1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-11-23 07:19:15 +00:00
emacs/lisp/progmodes/ebnf-otz.el
2007-01-21 03:53:13 +00:00

703 lines
19 KiB
EmacsLisp
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; ebnf-otz.el --- syntactic chart OpTimiZer
;; Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
;; Free Software Foundation, Inc.
;; Author: Vinicius Jose Latorre <viniciusjl@ig.com.br>
;; Maintainer: Vinicius Jose Latorre <viniciusjl@ig.com.br>
;; Keywords: wp, ebnf, PostScript
;; Version: 1.0
;; This file is part of GNU Emacs.
;; GNU Emacs is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;; Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
;; Boston, MA 02110-1301, USA.
;;; Commentary:
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;;
;; This is part of ebnf2ps package.
;;
;; This package defines an optimizer for ebnf2ps.
;;
;; See ebnf2ps.el for documentation.
;;
;;
;; Optimizations
;; -------------
;;
;;
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;;
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;;
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;;
;;
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;;
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;;
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;;
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
;;
;;
;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Code:
(require 'ebnf2ps)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defvar ebnf-empty-rule-list nil
"List of empty rule name.")
(defun ebnf-add-empty-rule-list (rule)
"Add empty RULE in `ebnf-empty-rule-list'."
(and ebnf-ignore-empty-rule
(eq (ebnf-node-kind (ebnf-node-production rule))
'ebnf-generate-empty)
(setq ebnf-empty-rule-list (cons (ebnf-node-name rule)
ebnf-empty-rule-list))))
(defun ebnf-otz-initialize ()
"Initialize optimizer."
(setq ebnf-empty-rule-list nil))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Eliminate empty rules
(defun ebnf-eliminate-empty-rules (syntax-list)
"Eliminate empty rules."
(while ebnf-empty-rule-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
(prod-list syntax-list)
new-list before)
(while prod-list
(ebnf-message-info "Eliminating empty rules")
(let ((rule (car prod-list)))
;; if any non-terminal pertains to ebnf-empty-rule-list
;; then eliminate non-terminal from rule
(if (ebnf-eliminate-empty rule)
(setq before prod-list)
;; eliminate empty rule from syntax-list
(setq new-list (cons (ebnf-node-name rule) new-list))
(if before
(setcdr before (cdr prod-list))
(setq syntax-list (cdr syntax-list)))))
(setq prod-list (cdr prod-list)))
(setq ebnf-empty-rule-list new-list)))
syntax-list)
;; [production width-func entry height width name production action]
;; [sequence width-func entry height width list]
;; [alternative width-func entry height width list]
;; [non-terminal width-func entry height width name default]
;; [empty width-func entry height width]
;; [terminal width-func entry height width name default]
;; [special width-func entry height width name default]
(defun ebnf-eliminate-empty (rule)
(let ((kind (ebnf-node-kind rule)))
(cond
;; non-terminal
((eq kind 'ebnf-generate-non-terminal)
(if (member (ebnf-node-name rule) ebnf-empty-rule-list)
nil
rule))
;; sequence
((eq kind 'ebnf-generate-sequence)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(ebnf-node-list rule header)
rule)))
;; alternative
((eq kind 'ebnf-generate-alternative)
(let ((seq (ebnf-node-list rule))
(header (ebnf-node-list rule))
before elt)
(while seq
(setq elt (car seq))
(if (ebnf-eliminate-empty elt)
(setq before seq)
(if before
(setcdr before (cdr seq))
(setq header (cdr header))))
(setq seq (cdr seq)))
(when header
(if (= (length header) 1)
(car header)
(ebnf-node-list rule header)
rule))))
;; production
((eq kind 'ebnf-generate-production)
(let ((prod (ebnf-eliminate-empty (ebnf-node-production rule))))
(when prod
(ebnf-node-production rule prod)
rule)))
;; terminal, special and empty
(t
rule)
)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Optimizations
;; *To be implemented*:
;; left recursion:
;; A = B | A C B | A C D. ==> A = B {C (B | D)}*.
;; right recursion:
;; A = B | C A. ==> A = {C}* B.
;; A = B | D | C A | E A. ==> A = { C | E }* ( B | D ).
;; optional:
;; A = B | C B. ==> A = [C] B.
;; A = B | B C. ==> A = B [C].
;; A = D | B D | B C D. ==> A = [B [C]] D.
;; *Already implemented*:
;; left recursion:
;; A = B | A C. ==> A = B {C}*.
;; A = B | A B. ==> A = {B}+.
;; A = | A B. ==> A = {B}*.
;; A = B | A C B. ==> A = {B || C}+.
;; A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; A = B | . ==> A = [B].
;; A = | B . ==> A = [B].
;; factorization:
;; A = B C | B D. ==> A = B (C | D).
;; A = C B | D B. ==> A = (C | D) B.
;; A = B C E | B D E. ==> A = B (C | D) E.
;; none:
;; A = B | C | . ==> A = B | C | .
;; A = B | C A D. ==> A = B | C A D.
(defun ebnf-optimize (syntax-list)
"Syntactic chart optimizer."
(if (not ebnf-optimize)
syntax-list
(let ((ebnf-total (length syntax-list))
(ebnf-nprod 0)
new)
(while syntax-list
(setq new (cons (ebnf-optimize1 (car syntax-list)) new)
syntax-list (cdr syntax-list)))
(nreverse new))))
;; left recursion:
;; 1. A = B | A C. ==> A = B {C}*.
;; 2. A = B | A B. ==> A = {B}+.
;; 3. A = | A B. ==> A = {B}*.
;; 4. A = B | A C B. ==> A = {B || C}+.
;; 5. A = B | D | A C | A E. ==> A = ( B | D ) { C | E }*.
;; optional:
;; 6. A = B | . ==> A = [B].
;; 7. A = | B . ==> A = [B].
;; factorization:
;; 8. A = B C | B D. ==> A = B (C | D).
;; 9. A = C B | D B. ==> A = (C | D) B.
;; 10. A = B C E | B D E. ==> A = B (C | D) E.
(defun ebnf-optimize1 (prod)
(ebnf-message-info "Optimizing syntactic chart")
(let ((production (ebnf-node-production prod)))
(and (eq (ebnf-node-kind production) 'ebnf-generate-alternative)
(let* ((hlist (ebnf-split-header-prefix
(ebnf-node-list production)
(ebnf-node-name prod)))
(nlist (car hlist))
(zlist (cdr hlist))
(elist (ebnf-split-header-suffix nlist zlist)))
(ebnf-node-production
prod
(cond
;; cases 2., 4.
(elist
(and (eq elist t)
(setq elist nil))
(setq elist (or (ebnf-prefix-suffix elist)
elist))
(let* ((nl (ebnf-extract-empty nlist))
(el (or (ebnf-prefix-suffix (cdr nl))
(ebnf-create-alternative (cdr nl)))))
(if (car nl)
(ebnf-make-zero-or-more el elist)
(ebnf-make-one-or-more el elist))))
;; cases 1., 3., 5.
(zlist
(let* ((xlist (cdr (ebnf-extract-empty zlist)))
(znode (ebnf-make-zero-or-more
(or (ebnf-prefix-suffix xlist)
(ebnf-create-alternative xlist))))
(nnode (ebnf-map-list-to-optional nlist)))
(and nnode
(setq nlist (list nnode)))
(if (or (null nlist)
(and (= (length nlist) 1)
(eq (ebnf-node-kind (car nlist))
'ebnf-generate-empty)))
znode
(ebnf-make-sequence
(list (or (ebnf-prefix-suffix nlist)
(ebnf-create-alternative nlist))
znode)))))
;; cases 6., 7.
((ebnf-map-node-to-optional production)
)
;; cases 8., 9., 10.
((ebnf-prefix-suffix nlist)
)
;; none
(t
production)
))))
prod))
(defun ebnf-split-header-prefix (node-list header)
(let* ((hlist (ebnf-split-header-prefix1 node-list header))
(nlist (car hlist))
zlist empty-p)
(while (setq hlist (cdr hlist))
(let ((elt (car hlist)))
(if (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq zlist (cons
(let ((seq (cdr (ebnf-node-list elt))))
(if (= (length seq) 1)
(car seq)
(ebnf-node-list elt seq)
elt))
zlist))
(setq empty-p t))))
(and empty-p
(setq zlist (cons (ebnf-make-empty)
zlist)))
(cons nlist (nreverse zlist))))
(defun ebnf-split-header-prefix1 (node-list header)
(let (hlist nlist)
(while node-list
(if (ebnf-node-equal-header (car node-list) header)
(setq hlist (cons (car node-list) hlist))
(setq nlist (cons (car node-list) nlist)))
(setq node-list (cdr node-list)))
(cons (nreverse nlist) (nreverse hlist))))
(defun ebnf-node-equal-header (node header)
(let ((kind (ebnf-node-kind node)))
(cond
((eq kind 'ebnf-generate-sequence)
(ebnf-node-equal-header (car (ebnf-node-list node)) header))
((eq kind 'ebnf-generate-non-terminal)
(string= (ebnf-node-name node) header))
(t
nil)
)))
(defun ebnf-map-node-to-optional (node)
(and (eq (ebnf-node-kind node) 'ebnf-generate-alternative)
(ebnf-map-list-to-optional (ebnf-node-list node))))
(defun ebnf-map-list-to-optional (nlist)
(and (= (length nlist) 2)
(let ((first (nth 0 nlist))
(second (nth 1 nlist)))
(cond
;; empty second
((eq (ebnf-node-kind first) 'ebnf-generate-empty)
(ebnf-make-optional second))
;; first empty
((eq (ebnf-node-kind second) 'ebnf-generate-empty)
(ebnf-make-optional first))
;; first second
(t
nil)
))))
(defun ebnf-extract-empty (elist)
(let ((now elist)
before empty-p)
(while now
(if (not (eq (ebnf-node-kind (car now)) 'ebnf-generate-empty))
(setq before now)
(setq empty-p t)
(if before
(setcdr before (cdr now))
(setq elist (cdr elist))))
(setq now (cdr now)))
(cons empty-p elist)))
(defun ebnf-split-header-suffix (nlist zlist)
(let (new empty-p)
(and (cond
((= (length nlist) 1)
(let ((ok t)
(elt (car nlist)))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 elt (car zlist))
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
((= (length nlist) (length zlist))
(let ((ok t))
(while (and ok zlist)
(setq ok (ebnf-split-header-suffix1 (car nlist) (car zlist))
nlist (cdr nlist)
zlist (cdr zlist))
(if (eq ok t)
(setq empty-p t)
(setq new (cons ok new))))
ok))
(t
nil)
)
(let* ((lis (ebnf-unique-list new))
(len (length lis)))
(cond
((zerop len)
t)
((= len 1)
(setq lis (car lis))
(if empty-p
(ebnf-make-optional lis)
lis))
(t
(and empty-p
(setq lis (cons (ebnf-make-empty) lis)))
(ebnf-create-alternative (nreverse lis)))
)))))
(defun ebnf-split-header-suffix1 (ne ze)
(cond
((eq (ebnf-node-kind ne) 'ebnf-generate-sequence)
(and (eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let ((nl (ebnf-node-list ne))
(zl (ebnf-node-list ze))
len z)
(and (>= (length zl) (length nl))
(let ((ok t))
(setq len (- (length zl) (length nl))
z (nthcdr len zl))
(while (and ok z)
(setq ok (ebnf-node-equal (car z) (car nl))
z (cdr z)
nl (cdr nl)))
ok)
(if (zerop len)
t
(setcdr (nthcdr (1- len) zl) nil)
ze)))))
((eq (ebnf-node-kind ze) 'ebnf-generate-sequence)
(let* ((zl (ebnf-node-list ze))
(len (length zl)))
(and (ebnf-node-equal ne (car (nthcdr (1- len) zl)))
(cond
((= len 1)
t)
((= len 2)
(car zl))
(t
(setcdr (nthcdr (- len 2) zl) nil)
ze)
))))
(t
(ebnf-node-equal ne ze))
))
(defun ebnf-prefix-suffix (lis)
(and lis (listp lis)
(let* ((prefix (ebnf-split-prefix lis))
(suffix (ebnf-split-suffix (cdr prefix)))
(middle (cdr suffix)))
(setq prefix (car prefix)
suffix (car suffix))
(and (or prefix suffix)
(ebnf-make-sequence
(nconc prefix
(and middle
(list (or (ebnf-map-list-to-optional middle)
(ebnf-create-alternative middle))))
suffix))))))
(defun ebnf-split-prefix (lis)
(let* ((len (length lis))
(tail lis)
(head (if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis))))
(ipre (1+ len)))
;; determine prefix length
(while (and (> ipre 0) (setq tail (cdr tail)))
(let ((cur head)
(this (if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail))))
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(setq ipre (min ipre i))))
(if (or (zerop ipre) (> ipre len))
;; no prefix at all
(cons nil lis)
(let* ((tail (nthcdr ipre head))
;; get prefix
(prefix (progn
(and tail
(setcdr (nthcdr (1- ipre) head) nil))
head))
empty-p before)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate prefix from lis based on ipre
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (nthcdr ipre (ebnf-node-list elt))))
(progn
(if (= (length rest) 1)
(setcar tail (car rest))
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons prefix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-split-suffix (lis)
(let* ((len (length lis))
(tail lis)
(head (nreverse
(if (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence)
(ebnf-node-list (car lis))
(list (car lis)))))
(isuf (1+ len)))
;; determine suffix length
(while (and (> isuf 0) (setq tail (cdr tail)))
(let* ((cur head)
(tlis (nreverse
(if (eq (ebnf-node-kind (car tail)) 'ebnf-generate-sequence)
(ebnf-node-list (car tail))
(list (car tail)))))
(this tlis)
(i 0))
(while (and cur this
(ebnf-node-equal (car cur) (car this)))
(setq cur (cdr cur)
this (cdr this)
i (1+ i)))
(nreverse tlis)
(setq isuf (min isuf i))))
(setq head (nreverse head))
(if (or (zerop isuf) (> isuf len))
;; no suffix at all
(cons nil lis)
(let* ((n (- (length head) isuf))
;; get suffix
(suffix (nthcdr n head))
(tail (and (> n 0)
(progn
(setcdr (nthcdr (1- n) head) nil)
head)))
before empty-p)
;; adjust first element
(if (or (not (eq (ebnf-node-kind (car lis)) 'ebnf-generate-sequence))
(null tail))
(setq lis (cdr lis)
tail lis
empty-p t)
(if (= (length tail) 1)
(setcar lis (car tail))
(ebnf-node-list (car lis) tail))
(setq tail (cdr lis)))
;; eliminate suffix from lis based on isuf
(while tail
(let ((elt (car tail))
rest)
(if (and (eq (ebnf-node-kind elt) 'ebnf-generate-sequence)
(setq rest (ebnf-node-list elt)
n (- (length rest) isuf))
(> n 0))
(progn
(if (= n 1)
(setcar tail (car rest))
(setcdr (nthcdr (1- n) rest) nil)
(ebnf-node-list elt rest))
(setq before tail))
(setq empty-p t)
(if before
(setcdr before (cdr tail))
(setq lis (cdr lis))))
(setq tail (cdr tail))))
(cons suffix (ebnf-unique-list
(if empty-p
(nconc lis (list (ebnf-make-empty)))
lis)))))))
(defun ebnf-unique-list (nlist)
(let ((current nlist)
before)
(while current
(let ((tail (cdr current))
(head (car current))
remove-p)
(while tail
(if (not (ebnf-node-equal head (car tail)))
(setq tail (cdr tail))
(setq remove-p t
tail nil)
(if before
(setcdr before (cdr current))
(setq nlist (cdr nlist)))))
(or remove-p
(setq before current))
(setq current (cdr current))))
nlist))
(defun ebnf-node-equal (A B)
(let ((kindA (ebnf-node-kind A))
(kindB (ebnf-node-kind B)))
(and (eq kindA kindB)
(cond
;; empty
((eq kindA 'ebnf-generate-empty)
t)
;; non-terminal, terminal, special
((memq kindA '(ebnf-generate-non-terminal
ebnf-generate-terminal
ebnf-generate-special))
(string= (ebnf-node-name A) (ebnf-node-name B)))
;; alternative, sequence
((memq kindA '(ebnf-generate-alternative ; any order
ebnf-generate-sequence)) ; order is important
(let ((listA (ebnf-node-list A))
(listB (ebnf-node-list B)))
(and (= (length listA) (length listB))
(let ((ok t))
(while (and ok listA)
(setq ok (ebnf-node-equal (car listA) (car listB))
listA (cdr listA)
listB (cdr listB)))
ok))))
;; production
((eq kindA 'ebnf-generate-production)
(and (string= (ebnf-node-name A) (ebnf-node-name B))
(ebnf-node-equal (ebnf-node-production A)
(ebnf-node-production B))))
;; otherwise
(t
nil)
))))
(defun ebnf-create-alternative (alt)
(if (> (length alt) 1)
(ebnf-make-alternative alt)
(car alt)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(provide 'ebnf-otz)
;;; arch-tag: 7ef2249d-9e8b-4bc1-999f-95d784690636
;;; ebnf-otz.el ends here