mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-21 10:24:55 +00:00
279 lines
8.2 KiB
EmacsLisp
279 lines
8.2 KiB
EmacsLisp
;;; rtree.el --- functions for manipulating range trees
|
|
|
|
;; Copyright (C) 2010-2011 Free Software Foundation, Inc.
|
|
|
|
;; Author: Lars Magne Ingebrigtsen <larsi@gnus.org>
|
|
|
|
;; This file is part of GNU Emacs.
|
|
|
|
;; GNU Emacs is free software: you can redistribute it and/or modify
|
|
;; it under the terms of the GNU General Public License as published by
|
|
;; the Free Software Foundation, either version 3 of the License, or
|
|
;; (at your option) any later version.
|
|
|
|
;; GNU Emacs is distributed in the hope that it will be useful,
|
|
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
;; GNU General Public License for more details.
|
|
|
|
;; You should have received a copy of the GNU General Public License
|
|
;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
;;; Commentary:
|
|
|
|
;; A "range tree" is a binary tree that stores ranges. They are
|
|
;; similar to interval trees, but do not allow overlapping intervals.
|
|
|
|
;; A range is an ordered list of number intervals, like this:
|
|
|
|
;; ((10 . 25) 56 78 (98 . 201))
|
|
|
|
;; Common operations, like lookup, deletion and insertion are O(n) in
|
|
;; a range, but an rtree is O(log n) in all these operations.
|
|
;; Transformation between a range and an rtree is O(n).
|
|
|
|
;; The rtrees are quite simple. The structure of each node is
|
|
|
|
;; (cons (cons low high) (cons left right))
|
|
|
|
;; That is, they are three cons cells, where the car of the top cell
|
|
;; is the actual range, and the cdr has the left and right child. The
|
|
;; rtrees aren't automatically balanced, but are balanced when
|
|
;; created, and can be rebalanced when deemed necessary.
|
|
|
|
;;; Code:
|
|
|
|
(eval-when-compile
|
|
(require 'cl))
|
|
|
|
(defmacro rtree-make-node ()
|
|
`(list (list nil) nil))
|
|
|
|
(defmacro rtree-set-left (node left)
|
|
`(setcar (cdr ,node) ,left))
|
|
|
|
(defmacro rtree-set-right (node right)
|
|
`(setcdr (cdr ,node) ,right))
|
|
|
|
(defmacro rtree-set-range (node range)
|
|
`(setcar ,node ,range))
|
|
|
|
(defmacro rtree-low (node)
|
|
`(caar ,node))
|
|
|
|
(defmacro rtree-high (node)
|
|
`(cdar ,node))
|
|
|
|
(defmacro rtree-set-low (node number)
|
|
`(setcar (car ,node) ,number))
|
|
|
|
(defmacro rtree-set-high (node number)
|
|
`(setcdr (car ,node) ,number))
|
|
|
|
(defmacro rtree-left (node)
|
|
`(cadr ,node))
|
|
|
|
(defmacro rtree-right (node)
|
|
`(cddr ,node))
|
|
|
|
(defmacro rtree-range (node)
|
|
`(car ,node))
|
|
|
|
(defsubst rtree-normalise-range (range)
|
|
(when (numberp range)
|
|
(setq range (cons range range)))
|
|
range)
|
|
|
|
(defun rtree-make (range)
|
|
"Make an rtree from RANGE."
|
|
;; Normalize the range.
|
|
(unless (listp (cdr-safe range))
|
|
(setq range (list range)))
|
|
(rtree-make-1 (cons nil range) (length range)))
|
|
|
|
(defun rtree-make-1 (range length)
|
|
(let ((mid (/ length 2))
|
|
(node (rtree-make-node)))
|
|
(when (> mid 0)
|
|
(rtree-set-left node (rtree-make-1 range mid)))
|
|
(rtree-set-range node (rtree-normalise-range (cadr range)))
|
|
(setcdr range (cddr range))
|
|
(when (> (- length mid 1) 0)
|
|
(rtree-set-right node (rtree-make-1 range (- length mid 1))))
|
|
node))
|
|
|
|
(defun rtree-memq (tree number)
|
|
"Return non-nil if NUMBER is present in TREE."
|
|
(while (and tree
|
|
(not (and (>= number (rtree-low tree))
|
|
(<= number (rtree-high tree)))))
|
|
(setq tree
|
|
(if (< number (rtree-low tree))
|
|
(rtree-left tree)
|
|
(rtree-right tree))))
|
|
tree)
|
|
|
|
(defun rtree-add (tree number)
|
|
"Add NUMBER to TREE."
|
|
(while tree
|
|
(cond
|
|
;; It's already present, so we don't have to do anything.
|
|
((and (>= number (rtree-low tree))
|
|
(<= number (rtree-high tree)))
|
|
(setq tree nil))
|
|
((< number (rtree-low tree))
|
|
(cond
|
|
;; Extend the low range.
|
|
((= number (1- (rtree-low tree)))
|
|
(rtree-set-low tree number)
|
|
;; Check whether we need to merge this node with the child.
|
|
(when (and (rtree-left tree)
|
|
(= (rtree-high (rtree-left tree)) (1- number)))
|
|
;; Extend the range to the low from the child.
|
|
(rtree-set-low tree (rtree-low (rtree-left tree)))
|
|
;; The child can't have a right child, so just transplant the
|
|
;; child's left tree to our left tree.
|
|
(rtree-set-left tree (rtree-left (rtree-left tree))))
|
|
(setq tree nil))
|
|
;; Descend further to the left.
|
|
((rtree-left tree)
|
|
(setq tree (rtree-left tree)))
|
|
;; Add a new node.
|
|
(t
|
|
(let ((new-node (rtree-make-node)))
|
|
(rtree-set-low new-node number)
|
|
(rtree-set-high new-node number)
|
|
(rtree-set-left tree new-node)
|
|
(setq tree nil)))))
|
|
(t
|
|
(cond
|
|
;; Extend the high range.
|
|
((= number (1+ (rtree-high tree)))
|
|
(rtree-set-high tree number)
|
|
;; Check whether we need to merge this node with the child.
|
|
(when (and (rtree-right tree)
|
|
(= (rtree-low (rtree-right tree)) (1+ number)))
|
|
;; Extend the range to the high from the child.
|
|
(rtree-set-high tree (rtree-high (rtree-right tree)))
|
|
;; The child can't have a left child, so just transplant the
|
|
;; child's left right to our right tree.
|
|
(rtree-set-right tree (rtree-right (rtree-right tree))))
|
|
(setq tree nil))
|
|
;; Descend further to the right.
|
|
((rtree-right tree)
|
|
(setq tree (rtree-right tree)))
|
|
;; Add a new node.
|
|
(t
|
|
(let ((new-node (rtree-make-node)))
|
|
(rtree-set-low new-node number)
|
|
(rtree-set-high new-node number)
|
|
(rtree-set-right tree new-node)
|
|
(setq tree nil))))))))
|
|
|
|
(defun rtree-delq (tree number)
|
|
"Remove NUMBER from TREE destructively. Returns the new tree."
|
|
(let ((result tree)
|
|
prev)
|
|
(while tree
|
|
(cond
|
|
((< number (rtree-low tree))
|
|
(setq prev tree
|
|
tree (rtree-left tree)))
|
|
((> number (rtree-high tree))
|
|
(setq prev tree
|
|
tree (rtree-right tree)))
|
|
;; The number is in this node.
|
|
(t
|
|
(cond
|
|
;; The only entry; delete the node.
|
|
((= (rtree-low tree) (rtree-high tree))
|
|
(cond
|
|
;; Two children. Replace with successor value.
|
|
((and (rtree-left tree) (rtree-right tree))
|
|
(let ((parent tree)
|
|
(successor (rtree-right tree)))
|
|
(while (rtree-left successor)
|
|
(setq parent successor
|
|
successor (rtree-left successor)))
|
|
;; We now have the leftmost child of our right child.
|
|
(rtree-set-range tree (rtree-range successor))
|
|
;; Transplant the child (if any) to the parent.
|
|
(rtree-set-left parent (rtree-right successor))))
|
|
(t
|
|
(let ((rest (or (rtree-left tree)
|
|
(rtree-right tree))))
|
|
;; One or zero children. Remove the node.
|
|
(cond
|
|
((null prev)
|
|
(setq result rest))
|
|
((eq (rtree-left prev) tree)
|
|
(rtree-set-left prev rest))
|
|
(t
|
|
(rtree-set-right prev rest)))))))
|
|
;; The lowest in the range; just adjust.
|
|
((= number (rtree-low tree))
|
|
(rtree-set-low tree (1+ number)))
|
|
;; The highest in the range; just adjust.
|
|
((= number (rtree-high tree))
|
|
(rtree-set-high tree (1- number)))
|
|
;; We have to split this range.
|
|
(t
|
|
(let ((new-node (rtree-make-node)))
|
|
(rtree-set-low new-node (rtree-low tree))
|
|
(rtree-set-high new-node (1- number))
|
|
(rtree-set-low tree (1+ number))
|
|
(cond
|
|
;; Two children; insert the new node as the predecessor
|
|
;; node.
|
|
((and (rtree-left tree) (rtree-right tree))
|
|
(let ((predecessor (rtree-left tree)))
|
|
(while (rtree-right predecessor)
|
|
(setq predecessor (rtree-right predecessor)))
|
|
(rtree-set-right predecessor new-node)))
|
|
((rtree-left tree)
|
|
(rtree-set-right new-node tree)
|
|
(rtree-set-left new-node (rtree-left tree))
|
|
(rtree-set-left tree nil)
|
|
(cond
|
|
((null prev)
|
|
(setq result new-node))
|
|
((eq (rtree-left prev) tree)
|
|
(rtree-set-left prev new-node))
|
|
(t
|
|
(rtree-set-right prev new-node))))
|
|
(t
|
|
(rtree-set-left tree new-node))))))
|
|
(setq tree nil))))
|
|
result))
|
|
|
|
(defun rtree-extract (tree)
|
|
"Convert TREE to range form."
|
|
(let (stack result)
|
|
(while (or stack
|
|
tree)
|
|
(if tree
|
|
(progn
|
|
(push tree stack)
|
|
(setq tree (rtree-right tree)))
|
|
(setq tree (pop stack))
|
|
(push (if (= (rtree-low tree)
|
|
(rtree-high tree))
|
|
(rtree-low tree)
|
|
(rtree-range tree))
|
|
result)
|
|
(setq tree (rtree-left tree))))
|
|
result))
|
|
|
|
(defun rtree-length (tree)
|
|
"Return the number of numbers stored in TREE."
|
|
(if (null tree)
|
|
0
|
|
(+ (rtree-length (rtree-left tree))
|
|
(1+ (- (rtree-high tree)
|
|
(rtree-low tree)))
|
|
(rtree-length (rtree-right tree)))))
|
|
|
|
(provide 'rtree)
|
|
|
|
;;; rtree.el ends here
|