Basic block symbol -> basic block.") (lap-block (make-hash-table :test #'equal) :type hash-table :documentation "LAP label -> LIMPLE basic block name.") (edges-h (make-hash-table) :type hash-table :documentation "Hash edge-num -> edge connecting basic two blocks.") (block-cnt-gen (funcall #'comp-gen-counter) :type function :documentation "Generates block numbers.") (edge-cnt-gen (funcall #'comp-gen-counter) :type function :documentation "Generates edges numbers.") (has-non-local nil :type boolean :documentation "t if non local jumps are present.") (array-h (make-hash-table) :type hash-table :documentation "array idx -> array length.") (speed nil :type number :documentation "Optimization level (see `comp-speed').") (pure nil :type boolean :documentation "t if pure nil otherwise.") (ret-type-specifier '(t) :type list :documentation "Derived return type specifier.")) (cl-defstruct (comp-func-l (:include comp-func)) "Lexically-scoped function." (args nil :type comp-args-base :documentation "Argument specification of the function")) (cl-defstruct (comp-func-d (:include comp-func)) "Dynamically-scoped function." (lambda-list nil :type list :documentation "Original lambda-list.")) (cl-defstruct (comp-mvar (:constructor make--comp-mvar) (:include comp-cstr)) "A meta-variable being a slot in the meta-stack." (id nil :type (or null number) :documentation "Unique id when in SSA form.") (slot nil :type (or fixnum symbol) :documentation "Slot number in the array if a number or 'scratch' for scratch slot.")) (defun comp-mvar-value-vld-p (mvar) "Return t if one single value can be extracted by the MVAR constrains." (when (and (null (comp-mvar-typeset mvar)) (null (comp-mvar-neg mvar))) (let* ((v (comp-mvar-valset mvar)) (r (comp-mvar-range mvar)) (valset-len (length v)) (range-len (length r))) (if (and (= valset-len 1) (= range-len 0)) t (when (and (= valset-len 0) (= range-len 1)) (let* ((low (caar r)) (high (cdar r))) (and (integerp low) (integerp high) (= low high)))))))) (defun comp-mvar-value (mvar) "Return the constant value of MVAR. `comp-mvar-value-vld-p' *must* be satisfied before calling `comp-mvar-const'." (declare (gv-setter (lambda (val) `(if (integerp ,val) (setf (comp-mvar-typeset ,mvar) nil (comp-mvar-range ,mvar) (list (cons ,val ,val))) (setf (comp-mvar-typeset ,mvar) nil (comp-mvar-valset ,mvar) (list ,val)))))) (let ((v (comp-mvar-valset mvar))) (if (= (length v) 1) (car v) (caar (comp-mvar-range mvar))))) (defun comp-mvar-fixnum-p (mvar) "Return t if MVAR is certainly a fixnum." (when-let (range (comp-mvar-range mvar)) (let* ((low (caar range)) (high (cdar (last range)))) (unless (or (eq low '-) (< low most-negative-fixnum) (eq high '+) (> high most-positive-fixnum)) t)))) (defun comp-mvar-symbol-p (mvar) "Return t if MVAR is certainly a symbol." (and (null (comp-mvar-range mvar)) (or (and (null (comp-mvar-valset mvar)) (equal (comp-mvar-typeset mvar) '(symbol))) (and (or (null (comp-mvar-typeset mvar)) (equal (comp-mvar-typeset mvar) '(symbol))) (cl-every #'symbolp (comp-mvar-valset mvar)))))) (defsubst comp-mvar-cons-p (mvar) "Return t if MVAR is certainly a cons." (and (null (comp-mvar-valset mvar)) (null (comp-mvar-range mvar)) (equal (comp-mvar-typeset mvar) '(cons)))) (defun comp-mvar-type-hint-match-p (mvar type-hint) "Match MVAR against TYPE-HINT. In use by the backend." (cl-ecase type-hint (cons (comp-mvar-cons-p mvar)) (fixnum (comp-mvar-fixnum-p mvar)))) (defun comp-ensure-native-compiler () "Make sure Emacs has native compiler support and libgccjit is loadable. Signal an error otherwise. To be used by all entry points." (cond ((null (featurep 'nativecomp)) (error "Emacs not compiled with native compiler support (--with-nativecomp)")) ((null (native-comp-available-p)) (error "Cannot find libgccjit")))) (defun comp-set-op-p (op) "Assignment predicate for OP." (when (memq op comp-limple-sets) t)) (defun comp-assign-op-p (op) "Assignment predicate for OP." (when (memq op comp-limple-assignments) t)) (defun comp-call-op-p (op) "Call predicate for OP." (when (memq op comp-limple-calls) t)) (defsubst comp-limple-insn-call-p (insn) "Limple INSN call predicate." (comp-call-op-p (car-safe insn))) (defun comp-type-hint-p (func) "Type-hint predicate for function name FUNC." (when (memq func comp-type-hints) t)) (defun comp-func-unique-in-cu-p (func) "Return t if FUNC is known to be unique in the current compilation unit." (if (symbolp func) (cl-loop with h = (make-hash-table :test #'eq) for f being the hash-value in (comp-ctxt-funcs-h comp-ctxt) for name = (comp-func-name f) when (gethash name h) return nil do (puthash name t h) finally return t) t)) (defsubst comp-symbol-func-to-fun (symbol-funcion) "Given a function called SYMBOL-FUNCION return its `comp-func'." (gethash (gethash symbol-funcion (comp-ctxt-sym-to-c-name-h comp-ctxt)) (comp-ctxt-funcs-h comp-ctxt))) (defun comp-function-pure-p (f) "Return t if F is pure." (or (get f 'pure) (when-let ((func (comp-symbol-func-to-fun f))) (comp-func-pure func)))) (defun comp-alloc-class-to-container (alloc-class) "Given ALLOC-CLASS, return the data container for the current context. Assume allocation class 'd-default as default." (cl-struct-slot-value 'comp-ctxt (or alloc-class 'd-default) comp-ctxt)) (defsubst comp-add-const-to-relocs (obj) "Keep track of OBJ into the ctxt relocations." (puthash obj t (comp-data-container-idx (comp-alloc-class-to-container comp-curr-allocation-class)))) ;;; Log routines. (defconst comp-limple-lock-keywords `((,(rx bol "(comment" (1+ not-newline)) . font-lock-comment-face) (,(rx "#(" (group-n 1 "mvar")) (1 font-lock-function-name-face)) (,(rx bol "(" (group-n 1 "phi")) (1 font-lock-variable-name-face)) (,(rx (group-n 1 (or "entry" (seq (or "entry_" "entry_fallback_" "bb_") (1+ num) (? (or "_latch" "_cstrs")))))) (1 font-lock-constant-face)) (,(rx-to-string `(seq "(" (group-n 1 (or ,@(mapcar #'symbol-name comp-limple-ops))))) (1 font-lock-keyword-face))) "Highlights used by `comp-limple-mode'.") (define-derived-mode comp-limple-mode fundamental-mode "LIMPLE" "Syntax-highlight LIMPLE IR." (setf font-lock-defaults '(comp-limple-lock-keywords))) (cl-defun comp-log (data &optional (level 1) quoted) "Log DATA at LEVEL. LEVEL is a number from 1-3; if it is less than `comp-verbose', do nothing. If `noninteractive', log with `message'. Otherwise, log with `comp-log-to-buffer'." (when (>= comp-verbose level) (if noninteractive (cl-typecase data (atom (message "%s" data)) (t (dolist (elem data) (message "%s" elem)))) (comp-log-to-buffer data quoted)))) (cl-defun comp-log-to-buffer (data &optional quoted) "Log DATA to `comp-log-buffer-name'." (let* ((print-f (if quoted #'prin1 #'princ)) (log-buffer (or (get-buffer comp-log-buffer-name) (with-current-buffer (get-buffer-create comp-log-buffer-name) (setf buffer-read-only t) (current-buffer)))) (log-window (get-buffer-window log-buffer)) (inhibit-read-only t) at-end-p) (with-current-buffer log-buffer (unless (eq major-mode 'comp-limple-mode) (comp-limple-mode)) (when (= (point) (point-max)) (setf at-end-p t)) (save-excursion (goto-char (point-max)) (cl-typecase data (atom (funcall print-f data log-buffer)) (t (dolist (elem data) (funcall print-f elem log-buffer) (insert "\n")))) (insert "\n")) (when (and at-end-p log-window) ;; When log window's point is at the end, follow the tail. (with-selected-window log-window (goto-char (point-max))))))) (defun comp-prettyformat-mvar (mvar) (format "#(mvar %s %s %S)" (comp-mvar-id mvar) (comp-mvar-slot mvar) (comp-cstr-to-type-spec mvar))) (defun comp-prettyformat-insn (insn) (cl-typecase insn (comp-mvar (comp-prettyformat-mvar insn)) (atom (prin1-to-string insn)) (cons (concat "(" (mapconcat #'comp-prettyformat-insn insn " ") ")")))) (defun comp-log-func (func verbosity) "Log function FUNC. VERBOSITY is a number between 0 and 3." (when (>= comp-verbose verbosity) (comp-log (format "\nFunction: %s\n" (comp-func-name func)) verbosity) (cl-loop for block-name being each hash-keys of (comp-func-blocks func) using (hash-value bb) do (comp-log (concat "<" (symbol-name block-name) ">") verbosity) (cl-loop for insn in (comp-block-insns bb) do (comp-log (comp-prettyformat-insn insn) verbosity))))) (defun comp-log-edges (func) "Log edges in FUNC." (let ((edges (comp-func-edges-h func))) (comp-log (format "\nEdges in function: %s\n" (comp-func-name func)) 2) (maphash (lambda (_ e) (comp-log (format "n: %d src: %s dst: %s\n" (comp-edge-number e) (comp-block-name (comp-edge-src e)) (comp-block-name (comp-edge-dst e))) 2)) edges))) (defmacro comp-loop-insn-in-block (basic-block &rest body) "Loop over all insns in BASIC-BLOCK executing BODY. Inside BODY `insn' and `insn-cell'can be used to read or set the current instruction or its cell." (declare (debug (form body)) (indent defun)) `(cl-symbol-macrolet ((insn (car insn-cell))) (let ((insn-cell (comp-block-insns ,basic-block))) (while insn-cell ,@body (setf insn-cell (cdr insn-cell)))))) ;;; spill-lap pass specific code. (defun comp-lex-byte-func-p (f) "Return t if F is a lexically-scoped byte compiled function." (and (byte-code-function-p f) (fixnump (aref f 0)))) (defun comp-spill-decl-spec (function-name spec) "Return the declared specifier SPEC for FUNCTION-NAME." (plist-get (cdr (assq function-name byte-to-native-plist-environment)) spec)) (defun comp-spill-speed (function-name) "Return the speed for FUNCTION-NAME." (or (comp-spill-decl-spec function-name 'speed) (comp-ctxt-speed comp-ctxt))) ;; Autoloaded as might be used by `disassemble-internal'. ;;;###autoload (defun comp-c-func-name (name prefix &optional first) "Given NAME, return a name suitable for the native code. Add PREFIX in front of it. If FIRST is not nil, pick the first available name ignoring compilation context and potential name clashes." ;; Unfortunately not all symbol names are valid as C function names... ;; Nassi's algorithm here: (let* ((orig-name (if (symbolp name) (symbol-name name) name)) (crypted (cl-loop with str = (make-string (* 2 (length orig-name)) 0) for j from 0 by 2 for i across orig-name for byte = (format "%x" i) do (aset str j (aref byte 0)) (aset str (1+ j) (aref byte 1)) finally return str)) (human-readable (replace-regexp-in-string "-" "_" orig-name)) (human-readable (replace-regexp-in-string (rx (not (any "0-9a-z_"))) "" human-readable))) (if (null first) ;; Prevent C namespace conflicts. (cl-loop with h = (comp-ctxt-funcs-h comp-ctxt) for i from 0 for c-sym = (concat prefix crypted "_" human-readable "_" (number-to-string i)) unless (gethash c-sym h) return c-sym) ;; When called out of a compilation context (ex disassembling) ;; pick the first one. (concat prefix crypted "_" human-readable "_0")))) (defun comp-decrypt-arg-list (x function-name) "Decrypt argument list X for FUNCTION-NAME." (unless (fixnump x) (signal 'native-compiler-error-dyn-func function-name)) (let ((rest (not (= (logand x 128) 0))) (mandatory (logand x 127)) (nonrest (ash x -8))) (if (and (null rest) (< nonrest 9)) ;; SUBR_MAX_ARGS (make-comp-args :min mandatory :max nonrest) (make-comp-nargs :min mandatory :nonrest nonrest :rest rest)))) (defsubst comp-byte-frame-size (byte-compiled-func) "Given BYTE-COMPILED-FUNC return the frame size to be allocated." (aref byte-compiled-func 3)) (defun comp-add-func-to-ctxt (func) "Add FUNC to the current compiler contex." (let ((name (comp-func-name func)) (c-name (comp-func-c-name func))) (puthash name c-name (comp-ctxt-sym-to-c-name-h comp-ctxt)) (puthash c-name func (comp-ctxt-funcs-h comp-ctxt)))) (cl-defgeneric comp-spill-lap-function (input) "Byte-compile INPUT and spill lap for further stages.") (cl-defmethod comp-spill-lap-function ((function-name symbol)) "Byte-compile FUNCTION-NAME spilling data from the byte compiler." (unless (comp-ctxt-output comp-ctxt) (setf (comp-ctxt-output comp-ctxt) (make-temp-file (comp-c-func-name function-name "freefn-") nil ".eln"))) (let* ((f (symbol-function function-name)) (c-name (comp-c-func-name function-name "F")) (func (make-comp-func-l :name function-name :c-name c-name :doc (documentation f t) :int-spec (interactive-form f) :speed (comp-spill-speed function-name) :pure (comp-spill-decl-spec function-name 'pure)))) (when (byte-code-function-p f) (signal 'native-compiler-error "can't native compile an already bytecompiled function")) (setf (comp-func-byte-func func) (byte-compile (comp-func-name func))) (let ((lap (byte-to-native-lambda-lap (gethash (aref (comp-func-byte-func func) 1) byte-to-native-lambdas-h)))) (cl-assert lap) (comp-log lap 2 t) (let ((arg-list (aref (comp-func-byte-func func) 0))) (setf (comp-func-l-args func) (comp-decrypt-arg-list arg-list function-name) (comp-func-lap func) lap (comp-func-frame-size func) (comp-byte-frame-size (comp-func-byte-func func)))) (setf (comp-ctxt-top-level-forms comp-ctxt) (list (make-byte-to-native-func-def :name function-name :c-name c-name))) ;; Create the default array. (puthash 0 (comp-func-frame-size func) (comp-func-array-h func)) (comp-add-func-to-ctxt func)))) (cl-defmethod comp-spill-lap-function ((form list)) "Byte-compile FORM spilling data from the byte compiler." (unless (eq (car-safe form) 'lambda) (signal 'native-compiler-error "Cannot native compile, form is not a lambda")) (unless (comp-ctxt-output comp-ctxt) (setf (comp-ctxt-output comp-ctxt) (make-temp-file "comp-lambda-" nil ".eln"))) (let* ((byte-code (byte-compile form)) (c-name (comp-c-func-name "anonymous-lambda" "F")) (func (if (comp-lex-byte-func-p byte-code) (make-comp-func-l :c-name c-name :doc (documentation form t) :int-spec (interactive-form form) :speed (comp-ctxt-speed comp-ctxt)) (make-comp-func-d :c-name c-name :doc (documentation form t) :int-spec (interactive-form form) :speed (comp-ctxt-speed comp-ctxt))))) (let ((lap (byte-to-native-lambda-lap (gethash (aref byte-code 1) byte-to-native-lambdas-h)))) (cl-assert lap) (comp-log lap 2 t) (if (comp-func-l-p func) (setf (comp-func-l-args func) (comp-decrypt-arg-list (aref byte-code 0) byte-code)) (setf (comp-func-d-lambda-list func) (cadr form))) (setf (comp-func-lap func) lap (comp-func-frame-size func) (comp-byte-frame-size byte-code)) (setf (comp-func-byte-func func) byte-code (comp-ctxt-top-level-forms comp-ctxt) (list (make-byte-to-native-func-def :name '--anonymous-lambda :c-name c-name))) ;; Create the default array. (puthash 0 (comp-func-frame-size func) (comp-func-array-h func)) (comp-add-func-to-ctxt func)))) (defun comp-intern-func-in-ctxt (_ obj) "Given OBJ of type `byte-to-native-lambda', create a function in `comp-ctxt'." (when-let ((byte-func (byte-to-native-lambda-byte-func obj))) (let* ((lap (byte-to-native-lambda-lap obj)) (top-l-form (cl-loop for form in (comp-ctxt-top-level-forms comp-ctxt) when (and (byte-to-native-func-def-p form) (eq (byte-to-native-func-def-byte-func form) byte-func)) return form)) (name (when top-l-form (byte-to-native-func-def-name top-l-form))) (c-name (comp-c-func-name (or name "anonymous-lambda") "F")) (func (if (comp-lex-byte-func-p byte-func) (make-comp-func-l :args (comp-decrypt-arg-list (aref byte-func 0) name)) (make-comp-func-d :lambda-list (aref byte-func 0))))) (setf (comp-func-name func) name (comp-func-byte-func func) byte-func (comp-func-doc func) (documentation byte-func t) (comp-func-int-spec func) (interactive-form byte-func) (comp-func-c-name func) c-name (comp-func-lap func) lap (comp-func-frame-size func) (comp-byte-frame-size byte-func) (comp-func-speed func) (comp-spill-speed name) (comp-func-pure func) (comp-spill-decl-spec name 'pure)) ;; Store the c-name to have it retrivable from ;; `comp-ctxt-top-level-forms'. (when top-l-form (setf (byte-to-native-func-def-c-name top-l-form) c-name)) (unless name (puthash byte-func func (comp-ctxt-byte-func-to-func-h comp-ctxt))) ;; Create the default array. (puthash 0 (comp-func-frame-size func) (comp-func-array-h func)) (comp-add-func-to-ctxt func) (comp-log (format "Function %s:\n" name) 1) (comp-log lap 1 t)))) (cl-defmethod comp-spill-lap-function ((filename string)) "Byte-compile FILENAME spilling data from the byte compiler." (byte-compile-file filename) (unless byte-to-native-top-level-forms (signal 'native-compiler-error-empty-byte filename)) (unless (comp-ctxt-output comp-ctxt) (setf (comp-ctxt-output comp-ctxt) (comp-el-to-eln-filename filename (when byte-native-for-bootstrap (car (last comp-eln-load-path)))))) (setf (comp-ctxt-speed comp-ctxt) (alist-get 'comp-speed byte-native-qualities) (comp-ctxt-debug comp-ctxt) (alist-get 'comp-debug byte-native-qualities) (comp-ctxt-top-level-forms comp-ctxt) (cl-loop for form in (reverse byte-to-native-top-level-forms) collect (if (and (byte-to-native-func-def-p form) (eq -1 (comp-spill-speed (byte-to-native-func-def-name form)))) (let ((byte-code (byte-to-native-func-def-byte-func form))) (remhash byte-code byte-to-native-lambdas-h) (make-byte-to-native-top-level :form `(defalias ',(byte-to-native-func-def-name form) ,byte-code nil) :lexical (comp-lex-byte-func-p byte-code))) form))) (maphash #'comp-intern-func-in-ctxt byte-to-native-lambdas-h)) (defun comp-spill-lap (input) "Byte-compile and spill the LAP representation for INPUT. If INPUT is a symbol this is the function-name to be compiled. If INPUT is a string this is the file path to be compiled." (let ((byte-native-compiling t) (byte-to-native-lambdas-h (make-hash-table :test #'eq)) (byte-to-native-top-level-forms ()) (byte-to-native-plist-environment ())) (comp-spill-lap-function input))) ;;; Limplification pass specific code. (cl-defstruct (comp-limplify (:copier nil)) "Support structure used during function limplification." (frame nil :type vector :documentation "Meta-stack used to flat LAP.") (curr-block nil :type comp-block :documentation "Current block being limplified.") (sp -1 :type number :documentation "Current stack pointer while walking LAP. Points to the next slot to be filled.") (pc 0 :type number :documentation "Current program counter while walking LAP.") (label-to-addr nil :type hash-table :documentation "LAP hash table -> address.") (pending-blocks () :type list :documentation "List of blocks waiting for limplification.")) (defconst comp-lap-eob-ops '(byte-goto byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop byte-goto-if-not-nil-else-pop byte-return byte-pushcatch byte-switch byte-pushconditioncase) "LAP end of basic blocks op codes.") (defun comp-lap-eob-p (inst) "Return t if INST closes the current basic blocks, nil otherwise." (when (memq (car inst) comp-lap-eob-ops) t)) (defun comp-lap-fall-through-p (inst) "Return t if INST fall through, nil otherwise." (when (not (memq (car inst) '(byte-goto byte-return))) t)) (defsubst comp-sp () "Current stack pointer." (declare (gv-setter (lambda (val) `(setf (comp-limplify-sp comp-pass) ,val)))) (comp-limplify-sp comp-pass)) (defmacro comp-with-sp (sp &rest body) "Execute BODY setting the stack pointer to SP. Restore the original value afterwards." (declare (debug (form body)) (indent defun)) (let ((sym (gensym))) `(let ((,sym (comp-sp))) (setf (comp-sp) ,sp) (progn ,@body) (setf (comp-sp) ,sym)))) (defsubst comp-slot-n (n) "Slot N into the meta-stack." (aref (comp-limplify-frame comp-pass) n)) (defsubst comp-slot () "Current slot into the meta-stack pointed by sp." (comp-slot-n (comp-sp))) (defsubst comp-slot+1 () "Slot into the meta-stack pointed by sp + 1." (comp-slot-n (1+ (comp-sp)))) (defsubst comp-label-to-addr (label) "Find the address of LABEL." (or (gethash label (comp-limplify-label-to-addr comp-pass)) (signal 'native-ice (list "label not found" label)))) (defsubst comp-mark-curr-bb-closed () "Mark the current basic block as closed." (setf (comp-block-closed (comp-limplify-curr-block comp-pass)) t)) (defun comp-bb-maybe-add (lap-addr &optional sp) "If necessary create a pending basic block for LAP-ADDR with stack depth SP. The basic block is returned regardless it was already declared or not." (let ((bb (or (cl-loop ; See if the block was already limplified. for bb being the hash-value in (comp-func-blocks comp-func) when (and (comp-block-lap-p bb) (equal (comp-block-lap-addr bb) lap-addr)) return bb) (cl-find-if (lambda (bb) ; Look within the pendings blocks. (and (comp-block-lap-p bb) (= (comp-block-lap-addr bb) lap-addr))) (comp-limplify-pending-blocks comp-pass))))) (if bb (progn (unless (or (null sp) (= sp (comp-block-lap-sp bb))) (signal 'native-ice (list "incoherent stack pointers" sp (comp-block-lap-sp bb)))) bb) (car (push (make--comp-block-lap lap-addr sp (comp-new-block-sym)) (comp-limplify-pending-blocks comp-pass)))))) (defsubst comp-call (func &rest args) "Emit a call for function FUNC with ARGS." `(call ,func ,@args)) (defun comp-callref (func nargs stack-off) "Emit a call using narg abi for FUNC. NARGS is the number of arguments. STACK-OFF is the index of the first slot frame involved." `(callref ,func ,@(cl-loop repeat nargs for sp from stack-off collect (comp-slot-n sp)))) (cl-defun make-comp-mvar (&key slot (constant nil const-vld) type) "`comp-mvar' intitializer." (let ((mvar (make--comp-mvar :slot slot))) (when const-vld (comp-add-const-to-relocs constant) (setf (comp-mvar-value mvar) constant)) (when type (setf (comp-mvar-typeset mvar) (list type))) mvar)) (defun comp-new-frame (size &optional ssa) "Return a clean frame of meta variables of size SIZE. If SSA non-nil populate it of m-var in ssa form." (cl-loop with v = (make-vector size nil) for i below size for mvar = (if ssa (make-comp-ssa-mvar :slot i) (make-comp-mvar :slot i)) do (aset v i mvar) finally return v)) (defun comp-emit (insn) "Emit INSN into basic block BB." (let ((bb (comp-limplify-curr-block comp-pass))) (cl-assert (not (comp-block-closed bb))) (push insn (comp-block-insns bb)))) (defun comp-emit-set-call (call) "Emit CALL assigning the result the the current slot frame. If the callee function is known to have a return type propagate it." (cl-assert call) (comp-emit (list 'set (comp-slot) call))) (defun comp-copy-slot (src-n &optional dst-n) "Set slot number DST-N to slot number SRC-N as source. If DST-N is specified use it otherwise assume it to be the current slot." (comp-with-sp (or dst-n (comp-sp)) (let ((src-slot (comp-slot-n src-n))) (cl-assert src-slot) (comp-emit `(set ,(comp-slot) ,src-slot))))) (defsubst comp-emit-annotation (str) "Emit annotation STR." (comp-emit `(comment ,str))) (defsubst comp-emit-setimm (val) "Set constant VAL to current slot." (comp-add-const-to-relocs val) ;; Leave relocation index nil on purpose, will be fixed-up in final ;; by `comp-finalize-relocs'. (comp-emit `(setimm ,(comp-slot) ,val))) (defun comp-make-curr-block (block-name entry-sp &optional addr) "Create a basic block with BLOCK-NAME and set it as current block. ENTRY-SP is the sp value when entering. Add block to the current function and return it." (let ((bb (make--comp-block-lap addr entry-sp block-name))) (setf (comp-limplify-curr-block comp-pass) bb (comp-limplify-pc comp-pass) addr (comp-limplify-sp comp-pass) (when (comp-block-lap-p bb) (comp-block-lap-sp bb))) (puthash (comp-block-name bb) bb (comp-func-blocks comp-func)) bb)) (defun comp-latch-make-fill (target) "Create a latch pointing to TARGET and fill it. Return the created latch" (let ((latch (make-comp-latch :name (comp-new-block-sym "latch"))) (curr-bb (comp-limplify-curr-block comp-pass))) ;; See `comp-make-curr-block'. (setf (comp-limplify-curr-block comp-pass) latch) (when (< (comp-func-speed comp-func) 3) ;; At speed 3 the programmer is responsible to manually ;; place `comp-maybe-gc-or-quit'. (comp-emit '(call comp-maybe-gc-or-quit))) ;; See `comp-emit-uncond-jump'. (comp-emit `(jump ,(comp-block-name target))) (comp-mark-curr-bb-closed) (puthash (comp-block-name latch) latch (comp-func-blocks comp-func)) (setf (comp-limplify-curr-block comp-pass) curr-bb) latch)) (defun comp-emit-uncond-jump (lap-label) "Emit an unconditional branch to LAP-LABEL." (cl-destructuring-bind (label-num . stack-depth) lap-label (when stack-depth (cl-assert (= (1- stack-depth) (comp-sp)))) (let* ((target-addr (comp-label-to-addr label-num)) (target (comp-bb-maybe-add target-addr (comp-sp))) (latch (when (< target-addr (comp-limplify-pc comp-pass)) (comp-latch-make-fill target))) (eff-target-name (comp-block-name (or latch target)))) (comp-emit `(jump ,eff-target-name)) (comp-mark-curr-bb-closed)))) (defun comp-emit-cond-jump (a b target-offset lap-label negated) "Emit a conditional jump to LAP-LABEL when A and B satisfy EQ. TARGET-OFFSET is the positive offset on the SP when branching to the target block. If NEGATED non null negate the tested condition. Return value is the fall through block name." (cl-destructuring-bind (label-num . label-sp) lap-label (let* ((bb (comp-block-name (comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass)) (comp-sp)))) ; Fall through block. (target-sp (+ target-offset (comp-sp))) (target-addr (comp-label-to-addr label-num)) (target (comp-bb-maybe-add target-addr target-sp)) (latch (when (< target-addr (comp-limplify-pc comp-pass)) (comp-latch-make-fill target))) (eff-target-name (comp-block-name (or latch target)))) (when label-sp (cl-assert (= (1- label-sp) (+ target-offset (comp-sp))))) (comp-emit (if negated (list 'cond-jump a b bb eff-target-name) (list 'cond-jump a b eff-target-name bb))) (comp-mark-curr-bb-closed) bb))) (defun comp-emit-handler (lap-label handler-type) "Emit a nonlocal-exit handler to LAP-LABEL of type HANDLER-TYPE." (cl-destructuring-bind (label-num . label-sp) lap-label (cl-assert (= (- label-sp 2) (comp-sp))) (setf (comp-func-has-non-local comp-func) t) (let* ((guarded-bb (comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass)) (comp-sp))) (handler-bb (comp-bb-maybe-add (comp-label-to-addr label-num) (1+ (comp-sp)))) (pop-bb (make--comp-block-lap nil (comp-sp) (comp-new-block-sym)))) (comp-emit (list 'push-handler handler-type (comp-slot+1) (comp-block-name pop-bb) (comp-block-name guarded-bb))) (comp-mark-curr-bb-closed) ;; Emit the basic block to pop the handler if we got the non local. (puthash (comp-block-name pop-bb) pop-bb (comp-func-blocks comp-func)) (setf (comp-limplify-curr-block comp-pass) pop-bb) (comp-emit `(fetch-handler ,(comp-slot+1))) (comp-emit `(jump ,(comp-block-name handler-bb))) (comp-mark-curr-bb-closed)))) (defun comp-limplify-listn (n) "Limplify list N." (comp-with-sp (+ (comp-sp) n -1) (comp-emit-set-call (comp-call 'cons (comp-slot) (make-comp-mvar :constant nil)))) (cl-loop for sp from (+ (comp-sp) n -2) downto (comp-sp) do (comp-with-sp sp (comp-emit-set-call (comp-call 'cons (comp-slot) (comp-slot+1)))))) (defun comp-new-block-sym (&optional postfix) "Return a unique symbol postfixing POSTFIX naming the next new basic block." (intern (format (if postfix "bb_%s_%s" "bb_%s") (funcall (comp-func-block-cnt-gen comp-func)) postfix))) (defun comp-fill-label-h () "Fill label-to-addr hash table for the current function." (setf (comp-limplify-label-to-addr comp-pass) (make-hash-table :test 'eql)) (cl-loop for insn in (comp-func-lap comp-func) for addr from 0 do (pcase insn (`(TAG ,label . ,_) (puthash label addr (comp-limplify-label-to-addr comp-pass)))))) (defun comp-jump-table-optimizable (jmp-table) "Return t if JMP-TABLE can be optimized out." (cl-loop with labels = (cl-loop for target-label being each hash-value of jmp-table collect target-label) with x = (car labels) for l in (cdr-safe labels) unless (= l x) return nil finally return t)) (defun comp-emit-switch (var last-insn) "Emit a limple for a lap jump table given VAR and LAST-INSN." ;; FIXME this not efficient for big jump tables. We should have a second ;; strategy for this case. (pcase last-insn (`(setimm ,_ ,jmp-table) (unless (comp-jump-table-optimizable jmp-table) (cl-loop for test being each hash-keys of jmp-table using (hash-value target-label) with len = (hash-table-count jmp-table) with test-func = (hash-table-test jmp-table) for n from 1 for last = (= n len) for m-test = (make-comp-mvar :constant test) for target-name = (comp-block-name (comp-bb-maybe-add (comp-label-to-addr target-label) (comp-sp))) for ff-bb = (if last (comp-bb-maybe-add (1+ (comp-limplify-pc comp-pass)) (comp-sp)) (make--comp-block-lap nil (comp-sp) (comp-new-block-sym))) for ff-bb-name = (comp-block-name ff-bb) if (eq test-func 'eq) do (comp-emit (list 'cond-jump var m-test target-name ff-bb-name)) else ;; Store the result of the comparison into the scratch slot before ;; emitting the conditional jump. do (comp-emit (list 'set (make-comp-mvar :slot 'scratch) (comp-call test-func var m-test))) (comp-emit (list 'cond-jump (make-comp-mvar :slot 'scratch) (make-comp-mvar :constant nil) ff-bb-name target-name)) unless last ;; All fall through are artificially created here except the last one. do (puthash ff-bb-name ff-bb (comp-func-blocks comp-func)) (setf (comp-limplify-curr-block comp-pass) ff-bb)))) (_ (signal 'native-ice "missing previous setimm while creating a switch")))) (defun comp-emit-set-call-subr (subr-name sp-delta) "Emit a call for SUBR-NAME. SP-DELTA is the stack adjustment." (let ((subr (symbol-function subr-name)) (nargs (1+ (- sp-delta)))) (let* ((arity (func-arity subr)) (minarg (car arity)) (maxarg (cdr arity))) (when (eq maxarg 'unevalled) (signal 'native-ice (list "subr contains unevalled args" subr-name))) (if (eq maxarg 'many) ;; callref case. (comp-emit-set-call (comp-callref subr-name nargs (comp-sp))) ;; Normal call. (unless (and (>= maxarg nargs) (<= minarg nargs)) (signal 'native-ice (list "incoherent stack adjustment" nargs maxarg minarg))) (let* ((subr-name subr-name) (slots (cl-loop for i from 0 below maxarg collect (comp-slot-n (+ i (comp-sp)))))) (comp-emit-set-call (apply #'comp-call (cons subr-name slots)))))))) (eval-when-compile (defun comp-op-to-fun (x) "Given the LAP op strip \"byte-\" to have the subr name." (intern (replace-regexp-in-string "byte-" "" x))) (defun comp-body-eff (body op-name sp-delta) "Given the original body BODY compute the effective one. When BODY is auto guess function name form the LAP byte-code name. Otherwise expect lname fnname." (pcase (car body) ('auto `((comp-emit-set-call-subr ',(comp-op-to-fun op-name) ,sp-delta))) ((pred symbolp) `((comp-emit-set-call-subr ',(car body) ,sp-delta))) (_ body)))) (defmacro comp-op-case (&rest cases) "Expand CASES into the corresponding `pcase' expansion. This is responsible for generating the proper stack adjustment when known and the annotation emission." (declare (debug (body)) (indent defun)) `(pcase op ,@(cl-loop for (op . body) in cases for sp-delta = (gethash op comp-op-stack-info) for op-name = (symbol-name op) if body collect `(',op ;; Log all LAP ops except the TAG one. ,(unless (eq op 'TAG) `(comp-emit-annotation ,(concat "LAP op " op-name))) ;; Emit the stack adjustment if present. ,(when (and sp-delta (not (eq 0 sp-delta))) `(cl-incf (comp-sp) ,sp-delta)) ,@(comp-body-eff body op-name sp-delta)) else collect `(',op (signal 'native-ice (list "unsupported LAP op" ',op-name)))) (_ (signal 'native-ice (list "unexpected LAP op" (symbol-name op)))))) (defun comp-limplify-lap-inst (insn) "Limplify LAP instruction INSN pushing it in the proper basic block." (let ((op (car insn)) (arg (if (consp (cdr insn)) (cadr insn) (cdr insn)))) (comp-op-case (TAG (cl-destructuring-bind (_TAG label-num . label-sp) insn ;; Paranoid? (when label-sp (cl-assert (= (1- label-sp) (comp-limplify-sp comp-pass)))) (comp-emit-annotation (format "LAP TAG %d" label-num)))) (byte-stack-ref (comp-copy-slot (- (comp-sp) arg 1))) (byte-varref (comp-emit-set-call (comp-call 'symbol-value (make-comp-mvar :constant arg)))) (byte-varset (comp-emit (comp-call 'set_internal (make-comp-mvar :constant arg) (comp-slot+1)))) (byte-varbind ;; Verify (comp-emit (comp-call 'specbind (make-comp-mvar :constant arg) (comp-slot+1)))) (byte-call (cl-incf (comp-sp) (- arg)) (comp-emit-set-call (comp-callref 'funcall (1+ arg) (comp-sp)))) (byte-unbind (comp-emit (comp-call 'helper_unbind_n (make-comp-mvar :constant arg)))) (byte-pophandler (comp-emit '(pop-handler))) (byte-pushconditioncase (comp-emit-handler (cddr insn) 'condition-case)) (byte-pushcatch (comp-emit-handler (cddr insn) 'catcher)) (byte-nth auto) (byte-symbolp auto) (byte-consp auto) (byte-stringp auto) (byte-listp auto) (byte-eq auto) (byte-memq auto) (byte-not null) (byte-car auto) (byte-cdr auto) (byte-cons auto) (byte-list1 (comp-limplify-listn 1)) (byte-list2 (comp-limplify-listn 2)) (byte-list3 (comp-limplify-listn 3)) (byte-list4 (comp-limplify-listn 4)) (byte-length auto) (byte-aref auto) (byte-aset auto) (byte-symbol-value auto) (byte-symbol-function auto) (byte-set auto) (byte-fset auto) (byte-get auto) (byte-substring auto) (byte-concat2 (comp-emit-set-call (comp-callref 'concat 2 (comp-sp)))) (byte-concat3 (comp-emit-set-call (comp-callref 'concat 3 (comp-sp)))) (byte-concat4 (comp-emit-set-call (comp-callref 'concat 4 (comp-sp)))) (byte-sub1 1-) (byte-add1 1+) (byte-eqlsign =) (byte-gtr >) (byte-lss <) (byte-leq <=) (byte-geq >=) (byte-diff -) (byte-negate (comp-emit-set-call (comp-call 'negate (comp-slot)))) (byte-plus +) (byte-max auto) (byte-min auto) (byte-mult *) (byte-point auto) (byte-goto-char auto) (byte-insert auto) (byte-point-max auto) (byte-point-min auto) (byte-char-after auto) (byte-following-char auto) (byte-preceding-char preceding-char) (byte-current-column auto) (byte-indent-to (comp-emit-set-call (comp-call 'indent-to (comp-slot) (make-comp-mvar :constant nil)))) (byte-scan-buffer-OBSOLETE) (byte-eolp auto) (byte-eobp auto) (byte-bolp auto) (byte-bobp auto) (byte-current-buffer auto) (byte-set-buffer auto) (byte-save-current-buffer (comp-emit (comp-call 'record_unwind_current_buffer))) (byte-set-mark-OBSOLETE) (byte-interactive-p-OBSOLETE) (byte-forward-char auto) (byte-forward-word auto) (byte-skip-chars-forward auto) (byte-skip-chars-backward auto) (byte-forward-line auto) (byte-char-syntax auto) (byte-buffer-substring auto) (byte-delete-region auto) (byte-narrow-to-region (comp-emit-set-call (comp-call 'narrow-to-region (comp-slot) (comp-slot+1)))) (byte-widen (comp-emit-set-call (comp-call 'widen))) (byte-end-of-line auto) (byte-constant2) ; TODO ;; Branches. (byte-goto (comp-emit-uncond-jump (cddr insn))) (byte-goto-if-nil (comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0 (cddr insn) nil)) (byte-goto-if-not-nil (comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 0 (cddr insn) t)) (byte-goto-if-nil-else-pop (comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1 (cddr insn) nil)) (byte-goto-if-not-nil-else-pop (comp-emit-cond-jump (comp-slot+1) (make-comp-mvar :constant nil) 1 (cddr insn) t)) (byte-return (comp-emit `(return ,(comp-slot+1)))) (byte-discard 'pass) (byte-dup (comp-copy-slot (1- (comp-sp)))) (byte-save-excursion (comp-emit (comp-call 'record_unwind_protect_excursion))) (byte-save-window-excursion-OBSOLETE) (byte-save-restriction (comp-emit (comp-call 'helper_save_restriction))) (byte-catch) ;; Obsolete (byte-unwind-protect (comp-emit (comp-call 'helper_unwind_protect (comp-slot+1)))) (byte-condition-case) ;; Obsolete (byte-temp-output-buffer-setup-OBSOLETE) (byte-temp-output-buffer-show-OBSOLETE) (byte-unbind-all) ;; Obsolete (byte-set-marker auto) (byte-match-beginning auto) (byte-match-end auto) (byte-upcase auto) (byte-downcase auto) (byte-string= string-equal) (byte-string< string-lessp) (byte-equal auto) (byte-nthcdr auto) (byte-elt auto) (byte-member auto) (byte-assq auto) (byte-nreverse auto) (byte-setcar auto) (byte-setcdr auto) (byte-car-safe auto) (byte-cdr-safe auto) (byte-nconc auto) (byte-quo /) (byte-rem %) (byte-numberp auto) (byte-integerp auto) (byte-listN (cl-incf (comp-sp) (- 1 arg)) (comp-emit-set-call (comp-callref 'list arg (comp-sp)))) (byte-concatN (cl-incf (comp-sp) (- 1 arg)) (comp-emit-set-call (comp-callref 'concat arg (comp-sp)))) (byte-insertN (cl-incf (comp-sp) (- 1 arg)) (comp-emit-set-call (comp-callref 'insert arg (comp-sp)))) (byte-stack-set (comp-copy-slot (1+ (comp-sp)) (- (comp-sp) arg -1))) (byte-stack-set2 (cl-assert nil)) ;; TODO (byte-discardN (cl-incf (comp-sp) (- arg))) (byte-switch ;; Assume to follow the emission of a setimm. ;; This is checked into comp-emit-switch. (comp-emit-switch (comp-slot+1) (cl-second (comp-block-insns (comp-limplify-curr-block comp-pass))))) (byte-constant (comp-emit-setimm arg)) (byte-discardN-preserve-tos (cl-incf (comp-sp) (- arg)) (comp-copy-slot (+ arg (comp-sp))))))) (defun comp-emit-narg-prologue (minarg nonrest rest) "Emit the prologue for a narg function." (cl-loop for i below minarg do (comp-emit `(set-args-to-local ,(comp-slot-n i))) (comp-emit '(inc-args))) (cl-loop for i from minarg below nonrest for bb = (intern (format "entry_%s" i)) for fallback = (intern (format "entry_fallback_%s" i)) do (comp-emit `(cond-jump-narg-leq ,i ,fallback ,bb)) (comp-make-curr-block bb (comp-sp)) (comp-emit `(set-args-to-local ,(comp-slot-n i))) (comp-emit '(inc-args)) finally (comp-emit '(jump entry_rest_args))) (when (not (= minarg nonrest)) (cl-loop for i from minarg below nonrest for bb = (intern (format "entry_fallback_%s" i)) for next-bb = (if (= (1+ i) nonrest) 'entry_rest_args (intern (format "entry_fallback_%s" (1+ i)))) do (comp-with-sp i (comp-make-curr-block bb (comp-sp)) (comp-emit-setimm nil) (comp-emit `(jump ,next-bb))))) (comp-make-curr-block 'entry_rest_args (comp-sp)) (comp-emit `(set-rest-args-to-local ,(comp-slot-n nonrest))) (setf (comp-sp) nonrest) (when (and (> nonrest 8) (null rest)) (cl-decf (comp-sp)))) (defun comp-limplify-finalize-function (func) "Reverse insns into all basic blocks of FUNC." (cl-loop for bb being the hash-value in (comp-func-blocks func) do (setf (comp-block-insns bb) (nreverse (comp-block-insns bb)))) (comp-log-func func 2) func) (cl-defgeneric comp-prepare-args-for-top-level (function) "Given FUNCTION, return the two args arguments for comp--register-...") (cl-defmethod comp-prepare-args-for-top-level ((function comp-func-l)) "Lexically-scoped FUNCTION." (let ((args (comp-func-l-args function))) (cons (make-comp-mvar :constant (comp-args-base-min args)) (make-comp-mvar :constant (if (comp-args-p args) (comp-args-max args) 'many))))) (cl-defmethod comp-prepare-args-for-top-level ((function comp-func-d)) "Dynamic scoped FUNCTION." (cons (make-comp-mvar :constant (func-arity (comp-func-byte-func function))) (let ((comp-curr-allocation-class 'd-default)) ;; Lambda-lists must stay in the same relocation class of ;; the object referenced by code to respect uninterned ;; symbols. (make-comp-mvar :constant (comp-func-d-lambda-list function))))) (cl-defgeneric comp-emit-for-top-level (form for-late-load) "Emit the limple code for top level FORM.") (cl-defmethod comp-emit-for-top-level ((form byte-to-native-func-def) for-late-load) (let* ((name (byte-to-native-func-def-name form)) (c-name (byte-to-native-func-def-c-name form)) (f (gethash c-name (comp-ctxt-funcs-h comp-ctxt))) (args (comp-prepare-args-for-top-level f))) (cl-assert (and name f)) (comp-emit `(set ,(make-comp-mvar :slot 1) ,(comp-call (if for-late-load 'comp--late-register-subr 'comp--register-subr) (make-comp-mvar :constant name) (car args) (cdr args) (make-comp-mvar :constant c-name) (make-comp-mvar :constant (let* ((h (comp-ctxt-function-docs comp-ctxt)) (i (hash-table-count h))) (puthash i (comp-func-doc f) h) i)) (make-comp-mvar :constant (comp-func-int-spec f)) ;; This is the compilation unit it-self passed as ;; parameter. (make-comp-mvar :slot 0)))))) (cl-defmethod comp-emit-for-top-level ((form byte-to-native-top-level) for-late-load) (unless for-late-load (comp-emit (comp-call 'eval (let ((comp-curr-allocation-class 'd-impure)) (make-comp-mvar :constant (byte-to-native-top-level-form form))) (make-comp-mvar :constant (byte-to-native-top-level-lexical form)))))) (defun comp-emit-lambda-for-top-level (func) "Emit the creation of subrs for lambda FUNC. These are stored in the reloc data array." (let ((args (comp-prepare-args-for-top-level func))) (let ((comp-curr-allocation-class 'd-impure)) (comp-add-const-to-relocs (comp-func-byte-func func))) (comp-emit (comp-call 'comp--register-lambda ;; mvar to be fixed-up when containers are ;; finalized. (or (gethash (comp-func-byte-func func) (comp-ctxt-lambda-fixups-h comp-ctxt)) (puthash (comp-func-byte-func func) (make-comp-mvar :constant nil) (comp-ctxt-lambda-fixups-h comp-ctxt))) (car args) (cdr args) (make-comp-mvar :constant (comp-func-c-name func)) (make-comp-mvar :constant (let* ((h (comp-ctxt-function-docs comp-ctxt)) (i (hash-table-count h))) (puthash i (comp-func-doc func) h) i)) (make-comp-mvar :constant (comp-func-int-spec func)) ;; This is the compilation unit it-self passed as ;; parameter. (make-comp-mvar :slot 0))))) (defun comp-limplify-top-level (for-late-load) "Create a limple function to modify the global environment at load. When FOR-LATE-LOAD is non-nil the emitted function modifies only function definition. Synthesize a function called 'top_level_run' that gets one single parameter (the compilation unit it-self). To define native functions 'top_level_run' will call back `comp--register-subr' into the C code forwarding the compilation unit." ;; Once an .eln is loaded and Emacs is dumped 'top_level_run' has no ;; reasons to be execute ever again. Therefore all objects can be ;; just ephemeral. (let* ((comp-curr-allocation-class 'd-ephemeral) (func (make-comp-func-l :name (if for-late-load 'late-top-level-run 'top-level-run) :c-name (if for-late-load "late_top_level_run" "top_level_run") :args (make-comp-args :min 1 :max 1) ;; Frame is 2 wide: Slot 0 is the ;; compilation unit being loaded ;; (incoming parameter). Slot 1 is ;; the last function being ;; registered. :frame-size 2 :speed (comp-ctxt-speed comp-ctxt))) (comp-func func) (comp-pass (make-comp-limplify :curr-block (make--comp-block-lap -1 0 'top-level) :frame (comp-new-frame 1)))) (comp-make-curr-block 'entry (comp-sp)) (comp-emit-annotation (if for-late-load "Late top level" "Top level")) ;; Assign the compilation unit incoming as parameter to the slot frame 0. (comp-emit `(set-par-to-local ,(comp-slot-n 0) 0)) (maphash (lambda (_ func) (comp-emit-lambda-for-top-level func)) (comp-ctxt-byte-func-to-func-h comp-ctxt)) (mapc (lambda (x) (comp-emit-for-top-level x for-late-load)) (comp-ctxt-top-level-forms comp-ctxt)) (comp-emit `(return ,(make-comp-mvar :slot 1))) (puthash 0 (comp-func-frame-size func) (comp-func-array-h func)) (comp-limplify-finalize-function func))) (defun comp-addr-to-bb-name (addr) "Search for a block starting at ADDR into pending or limplified blocks." ;; FIXME Actually we could have another hash for this. (cl-flet ((pred (bb) (equal (comp-block-lap-addr bb) addr))) (if-let ((pending (cl-find-if #'pred (comp-limplify-pending-blocks comp-pass)))) (comp-block-name pending) (cl-loop for bb being the hash-value in (comp-func-blocks comp-func) when (pred bb) return (comp-block-name bb))))) (defun comp-limplify-block (bb) "Limplify basic-block BB and add it to the current function." (setf (comp-limplify-curr-block comp-pass) bb (comp-limplify-sp comp-pass) (comp-block-lap-sp bb) (comp-limplify-pc comp-pass) (comp-block-lap-addr bb)) (puthash (comp-block-name bb) bb (comp-func-blocks comp-func)) (cl-loop for inst-cell on (nthcdr (comp-limplify-pc comp-pass) (comp-func-lap comp-func)) for inst = (car inst-cell) for next-inst = (car-safe (cdr inst-cell)) do (comp-limplify-lap-inst inst) (cl-incf (comp-limplify-pc comp-pass)) when (comp-lap-fall-through-p inst) do (pcase next-inst (`(TAG ,_label . ,label-sp) (when label-sp (cl-assert (= (1- label-sp) (comp-sp)))) (let* ((stack-depth (if label-sp (1- label-sp) (comp-sp))) (next-bb (comp-block-name (comp-bb-maybe-add (comp-limplify-pc comp-pass) stack-depth)))) (unless (comp-block-closed bb) (comp-emit `(jump ,next-bb)))) (cl-return))) until (comp-lap-eob-p inst))) (defun comp-limplify-function (func) "Limplify a single function FUNC." (let* ((frame-size (comp-func-frame-size func)) (comp-func func) (comp-pass (make-comp-limplify :frame (comp-new-frame frame-size)))) (comp-fill-label-h) ;; Prologue (comp-make-curr-block 'entry (comp-sp)) (comp-emit-annotation (concat "Lisp function: " (symbol-name (comp-func-name func)))) ;; Dynamic functions have parameters bound by the trampoline. (when (comp-func-l-p func) (let ((args (comp-func-l-args func))) (if (comp-args-p args) (cl-loop for i below (comp-args-max args) do (cl-incf (comp-sp)) (comp-emit `(set-par-to-local ,(comp-slot) ,i))) (comp-emit-narg-prologue (comp-args-base-min args) (comp-nargs-nonrest args) (comp-nargs-rest args))))) (comp-emit '(jump bb_0)) ;; Body (comp-bb-maybe-add 0 (comp-sp)) (cl-loop for next-bb = (pop (comp-limplify-pending-blocks comp-pass)) while next-bb do (comp-limplify-block next-bb)) ;; Sanity check against block duplication. (cl-loop with addr-h = (make-hash-table) for bb being the hash-value in (comp-func-blocks func) for addr = (when (comp-block-lap-p bb) (comp-block-lap-addr bb)) when addr do (cl-assert (null (gethash addr addr-h))) (puthash addr t addr-h)) (comp-limplify-finalize-function func))) (defun comp-limplify (_) "Compute LIMPLE IR for forms in `comp-ctxt'." (maphash (lambda (_ f) (comp-limplify-function f)) (comp-ctxt-funcs-h comp-ctxt)) (comp-add-func-to-ctxt (comp-limplify-top-level nil)) (when (comp-ctxt-with-late-load comp-ctxt) (comp-add-func-to-ctxt (comp-limplify-top-level t)))) ;;; add-cstrs pass specific code. ;; This pass is responsible for adding constraints, these are ;; generated from: ;; ;; - Conditional branches: each branch taken or non taken can be used ;; in the CFG to infer infomations on the tested variables. ;; ;; - Function calls: function calls to function assumed to be not ;; redefinable can be used to add constrains on the function ;; arguments. Ex: if we execute successfully (= x y) we know that ;; afterwards both x and y must satisfy the (or number marker) ;; type specifier. (defun comp-emit-assume (lhs rhs bb negated) "Emit an assume for mvar LHS being RHS. When NEGATED is non-nil the assumption is negated. The assume is emitted at the beginning of the block BB." (let ((lhs-slot (comp-mvar-slot lhs)) (tmp-mvar (if negated (make-comp-mvar :slot (comp-mvar-slot rhs)) rhs))) (push `(assume ,(make-comp-mvar :slot lhs-slot) (and ,lhs ,tmp-mvar)) (comp-block-insns bb)) (if negated (push `(assume ,tmp-mvar (not ,rhs)) (comp-block-insns bb))) (setf (comp-func-ssa-status comp-func) 'dirty))) (defun comp-add-new-block-beetween (bb-symbol bb-a bb-b) "Create a new basic-block named BB-SYMBOL and add it between BB-A and BB-B." (cl-loop with new-bb = (make-comp-block-cstr :name bb-symbol :insns `((jump ,(comp-block-name bb-b)))) with new-edge = (make-comp-edge :src bb-a :dst new-bb) for ed in (comp-block-in-edges bb-b) when (eq (comp-edge-src ed) bb-a) do ;; Connect `ed' to `new-bb' and disconnect it from `bb-a'. (cl-assert (memq ed (comp-block-out-edges bb-a))) (setf (comp-edge-src ed) new-bb (comp-block-out-edges bb-a) (delq ed (comp-block-out-edges bb-a))) (push ed (comp-block-out-edges new-bb)) ;; Connect `bb-a' `new-bb' with `new-edge'. (push (comp-block-out-edges bb-a) new-edge) (push (comp-block-in-edges new-bb) new-edge) (setf (comp-func-ssa-status comp-func) 'dirty) ;; Add `new-edge' to the current function and return it. (cl-return (puthash bb-symbol new-bb (comp-func-blocks comp-func))) finally (cl-assert nil))) ;; Cheap substitute to a copy propagation pass... (defun comp-cond-cstrs-target-mvar (mvar exit-insn bb) "Given MVAR search in BB the original mvar MVAR got assigned from. Keep on searching till EXIT-INSN is encountered." (cl-flet ((targetp (x) ;; Ret t if x is an mvar and target the correct slot number. (and (comp-mvar-p x) (eql (comp-mvar-slot mvar) (comp-mvar-slot x))))) (cl-loop with res = nil for insn in (comp-block-insns bb) when (eq insn exit-insn) do (cl-return (and (comp-mvar-p res) res)) do (pcase insn (`(,(pred comp-assign-op-p) ,(pred targetp) ,rhs) (setf res rhs))) finally (cl-assert nil)))) (defun comp-add-cond-cstrs-target-block (curr-bb target-bb-sym) "Return the appropriate basic block to add constraint assumptions into. CURR-BB is the current basic block. TARGET-BB-SYM is the symbol name of the target block." (let ((target-bb (gethash target-bb-sym (comp-func-blocks comp-func)))) (if (= (length (comp-block-in-edges target-bb)) 1) ;; If block has only one predecessor is already suitable for ;; adding constraint assumptions. target-bb (comp-add-new-block-beetween (intern (concat (symbol-name target-bb-sym) "_cstrs")) curr-bb target-bb)))) (defun comp-add-cond-cstrs-simple () "`comp-add-cstrs' worker function for each selected function." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop named in-the-basic-block for insn-seq on (comp-block-insns b) do (pcase insn-seq (`((set ,(and (pred comp-mvar-p) tmp-mvar) ,(and (pred comp-mvar-p) obj1)) (comment ,_comment-str) (cond-jump ,tmp-mvar ,obj2 . ,blocks)) (cl-loop for branch-target-cell on blocks for branch-target = (car branch-target-cell) for block-target = (comp-add-cond-cstrs-target-block b branch-target) for negated in '(nil t) do (setf (car branch-target-cell) (comp-block-name block-target)) (comp-emit-assume tmp-mvar obj2 block-target negated) finally (cl-return-from in-the-basic-block))))))) (defun comp-add-cond-cstrs () "`comp-add-cstrs' worker function for each selected function." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop named in-the-basic-block for insns-seq on (comp-block-insns b) do (pcase insns-seq (`((set ,(and (pred comp-mvar-p) obj1) (,(pred comp-call-op-p) ,(or 'eq 'eql '= 'equal) ,op1 ,op2)) (comment ,_comment-str) (cond-jump ,obj1 ,(pred comp-mvar-p) . ,blocks)) (cl-loop with target-mvar1 = (comp-cond-cstrs-target-mvar op1 (car insns-seq) b) with target-mvar2 = (comp-cond-cstrs-target-mvar op2 (car insns-seq) b) for branch-target-cell on blocks for branch-target = (car branch-target-cell) for block-target = (comp-add-cond-cstrs-target-block b branch-target) for negated in '(t nil) do (setf (car branch-target-cell) (comp-block-name block-target)) when target-mvar1 do (comp-emit-assume target-mvar1 op2 block-target negated) when target-mvar2 do (comp-emit-assume target-mvar2 op1 block-target negated) finally (cl-return-from in-the-basic-block))))))) (defun comp-emit-call-cstr (mvar call-cell cstr) "Emit a constraint CSTR for MVAR after CALL-CELL." (let* ((next-cell (cdr call-cell)) (new-mvar (make-comp-mvar :slot (comp-mvar-slot mvar))) ;; Have new-mvar as LHS *and* RHS to ensure monotonicity and ;; fwprop convergence!! (new-cell `((assume ,new-mvar (and ,new-mvar ,mvar ,cstr))))) (setf (cdr call-cell) new-cell (cdr new-cell) next-cell (comp-func-ssa-status comp-func) 'dirty))) (defun comp-lambda-list-gen (lambda-list) "Return a generator to iterate over LAMBDA-LIST." (lambda () (cl-case (car lambda-list) (&optional (setf lambda-list (cdr lambda-list)) (prog1 (car lambda-list) (setf lambda-list (cdr lambda-list)))) (&rest (cadr lambda-list)) (t (prog1 (car lambda-list) (setf lambda-list (cdr lambda-list))))))) (defun comp-add-call-cstr () "Add args assumptions for each function of which the type specifier is known." (cl-loop for bb being each hash-value of (comp-func-blocks comp-func) do (comp-loop-insn-in-block bb (when-let ((match (pcase insn (`(set ,lhs (,(pred comp-call-op-p) ,f . ,args)) (when-let ((cstr-f (gethash f comp-known-func-cstr-h))) (cl-values f cstr-f lhs args))) (`(,(pred comp-call-op-p) ,f . ,args) (when-let ((cstr-f (gethash f comp-known-func-cstr-h))) (cl-values f cstr-f nil args)))))) (cl-multiple-value-bind (f cstr-f lhs args) match (cl-loop with gen = (comp-lambda-list-gen (comp-cstr-f-args cstr-f)) for arg in args for cstr = (funcall gen) for target = (comp-cond-cstrs-target-mvar arg insn bb) unless (comp-cstr-p cstr) do (signal 'native-ice (list "Incoherent type specifier for function" f)) when (and target (or (null lhs) (not (eql (comp-mvar-slot lhs) (comp-mvar-slot target))))) do (comp-emit-call-cstr target insn-cell cstr))))))) (defun comp-add-cstrs (_) "Rewrite conditional branches adding appropriate 'assume' insns. This is introducing and placing 'assume' insns in use by fwprop to propagate conditional branch test information on target basic blocks." (maphash (lambda (_ f) (when (and (>= (comp-func-speed f) 1) ;; No point to run this on dynamic scope as ;; this pass is effecive only on local ;; variables. (comp-func-l-p f) (not (comp-func-has-non-local f))) (let ((comp-func f)) (comp-add-cond-cstrs-simple) (comp-add-cond-cstrs) (comp-add-call-cstr) (comp-log-func comp-func 3)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; pure-func pass specific code. ;; Simple IPA pass to infer function purity of functions not ;; explicitly declared as such. This is effective only at speed 3 to ;; avoid optimizing-out functions and preventing their redefinition ;; being effective. (defun comp-collect-calls (f) "Return a list with all the functions called by F." (cl-loop with h = (make-hash-table :test #'eq) for b being each hash-value of (comp-func-blocks f) do (cl-loop for insn in (comp-block-insns b) do (pcase insn (`(set ,_lval (,(pred comp-call-op-p) ,f . ,_rest)) (puthash f t h)) (`(,(pred comp-call-op-p) ,f . ,_rest) (puthash f t h)))) finally return (cl-loop for f being each hash-key of h collect (if (stringp f) (comp-func-name (gethash f (comp-ctxt-funcs-h comp-ctxt))) f)))) (defun comp-pure-infer-func (f) "If all functions called by F are pure then F is pure too." (when (and (cl-every (lambda (x) (or (comp-function-pure-p x) (eq x (comp-func-name f)))) (comp-collect-calls f)) (not (eq (comp-func-pure f) t))) (comp-log (format "%s inferred to be pure" (comp-func-name f))) (setf (comp-func-pure f) t))) (defun comp-ipa-pure (_) "Infer function purity." (cl-loop with pure-n = 0 for n from 1 while (/= pure-n (setf pure-n (cl-loop for f being each hash-value of (comp-ctxt-funcs-h comp-ctxt) when (and (>= (comp-func-speed f) 3) (comp-func-l-p f) (not (comp-func-pure f))) do (comp-pure-infer-func f) count (comp-func-pure f)))) finally (comp-log (format "ipa-pure iterated %d times" n)))) ;;; SSA pass specific code. ;; After limplification no edges are present between basic blocks and an ;; implicit phi is present for every slot at the beginning of every basic block. ;; This pass is responsible for building all the edges and replace all m-vars ;; plus placing the needed phis. ;; Because the number of phis placed is (supposed) to be the minimum necessary ;; this form is called 'minimal SSA form'. ;; This pass should be run every time basic blocks or m-var are shuffled. (cl-defun make-comp-ssa-mvar (&rest rest &key _slot _constant _type) "Same as `make-comp-mvar' but set the `id' slot." (let ((mvar (apply #'make-comp-mvar rest))) (setf (comp-mvar-id mvar) (sxhash-eq mvar)) mvar)) (defun comp-clean-ssa (f) "Clean-up SSA for function F." (setf (comp-func-edges-h f) (make-hash-table)) (cl-loop for b being each hash-value of (comp-func-blocks f) do (setf (comp-block-in-edges b) () (comp-block-out-edges b) () (comp-block-dom b) nil (comp-block-df b) (make-hash-table) (comp-block-post-num b) nil (comp-block-final-frame b) nil ;; Prune all phis. (comp-block-insns b) (cl-loop for insn in (comp-block-insns b) unless (eq 'phi (car insn)) collect insn)))) (defun comp-compute-edges () "Compute the basic block edges for the current function." (cl-loop with blocks = (comp-func-blocks comp-func) for bb being each hash-value of blocks for last-insn = (car (last (comp-block-insns bb))) for (op first second third forth) = last-insn do (cl-case op (jump (make-comp-edge :src bb :dst (gethash first blocks))) (cond-jump (make-comp-edge :src bb :dst (gethash third blocks)) (make-comp-edge :src bb :dst (gethash forth blocks))) (cond-jump-narg-leq (make-comp-edge :src bb :dst (gethash second blocks)) (make-comp-edge :src bb :dst (gethash third blocks))) (push-handler (make-comp-edge :src bb :dst (gethash third blocks)) (make-comp-edge :src bb :dst (gethash forth blocks))) (return) (otherwise (signal 'native-ice (list "block does not end with a branch" bb (comp-func-name comp-func))))) ;; Update edge refs into blocks. finally (cl-loop for edge being the hash-value in (comp-func-edges-h comp-func) do (push edge (comp-block-out-edges (comp-edge-src edge))) (push edge (comp-block-in-edges (comp-edge-dst edge)))) (comp-log-edges comp-func))) (defun comp-collect-rev-post-order (basic-block) "Walk BASIC-BLOCK children and return their name in reversed post-order." (let ((visited (make-hash-table)) (acc ())) (cl-labels ((collect-rec (bb) (let ((name (comp-block-name bb))) (unless (gethash name visited) (puthash name t visited) (cl-loop for e in (comp-block-out-edges bb) for dst-block = (comp-edge-dst e) do (collect-rec dst-block)) (push name acc))))) (collect-rec basic-block) acc))) (defun comp-compute-dominator-tree () "Compute immediate dominators for each basic block in current function." ;; Originally based on: "A Simple, Fast Dominance Algorithm" ;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001). (cl-flet ((intersect (b1 b2) (let ((finger1 (comp-block-post-num b1)) (finger2 (comp-block-post-num b2))) (while (not (= finger1 finger2)) (while (< finger1 finger2) (setf b1 (comp-block-dom b1) finger1 (comp-block-post-num b1))) (while (< finger2 finger1) (setf b2 (comp-block-dom b2) finger2 (comp-block-post-num b2)))) b1)) (first-processed (l) (if-let ((p (cl-find-if (lambda (p) (comp-block-dom p)) l))) p (signal 'native-ice "cant't find first preprocessed")))) (when-let ((blocks (comp-func-blocks comp-func)) (entry (gethash 'entry blocks)) ;; No point to go on if the only bb is 'entry'. (bb1 (gethash 'bb_1 blocks))) (cl-loop with rev-bb-list = (comp-collect-rev-post-order entry) with changed = t while changed initially (progn (comp-log "Computing dominator tree...\n" 2) (setf (comp-block-dom entry) entry) ;; Set the post order number. (cl-loop for name in (reverse rev-bb-list) for b = (gethash name blocks) for i from 0 do (setf (comp-block-post-num b) i))) do (cl-loop for name in (cdr rev-bb-list) for b = (gethash name blocks) for preds = (comp-block-preds b) for new-idom = (first-processed preds) initially (setf changed nil) do (cl-loop for p in (delq new-idom preds) when (comp-block-dom p) do (setf new-idom (intersect p new-idom))) unless (eq (comp-block-dom b) new-idom) do (setf (comp-block-dom b) new-idom changed t)))))) (defun comp-compute-dominator-frontiers () "Compute the dominator frontier for each basic block in `comp-func'." ;; Originally based on: "A Simple, Fast Dominance Algorithm" ;; Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001). (cl-loop with blocks = (comp-func-blocks comp-func) for b-name being each hash-keys of blocks using (hash-value b) for preds = (comp-block-preds b) when (>= (length preds) 2) ; All joins do (cl-loop for p in preds for runner = p do (while (not (eq runner (comp-block-dom b))) (puthash b-name b (comp-block-df runner)) (setf runner (comp-block-dom runner)))))) (defun comp-log-block-info () "Log basic blocks info for the current function." (maphash (lambda (name bb) (let ((dom (comp-block-dom bb)) (df (comp-block-df bb))) (comp-log (format "block: %s idom: %s DF %s\n" name (when dom (comp-block-name dom)) (cl-loop for b being each hash-keys of df collect b)) 3))) (comp-func-blocks comp-func))) (defun comp-place-phis () "Place phi insns into the current function." ;; Originally based on: Static Single Assignment Book ;; Algorithm 3.1: Standard algorithm for inserting phi-functions (cl-flet ((add-phi (slot-n bb) ;; Add a phi func for slot SLOT-N at the top of BB. (push `(phi ,slot-n) (comp-block-insns bb))) (slot-assigned-p (slot-n bb) ;; Return t if a SLOT-N was assigned within BB. (cl-loop for insn in (comp-block-insns bb) for op = (car insn) when (or (and (comp-assign-op-p op) (eql slot-n (comp-mvar-slot (cadr insn)))) ;; fetch-handler is after a non local ;; therefore clobbers all frame!!! (eq op 'fetch-handler)) return t))) (cl-loop for i from 0 below (comp-func-frame-size comp-func) ;; List of blocks with a definition of mvar i for defs-v = (cl-loop with blocks = (comp-func-blocks comp-func) for b being each hash-value of blocks when (slot-assigned-p i b) collect b) ;; Set of basic blocks where phi is added. for f = () ;; Worklist, set of basic blocks that contain definitions of v. for w = defs-v do (while w (let ((x (pop w))) (cl-loop for y being each hash-value of (comp-block-df x) unless (cl-find y f) do (add-phi i y) (push y f) ;; Adding a phi implies mentioning the ;; corresponding slot so in case adjust w. (unless (cl-find y defs-v) (push y w)))))))) (defun comp-dom-tree-walker (bb pre-lambda post-lambda) "Dominator tree walker function starting from basic block BB. PRE-LAMBDA and POST-LAMBDA are called in pre or post-order if non-nil." (when pre-lambda (funcall pre-lambda bb)) (when-let ((out-edges (comp-block-out-edges bb))) (cl-loop for ed in out-edges for child = (comp-edge-dst ed) when (eq bb (comp-block-dom child)) ;; Current block is the immediate dominator then recur. do (comp-dom-tree-walker child pre-lambda post-lambda))) (when post-lambda (funcall post-lambda bb))) (cl-defstruct (comp-ssa (:copier nil)) "Support structure used while SSA renaming." (frame (comp-new-frame (comp-func-frame-size comp-func) t) :type vector :documentation "Vector of m-vars.")) (defun comp-ssa-rename-insn (insn frame) (dotimes (slot-n (comp-func-frame-size comp-func)) (cl-flet ((targetp (x) ;; Ret t if x is an mvar and target the correct slot number. (and (comp-mvar-p x) (eql slot-n (comp-mvar-slot x)))) (new-lvalue () ;; If is an assignment make a new mvar and put it as l-value. (let ((mvar (make-comp-ssa-mvar :slot slot-n))) (setf (aref frame slot-n) mvar (cadr insn) mvar)))) (pcase insn (`(,(pred comp-assign-op-p) ,(pred targetp) . ,_) (let ((mvar (aref frame slot-n))) (setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn)))) (new-lvalue)) (`(fetch-handler . ,_) ;; Clobber all no matter what! (setf (aref frame slot-n) (make-comp-ssa-mvar :slot slot-n))) (`(phi ,n) (when (equal n slot-n) (new-lvalue))) (_ (let ((mvar (aref frame slot-n))) (setcdr insn (cl-nsubst-if mvar #'targetp (cdr insn))))))))) (defun comp-ssa-rename () "Entry point to rename into SSA within the current function." (comp-log "Renaming\n" 2) (let ((frame-size (comp-func-frame-size comp-func)) (visited (make-hash-table))) (cl-labels ((ssa-rename-rec (bb in-frame) (unless (gethash bb visited) (puthash bb t visited) (cl-loop for insn in (comp-block-insns bb) do (comp-ssa-rename-insn insn in-frame)) (setf (comp-block-final-frame bb) (copy-sequence in-frame)) (when-let ((out-edges (comp-block-out-edges bb))) (cl-loop for ed in out-edges for child = (comp-edge-dst ed) ;; Provide a copy of the same frame to all children. do (ssa-rename-rec child (copy-sequence in-frame))))))) (ssa-rename-rec (gethash 'entry (comp-func-blocks comp-func)) (comp-new-frame frame-size t))))) (defun comp-finalize-phis () "Fixup r-values into phis in all basic blocks." (cl-flet ((finalize-phi (args b) ;; Concatenate into args all incoming m-vars for this phi. (setcdr args (cl-loop with slot-n = (comp-mvar-slot (car args)) for e in (comp-block-in-edges b) for b = (comp-edge-src e) for in-frame = (comp-block-final-frame b) collect (list (aref in-frame slot-n) (comp-block-name b)))))) (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop for (op . args) in (comp-block-insns b) when (eq op 'phi) do (finalize-phi args b))))) (defun comp-ssa () "Port all functions into minimal SSA form." (maphash (lambda (_ f) (let* ((comp-func f) (ssa-status (comp-func-ssa-status f))) (unless (eq ssa-status t) (when (eq ssa-status 'dirty) (comp-clean-ssa f)) (comp-compute-edges) (comp-compute-dominator-tree) (comp-compute-dominator-frontiers) (comp-log-block-info) (comp-place-phis) (comp-ssa-rename) (comp-finalize-phis) (comp-log-func comp-func 3) (setf (comp-func-ssa-status f) t)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; propagate pass specific code. ;; A very basic propagation pass follows. ;; This propagates values and types plus ref property in the control flow graph. ;; This is also responsible for removing function calls to pure functions if ;; possible. (defun comp-copy-insn (insn) "Deep copy INSN." ;; Adapted from `copy-tree'. (if (consp insn) (let (result) (while (consp insn) (let ((newcar (car insn))) (if (or (consp (car insn)) (comp-mvar-p (car insn))) (setf newcar (comp-copy-insn (car insn)))) (push newcar result)) (setf insn (cdr insn))) (nconc (nreverse result) (if (comp-mvar-p insn) (comp-copy-insn insn) insn))) (if (comp-mvar-p insn) (copy-comp-mvar insn) insn))) (defmacro comp-apply-in-env (func &rest args) "Apply FUNC to ARGS in the current compilation environment." `(let ((env (cl-loop for f being the hash-value in (comp-ctxt-funcs-h comp-ctxt) for func-name = (comp-func-name f) for byte-code = (comp-func-byte-func f) when func-name collect `(,func-name . ,(symbol-function func-name)) and do (setf (symbol-function func-name) byte-code)))) (unwind-protect (apply ,func ,@args) (cl-loop for (func-name . def) in env do (setf (symbol-function func-name) def))))) (defun comp-fwprop-prologue () "Prologue for the propagate pass. Here goes everything that can be done not iteratively (read once). Forward propagate immediate involed in assignments." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop for insn in (comp-block-insns b) do (pcase insn (`(setimm ,lval ,v) (setf (comp-mvar-value lval) v)))))) (defun comp-mvar-propagate (lval rval) "Propagate into LVAL properties of RVAL." (setf (comp-mvar-typeset lval) (comp-mvar-typeset rval) (comp-mvar-valset lval) (comp-mvar-valset rval) (comp-mvar-range lval) (comp-mvar-range rval) (comp-mvar-neg lval) (comp-mvar-neg rval))) (defun comp-function-foldable-p (f args) "Given function F called with ARGS return non-nil when optimizable." (and (comp-function-pure-p f) (cl-every #'comp-mvar-value-vld-p args))) (defun comp-function-call-maybe-fold (insn f args) "Given INSN when F is pure if all ARGS are known remove the function call. Return non-nil if the function is folded successfully." (cl-flet ((rewrite-insn-as-setimm (insn value) ;; See `comp-emit-setimm'. (comp-add-const-to-relocs value) (setf (car insn) 'setimm (cddr insn) `(,value)))) (cond ((eq f 'symbol-value) (when-let* ((arg0 (car args)) (const (comp-mvar-value-vld-p arg0)) (ok-to-optim (member (comp-mvar-value arg0) comp-symbol-values-optimizable))) (rewrite-insn-as-setimm insn (symbol-value (comp-mvar-value (car args)))))) ((comp-function-foldable-p f args) (ignore-errors ;; No point to complain here in case of error because we ;; should do basic block pruning in order to be sure that this ;; is not dead-code. This is now left to gcc, to be ;; implemented only if we want a reliable diagnostic here. (let* ((f (if-let (f-in-ctxt (comp-symbol-func-to-fun f)) ;; If the function is IN the compilation ctxt ;; and know to be pure. (comp-func-byte-func f-in-ctxt) f)) (value (comp-apply-in-env f (mapcar #'comp-mvar-value args)))) (rewrite-insn-as-setimm insn value))))))) (defun comp-fwprop-call (insn lval f args) "Propagate on a call INSN into LVAL. F is the function being called with arguments ARGS. Fold the call in case." (unless (comp-function-call-maybe-fold insn f args) (when-let ((cstr-f (gethash f comp-known-func-cstr-h))) (let ((cstr (comp-cstr-f-ret cstr-f))) (setf (comp-mvar-range lval) (comp-cstr-range cstr) (comp-mvar-valset lval) (comp-cstr-valset cstr) (comp-mvar-typeset lval) (comp-cstr-typeset cstr) (comp-mvar-neg lval) (comp-cstr-neg cstr)))))) (defun comp-fwprop-insn (insn) "Propagate within INSN." (pcase insn (`(set ,lval ,rval) (pcase rval (`(,(or 'call 'callref) ,f . ,args) (comp-fwprop-call insn lval f args)) (`(,(or 'direct-call 'direct-callref) ,f . ,args) (let ((f (comp-func-name (gethash f (comp-ctxt-funcs-h comp-ctxt))))) (comp-fwprop-call insn lval f args))) (_ (comp-mvar-propagate lval rval)))) (`(assume ,lval (,kind . ,operands)) (cl-ecase kind (and (apply #'comp-cstr-intersection lval operands)) (not ;; Prevent double negation! (unless (comp-cstr-neg (car operands)) (comp-cstr-value-negation lval (car operands)))))) (`(setimm ,lval ,v) (setf (comp-mvar-value lval) v)) (`(phi ,lval . ,rest) (let* ((from-latch (cl-some (lambda (x) (let* ((bb-name (cadr x)) (bb (gethash bb-name (comp-func-blocks comp-func)))) (or (comp-latch-p bb) (when (comp-block-cstr-p bb) (comp-latch-p (car (comp-block-preds bb))))))) rest)) (prop-fn (if from-latch #'comp-cstr-union-no-range #'comp-cstr-union)) (rvals (mapcar #'car rest))) (apply prop-fn lval rvals))))) (defun comp-fwprop* () "Propagate for set* and phi operands. Return t if something was changed." (cl-loop with modified = nil for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop for insn in (comp-block-insns b) for orig-insn = (unless modified ;; Save consing after 1th change. (comp-copy-insn insn)) do (comp-fwprop-insn insn) when (and (null modified) (not (equal insn orig-insn))) do (setf modified t)) finally return modified)) (defun comp-fwprop (_) "Forward propagate types and consts within the lattice." (comp-ssa) (maphash (lambda (_ f) (when (and (>= (comp-func-speed f) 2) ;; FIXME remove the following condition when tested. (not (comp-func-has-non-local f))) (let ((comp-func f)) (comp-fwprop-prologue) (cl-loop for i from 1 to 100 while (comp-fwprop*) finally (when (= i 100) (display-warning 'comp (format "fwprop pass jammed into %s?" (comp-func-name f)))) (comp-log (format "Propagation run %d times\n" i) 2)) (comp-log-func comp-func 3)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; Call optimizer pass specific code. ;; This pass is responsible for the following optimizations: ;; - Call to subrs that are in defined in the C source and are passing through ;; funcall trampoline gets optimized into normal indirect calls. ;; This makes effectively this calls equivalent to all the subrs that got ;; dedicated byte-code ops. ;; Triggered at comp-speed >= 2. ;; - Recursive calls gets optimized into direct calls. ;; Triggered at comp-speed >= 2. ;; - Intra compilation unit procedure calls gets optimized into direct calls. ;; This can be a big win and even allow gcc to inline but does not make ;; function in the compilation unit re-definable safely without recompiling ;; the full compilation unit. ;; For this reason this is triggered only at comp-speed == 3. (defun comp-func-in-unit (func) "Given FUNC return the `comp-fun' definition in the current context. FUNCTION can be a function-name or byte compiled function." (if (symbolp func) (comp-symbol-func-to-fun func) (cl-assert (byte-code-function-p func)) (gethash func (comp-ctxt-byte-func-to-func-h comp-ctxt)))) (defun comp-call-optim-form-call (callee args) "" (cl-flet ((fill-args (args total) ;; Fill missing args to reach TOTAL (append args (cl-loop repeat (- total (length args)) collect (make-comp-mvar :constant nil))))) (when (and callee (or (symbolp callee) (gethash callee (comp-ctxt-byte-func-to-func-h comp-ctxt))) (not (memq callee comp-never-optimize-functions))) (let* ((f (if (symbolp callee) (symbol-function callee) (cl-assert (byte-code-function-p callee)) callee)) (subrp (subrp f)) (comp-func-callee (comp-func-in-unit callee))) (cond ((and subrp (not (subr-native-elisp-p f))) ;; Trampoline removal. (let* ((callee (intern (subr-name f))) ; Fix aliased names. (maxarg (cdr (subr-arity f))) (call-type (if (if subrp (not (numberp maxarg)) (comp-nargs-p comp-func-callee)) 'callref 'call)) (args (if (eq call-type 'callref) args (fill-args args maxarg)))) `(,call-type ,callee ,@args))) ;; Intra compilation unit procedure call optimization. ;; Attention speed 3 triggers this for non self calls too!! ((and comp-func-callee (comp-func-c-name comp-func-callee) (or (and (>= (comp-func-speed comp-func) 3) (comp-func-unique-in-cu-p callee)) (and (>= (comp-func-speed comp-func) 2) ;; Anonymous lambdas can't be redefined so are ;; always safe to optimize. (byte-code-function-p callee)))) (let* ((func-args (comp-func-l-args comp-func-callee)) (nargs (comp-nargs-p func-args)) (call-type (if nargs 'direct-callref 'direct-call)) (args (if (eq call-type 'direct-callref) args (fill-args args (comp-args-max func-args))))) `(,call-type ,(comp-func-c-name comp-func-callee) ,@args))) ((comp-type-hint-p callee) `(call ,callee ,@args))))))) (defun comp-call-optim-func () "Perform the trampoline call optimization for the current function." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (comp-loop-insn-in-block b (pcase insn (`(set ,lval (callref funcall ,f . ,rest)) (when-let ((new-form (comp-call-optim-form-call (comp-mvar-value f) rest))) (setf insn `(set ,lval ,new-form)))) (`(callref funcall ,f . ,rest) (when-let ((new-form (comp-call-optim-form-call (comp-mvar-value f) rest))) (setf insn new-form))))))) (defun comp-call-optim (_) "Try to optimize out funcall trampoline usage when possible." (maphash (lambda (_ f) (when (and (>= (comp-func-speed f) 2) (comp-func-l-p f)) (let ((comp-func f)) (comp-call-optim-func)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; Dead code elimination pass specific code. ;; This simple pass try to eliminate insns became useful after propagation. ;; Even if gcc would take care of this is good to perform this here ;; in the hope of removing memory references. ;; ;; This pass can be run as last optim. (defun comp-collect-mvar-ids (insn) "Collect the m-var unique identifiers into INSN." (cl-loop for x in insn if (consp x) append (comp-collect-mvar-ids x) else when (comp-mvar-p x) collect (comp-mvar-id x))) (defun comp-dead-assignments-func () "Clean-up dead assignments into current function. Return the list of m-var ids nuked." (let ((l-vals ()) (r-vals ())) ;; Collect used r and l-values. (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop for insn in (comp-block-insns b) for (op arg0 . rest) = insn if (comp-set-op-p op) do (push (comp-mvar-id arg0) l-vals) (setf r-vals (nconc (comp-collect-mvar-ids rest) r-vals)) else do (setf r-vals (nconc (comp-collect-mvar-ids insn) r-vals)))) ;; Every l-value appearing that does not appear as r-value has no right to ;; exist and gets nuked. (let ((nuke-list (cl-set-difference l-vals r-vals))) (comp-log (format "Function %s\nl-vals %s\nr-vals %s\nNuking ids: %s\n" (comp-func-name comp-func) l-vals r-vals nuke-list) 3) (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (comp-loop-insn-in-block b (cl-destructuring-bind (op &optional arg0 arg1 &rest rest) insn (when (and (comp-set-op-p op) (memq (comp-mvar-id arg0) nuke-list)) (setf insn (if (comp-limple-insn-call-p arg1) arg1 `(comment ,(format "optimized out: %s" insn)))))))) nuke-list))) (defun comp-dead-code (_) "Dead code elimination." (maphash (lambda (_ f) (when (and (>= (comp-func-speed f) 2) ;; FIXME remove the following condition when tested. (not (comp-func-has-non-local f))) (cl-loop for comp-func = f for i from 1 while (comp-dead-assignments-func) finally (comp-log (format "dead code rm run %d times\n" i) 2) (comp-log-func comp-func 3)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; Tail Call Optimization pass specific code. (defun comp-form-tco-call-seq (args) "Generate a tco sequence for ARGS." `(,@(cl-loop for arg in args for i from 0 collect `(set ,(make-comp-mvar :slot i) ,arg)) (jump bb_0))) (defun comp-tco-func () "Try to pattern match and perform TCO within the current function." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (cl-loop named in-the-basic-block for insns-seq on (comp-block-insns b) do (pcase insns-seq (`((set ,l-val (direct-call ,func . ,args)) (comment ,_comment) (return ,ret-val)) (when (and (string= func (comp-func-c-name comp-func)) (eq l-val ret-val)) (let ((tco-seq (comp-form-tco-call-seq args))) (setf (car insns-seq) (car tco-seq) (cdr insns-seq) (cdr tco-seq) (comp-func-ssa-status comp-func) 'dirty) (cl-return-from in-the-basic-block)))))))) (defun comp-tco (_) "Simple peephole pass performing self TCO." (maphash (lambda (_ f) (when (and (>= (comp-func-speed f) 3) (comp-func-l-p f) (not (comp-func-has-non-local f))) (let ((comp-func f)) (comp-tco-func) (comp-log-func comp-func 3)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; Type hint removal pass specific code. ;; This must run after all SSA prop not to have the type hint ;; information overwritten. (defun comp-remove-type-hints-func () "Remove type hints from the current function. These are substituted with a normal 'set' op." (cl-loop for b being each hash-value of (comp-func-blocks comp-func) do (comp-loop-insn-in-block b (pcase insn (`(set ,l-val (call ,(pred comp-type-hint-p) ,r-val)) (setf insn `(set ,l-val ,r-val))))))) (defun comp-remove-type-hints (_) "Dead code elimination." (maphash (lambda (_ f) (when (>= (comp-func-speed f) 2) (let ((comp-func f)) (comp-remove-type-hints-func) (comp-log-func comp-func 3)))) (comp-ctxt-funcs-h comp-ctxt))) ;;; Final pass specific code. (defun comp-ret-type-spec (_ func) "Compute type specifier for `comp-func' FUNC. Set it into the `ret-type-specifier' slot." (let* ((comp-func (make-comp-func)) (res-mvar (apply #'comp-cstr-union (make-comp-cstr) (cl-loop with res = nil for bb being the hash-value in (comp-func-blocks func) do (cl-loop for insn in (comp-block-insns bb) ;; Collect over every exit point the returned ;; mvars and union results. do (pcase insn (`(return ,mvar) (push mvar res)))) finally return res)))) (setf (comp-func-ret-type-specifier func) (comp-cstr-to-type-spec res-mvar)))) (defun comp-finalize-container (cont) "Finalize data container CONT." (setf (comp-data-container-l cont) (cl-loop with h = (comp-data-container-idx cont) for obj each hash-keys of h for i from 0 do (puthash obj i h) ;; Prune byte-code objects coming from lambdas. ;; These are not anymore necessary as they will be ;; replaced at load time by native-elisp-subrs. ;; Note: we leave the objects in the idx hash table ;; to still be able to retrieve the correct index ;; from the corresponding m-var. collect (if (gethash obj (comp-ctxt-byte-func-to-func-h comp-ctxt)) 'lambda-fixup obj)))) (defun comp-finalize-relocs () "Finalize data containers for each relocation class. Remove immediate duplicates within relocation classes. Update all insn accordingly." ;; Symbols imported by C inlined functions. We do this here because ;; is better to add all objs to the relocation containers before we ;; compacting them. (mapc #'comp-add-const-to-relocs '(nil t consp listp)) (let* ((d-default (comp-ctxt-d-default comp-ctxt)) (d-default-idx (comp-data-container-idx d-default)) (d-impure (comp-ctxt-d-impure comp-ctxt)) (d-impure-idx (comp-data-container-idx d-impure)) (d-ephemeral (comp-ctxt-d-ephemeral comp-ctxt)) (d-ephemeral-idx (comp-data-container-idx d-ephemeral))) ;; We never want compiled lambdas ending up in pure space. A copy must ;; be already present in impure (see `comp-emit-lambda-for-top-level'). (cl-loop for obj being each hash-keys of d-default-idx when (gethash obj (comp-ctxt-lambda-fixups-h comp-ctxt)) do (cl-assert (gethash obj d-impure-idx)) (remhash obj d-default-idx)) ;; Remove entries in d-impure already present in d-default. (cl-loop for obj being each hash-keys of d-impure-idx when (gethash obj d-default-idx) do (remhash obj d-impure-idx)) ;; Remove entries in d-ephemeral already present in d-default or ;; d-impure. (cl-loop for obj being each hash-keys of d-ephemeral-idx when (or (gethash obj d-default-idx) (gethash obj d-impure-idx)) do (remhash obj d-ephemeral-idx)) ;; Fix-up indexes in each relocation class and fill corresponding ;; reloc lists. (mapc #'comp-finalize-container (list d-default d-impure d-ephemeral)) ;; Make a vector from the function documentation hash table. (cl-loop with h = (comp-ctxt-function-docs comp-ctxt) with v = (make-vector (hash-table-count h) nil) for idx being each hash-keys of h for doc = (gethash idx h) do (setf (aref v idx) doc) finally do (setf (comp-ctxt-function-docs comp-ctxt) v)) ;; And now we conclude with the following: We need to pass to ;; `comp--register-lambda' the index in the impure relocation ;; array to store revived lambdas, but given we know it only now ;; we fix it up as last. (cl-loop for f being each hash-keys of (comp-ctxt-lambda-fixups-h comp-ctxt) using (hash-value mvar) with reverse-h = (make-hash-table) ;; Make sure idx is unique. for idx = (gethash f d-impure-idx) do (cl-assert (null (gethash idx reverse-h))) (cl-assert (fixnump idx)) (setf (comp-mvar-valset mvar) () (comp-mvar-range mvar) (list (cons idx idx))) (puthash idx t reverse-h)))) (defun comp-compile-ctxt-to-file (name) "Compile as native code the current context naming it NAME. Prepare every function for final compilation and drive the C back-end." (let ((dir (file-name-directory name))) (comp-finalize-relocs) (maphash (lambda (_ f) (comp-log-func f 1)) (comp-ctxt-funcs-h comp-ctxt)) (unless (file-exists-p dir) ;; In case it's created in the meanwhile. (ignore-error 'file-already-exists (make-directory dir t))) (comp--compile-ctxt-to-file name))) (defun comp-final1 () (let (compile-result) (comp--init-ctxt) (unwind-protect (setf compile-result (comp-compile-ctxt-to-file (comp-ctxt-output comp-ctxt))) (and (comp--release-ctxt) compile-result)))) (defvar comp-async-compilation nil "Non-nil while executing an asyncronous native compilation.") (defun comp-final (_) "Final pass driving the C back-end for code emission." (maphash #'comp-ret-type-spec (comp-ctxt-funcs-h comp-ctxt)) (unless comp-dry-run ;; Always run the C side of the compilation as a sub-process ;; unless during bootstrap or async compilation (bug#45056). GCC ;; leaks memory but also interfere with the ability of Emacs to ;; detect when a sub-process completes (TODO understand why). (if (or byte-native-for-bootstrap comp-async-compilation) (comp-final1) ;; Call comp-final1 in a child process. (let* ((output (comp-ctxt-output comp-ctxt)) (print-escape-newlines t) (print-length nil) (print-level nil) (print-quoted t) (print-gensym t) (print-circle t) (print-escape-multibyte t) (expr `(progn (require 'comp) (setf comp-verbose ,comp-verbose comp-ctxt ,comp-ctxt comp-eln-load-path ',comp-eln-load-path comp-native-driver-options ',comp-native-driver-options load-path ',load-path) ,comp-async-env-modifier-form (message "Compiling %s..." ',output) (comp-final1))) (temp-file (make-temp-file (concat "emacs-int-comp-" (file-name-base output) "-") nil ".el"))) (with-temp-file temp-file (insert (prin1-to-string expr))) (with-temp-buffer (unwind-protect (if (zerop (call-process (expand-file-name invocation-name invocation-directory) nil t t "--batch" "-l" temp-file)) output (signal 'native-compiler-error (buffer-string))) (comp-log-to-buffer (buffer-string)))))))) ;;; Compiler type hints. ;; Public entry points to be used by user code to give comp ;; suggestions about types. These are used to implement CL style ;; `cl-the' and hopefully parameter type declaration. ;; Note: types will propagates. ;; WARNING: At speed >= 2 type checking is not performed anymore and suggestions ;; are assumed just to be true. Use with extreme caution... (defun comp-hint-fixnum (x) (declare (gv-setter (lambda (val) `(setf ,x ,val)))) x) (defun comp-hint-cons (x) (declare (gv-setter (lambda (val) `(setf ,x ,val)))) x) ;; Primitive function advice machinery (defun comp-trampoline-filename (subr-name) "Given SUBR-NAME return the filename containing the trampoline." (concat (comp-c-func-name subr-name "subr--trampoline-" t) ".eln")) (defun comp-make-lambda-list-from-subr (subr) "Given SUBR return the equivalent lambda-list." (pcase-let ((`(,min . ,max) (subr-arity subr)) (lambda-list '())) (cl-loop repeat min do (push (gensym "arg") lambda-list)) (if (numberp max) (cl-loop initially (push '&optional lambda-list) repeat (- max min) do (push (gensym "arg") lambda-list)) (push '&rest lambda-list) (push (gensym "arg") lambda-list)) (reverse lambda-list))) (defun comp-trampoline-search (subr-name) "Search a trampoline file for SUBR-NAME. Return the trampoline if found or nil otherwise." (cl-loop with rel-filename = (comp-trampoline-filename subr-name) for dir in comp-eln-load-path for filename = (expand-file-name rel-filename (concat dir comp-native-version-dir)) when (file-exists-p filename) do (cl-return (native-elisp-load filename)))) (defun comp-trampoline-compile (subr-name) "Synthesize compile and return a trampoline for SUBR-NAME." (let* ((lambda-list (comp-make-lambda-list-from-subr (symbol-function subr-name))) ;; The synthesized trampoline must expose the exact same ABI of ;; the primitive we are replacing in the function reloc table. (form `(lambda ,lambda-list (let ((f #',subr-name)) (,(if (memq '&rest lambda-list) #'apply 'funcall) f ,@(cl-loop for arg in lambda-list unless (memq arg '(&optional &rest)) collect arg))))) ;; Use speed 0 to maximize compilation speed and not to ;; optimize away funcall calls! (byte-optimize nil) (comp-speed 0) (lexical-binding t)) (comp--native-compile form nil (cl-loop for load-dir in comp-eln-load-path for dir = (concat load-dir comp-native-version-dir) for f = (expand-file-name (comp-trampoline-filename subr-name) dir) unless (file-exists-p dir) do (ignore-errors (make-directory dir t) (cl-return f)) when (file-writable-p f) do (cl-return f) finally (error "Cannot find suitable directory for output in \ `comp-eln-load-path'"))))) ;;;###autoload (defun comp-subr-trampoline-install (subr-name) "Make SUBR-NAME effectively advice-able when called from native code." (unless (or (memq subr-name comp-never-optimize-functions) (gethash subr-name comp-installed-trampolines-h)) (cl-assert (subr-primitive-p (symbol-function subr-name))) (comp--install-trampoline subr-name (or (comp-trampoline-search subr-name) (comp-trampoline-compile subr-name) ;; Should never happen. (cl-assert nil))))) ;; Some entry point support code. ;;;###autoload (defun comp-clean-up-stale-eln (file) "Given FILE remove all the .eln files in `comp-eln-load-path' sharing the original source filename (including FILE)." (when (string-match (rx "-" (group-n 1 (1+ hex)) "-" (1+ hex) ".eln" eos) file) (cl-loop with filename-hash = (match-string 1 file) with regexp = (rx-to-string `(seq "-" ,filename-hash "-" (1+ hex) ".eln" eos)) for dir in (butlast comp-eln-load-path) ; Skip last dir. do (cl-loop with full-dir = (concat dir comp-native-version-dir) for f in (when (file-exists-p full-dir) (directory-files full-dir t regexp t)) do (comp-delete-or-replace-file f))))) (defun comp-delete-or-replace-file (oldfile &optional newfile) "Replace OLDFILE with NEWFILE. When NEWFILE is nil just delete OLDFILE. Takes the necessary steps when dealing with OLDFILE being a shared libraries that may be currently loaded by a running Emacs session." (cond ((eq 'windows-nt system-type) (ignore-errors (delete-file oldfile)) (while (condition-case _ (progn ;; oldfile maybe recreated by another Emacs in ;; between the following two rename-file calls (if (file-exists-p oldfile) (rename-file oldfile (make-temp-file-internal (file-name-sans-extension oldfile) nil ".eln.old" nil) t)) (when newfile (rename-file newfile oldfile nil)) ;; Keep on trying. nil) (file-already-exists ;; Done t)))) ;; Remove the old eln instead of copying the new one into it ;; to get a new inode and prevent crashes in case the old one ;; is currently loaded. (t (delete-file oldfile) (when newfile (rename-file newfile oldfile))))) (defvar comp-files-queue () "List of Elisp files to be compiled.") (defvar comp-async-compilations (make-hash-table :test #'equal) "Hash table file-name -> async compilation process.") (defun comp-async-runnings () "Return the number of async compilations currently running. This function has the side effect of cleaning-up finished processes from `comp-async-compilations'" (cl-loop for file-name in (cl-loop for file-name being each hash-key of comp-async-compilations for prc = (gethash file-name comp-async-compilations) unless (process-live-p prc) collect file-name) do (remhash file-name comp-async-compilations)) (hash-table-count comp-async-compilations)) (defvar comp-num-cpus nil) (defun comp-effective-async-max-jobs () "Compute the effective number of async jobs." (if (zerop comp-async-jobs-number) (or comp-num-cpus (setf comp-num-cpus ;; FIXME: we already have a function to determine ;; the number of processors, see get_native_system_info in w32.c. ;; The result needs to be exported to Lisp. (max 1 (/ (cond ((eq 'windows-nt system-type) (string-to-number (getenv "NUMBER_OF_PROCESSORS"))) ((executable-find "nproc") (string-to-number (shell-command-to-string "nproc"))) (t 1)) 2)))) comp-async-jobs-number)) (defvar comp-last-scanned-async-output nil) (make-variable-buffer-local 'comp-last-scanned-async-output) (defun comp-accept-and-process-async-output (process) "Accept PROCESS output and check for diagnostic messages." (if comp-async-report-warnings-errors (with-current-buffer (process-buffer process) (save-excursion (accept-process-output process) (goto-char (or comp-last-scanned-async-output (point-min))) (while (re-search-forward "^.*+?\\(?:Error\\|Warning\\): .*$" nil t) (display-warning 'comp (match-string 0))) (setq comp-last-scanned-async-output (point-max)))) (accept-process-output process))) (defun comp-run-async-workers () "Start compiling files from `comp-files-queue' asynchronously. When compilation is finished, run `comp-async-all-done-hook' and display a message." (if (or comp-files-queue (> (comp-async-runnings) 0)) (unless (>= (comp-async-runnings) (comp-effective-async-max-jobs)) (cl-loop for (source-file . load) = (pop comp-files-queue) while source-file do (cl-assert (string-match-p comp-valid-source-re source-file) nil "`comp-files-queue' should be \".el\" files: %s" source-file) when (or comp-always-compile load ; Always compile when the compilation is ; commanded for late load. (file-newer-than-file-p source-file (comp-el-to-eln-filename source-file))) do (let* ((expr `(progn (require 'comp) (setf comp-speed ,comp-speed comp-debug ,comp-debug comp-verbose ,comp-verbose comp-async-compilation t comp-eln-load-path ',comp-eln-load-path comp-native-driver-options ',comp-native-driver-options load-path ',load-path) ,comp-async-env-modifier-form (message "Compiling %s..." ,source-file) (comp--native-compile ,source-file ,(and load t)))) (source-file1 source-file) ;; Make the closure works :/ (temp-file (make-temp-file (concat "emacs-async-comp-" (file-name-base source-file) "-") nil ".el")) (expr-string (prin1-to-string expr)) (_ (progn (with-temp-file temp-file (insert expr-string)) (comp-log "\n") (comp-log expr-string))) (load1 load) (process (make-process :name (concat "Compiling: " source-file) :buffer (get-buffer-create comp-async-buffer-name) :command (list (expand-file-name invocation-name invocation-directory) "--batch" "-l" temp-file) :sentinel (lambda (process _event) (run-hook-with-args 'comp-async-cu-done-hook source-file) (comp-accept-and-process-async-output process) (ignore-errors (delete-file temp-file)) (when (and load1 (zerop (process-exit-status process))) (native-elisp-load (comp-el-to-eln-filename source-file1) (eq load1 'late))) (comp-run-async-workers))))) (puthash source-file process comp-async-compilations)) when (>= (comp-async-runnings) (comp-effective-async-max-jobs)) do (cl-return))) ;; No files left to compile and all processes finished. (run-hooks 'comp-async-all-done-hook) (with-current-buffer (get-buffer-create comp-async-buffer-name) (save-excursion (goto-char (point-max)) (insert "Compilation finished.\n"))) ;; `comp-deferred-pending-h' should be empty at this stage. ;; Reset it anyway. (clrhash comp-deferred-pending-h))) (defun comp--native-compile (function-or-file &optional with-late-load output) "Compile FUNCTION-OR-FILE into native code. This serves as internal implementation of `native-compile'. When WITH-LATE-LOAD non-nil mark the compilation unit for late load once finished compiling." (comp-ensure-native-compiler) (unless (or (functionp function-or-file) (stringp function-or-file)) (signal 'native-compiler-error (list "Not a function symbol or file" function-or-file))) (let* ((data function-or-file) (comp-native-compiling t) (byte-native-qualities nil) ;; Have byte compiler signal an error when compilation fails. (byte-compile-debug t) (comp-ctxt (make-comp-ctxt :output output :with-late-load with-late-load))) (comp-log "\n \n" 1) (condition-case err (mapc (lambda (pass) (unless (memq pass comp-disabled-passes) (comp-log (format "(%s) Running pass %s:\n" function-or-file pass) 2) (setf data (funcall pass data)) (cl-loop for f in (alist-get pass comp-post-pass-hooks) do (funcall f data)))) comp-passes) (native-compiler-error ;; Add source input. (let ((err-val (cdr err))) (signal (car err) (if (consp err-val) (cons function-or-file err-val) (list function-or-file err-val)))))) (if (stringp function-or-file) data ;; So we return the compiled function. (native-elisp-load data)))) (defun native-compile-async-skip-p (file load selector) "Return non-nil when FILE compilation should be skipped. LOAD and SELECTOR work as described in `native--compile-async'." ;; Make sure we are not already compiling `file' (bug#40838). (or (gethash file comp-async-compilations) (cond ((null selector) nil) ((functionp selector) (not (funcall selector file))) ((stringp selector) (not (string-match-p selector file))) (t (error "SELECTOR must be a function a regexp or nil"))) ;; Also exclude files from deferred compilation if ;; any of the regexps in ;; `comp-deferred-compilation-deny-list' matches. (and (eq load 'late) (cl-some (lambda (re) (string-match-p re file)) comp-deferred-compilation-deny-list)))) (defun native--compile-async (paths &optional recursively load selector) "Compile PATHS asynchronously. PATHS is one path or a list of paths to files or directories. If optional argument RECURSIVELY is non-nil, recurse into subdirectories of given directories. If optional argument LOAD is non-nil, request to load the file after compiling. The optional argument SELECTOR has the following valid values: nil -- Select all files. a string -- A regular expression selecting files with matching names. a function -- A function selecting files with matching names. The variable `comp-async-jobs-number' specifies the number of (commands) to run simultaneously. LOAD can also be the symbol `late'. This is used internally if the byte code has already been loaded when this function is called. It means that we requests the special kind of load, necessary in that situation, called \"late\" loading. During a \"late\" load instead of executing all top level forms of the original files, only function definitions are loaded (paying attention to have these effective only if the bytecode definition was not changed in the meanwhile)." (comp-ensure-native-compiler) (unless (member load '(nil t late)) (error "LOAD must be nil, t or 'late")) (unless (listp paths) (setf paths (list paths))) (let (files) (dolist (path paths) (cond ((file-directory-p path) (dolist (file (if recursively (directory-files-recursively path comp-valid-source-re) (directory-files path t comp-valid-source-re))) (push file files))) ((file-exists-p path) (push path files)) (t (signal 'native-compiler-error (list "Path not a file nor directory" path))))) (dolist (file files) (if-let ((entry (cl-find file comp-files-queue :key #'car :test #'string=))) ;; Most likely the byte-compiler has requested a deferred ;; compilation, so update `comp-files-queue' to reflect that. (unless (or (null load) (eq load (cdr entry))) (cl-substitute (cons file load) (car entry) comp-files-queue :key #'car :test #'string=)) (unless (native-compile-async-skip-p file load selector) (let* ((out-filename (comp-el-to-eln-filename file)) (out-dir (file-name-directory out-filename))) (unless (file-exists-p out-dir) (make-directory out-dir t)) (if (file-writable-p out-filename) (setf comp-files-queue (append comp-files-queue `((,file . ,load)))) (display-warning 'comp (format "No write access for %s skipping." out-filename))))))) (when (zerop (comp-async-runnings)) (comp-run-async-workers)))) ;;; Compiler entry points. ;;;###autoload (defun native-compile (function-or-file &optional output) "Compile FUNCTION-OR-FILE into native code. This is the synchronous entry-point for the Emacs Lisp native compiler. FUNCTION-OR-FILE is a function symbol, a form or the filename of an Emacs Lisp source file. When OUTPUT is non-nil use it as filename for the compiled object. If FUNCTION-OR-FILE is a filename return the filename of the compiled object. If FUNCTION-OR-FILE is a function symbol or a form return the compiled function." (comp--native-compile function-or-file nil output)) ;;;###autoload (defun batch-native-compile () "Run `native-compile' on remaining command-line arguments. Ultra cheap impersonation of `batch-byte-compile'." (comp-ensure-native-compiler) (cl-loop for file in command-line-args-left if (or (null byte-native-for-bootstrap) (cl-notany (lambda (re) (string-match re file)) comp-bootstrap-deny-list)) do (comp--native-compile file) else do (byte-compile-file file))) ;;;###autoload (defun batch-byte-native-compile-for-bootstrap () "As `batch-byte-compile' but used for booststrap. Generate .elc files in addition to the .eln one. If the environment variable 'NATIVE_DISABLED' is set byte compile only." (comp-ensure-native-compiler) (if (equal (getenv "NATIVE_DISABLED") "1") (batch-byte-compile) (cl-assert (= 1 (length command-line-args-left))) (let ((byte-native-for-bootstrap t) (byte-to-native-output-file nil)) (batch-native-compile) (pcase byte-to-native-output-file (`(,tempfile . ,target-file) (rename-file tempfile target-file t)))))) ;;;###autoload (defun native-compile-async (paths &optional recursively load selector) "Compile PATHS asynchronously. PATHS is one path or a list of paths to files or directories. If optional argument RECURSIVELY is non-nil, recurse into subdirectories of given directories. If optional argument LOAD is non-nil, request to load the file after compiling. The optional argument SELECTOR has the following valid values: nil -- Select all files. a string -- A regular expression selecting files with matching names. a function -- A function selecting files with matching names. The variable `comp-async-jobs-number' specifies the number of (commands) to run simultaneously." ;; Normalize: we only want to pass t or nil, never e.g. `late'. (let ((load (not (not load)))) (native--compile-async paths recursively load selector))) (provide 'comp) ;;; comp.el ends here