mirror of
https://git.FreeBSD.org/ports.git
synced 2024-11-23 00:43:28 +00:00
- Add a new port: math/R-cran-LearnBayes
LearnBayes contains a collection of functions helpful in learning the basic tenets of Bayesian statistical inference. It contains functions for summarizing basic one and two parameter posterior distributions and predictive distributions. It contains MCMC algorithms for summarizing posterior distributions defined by the user. It also contains functions for regression models, hierarchical models, Bayesian tests, and illustrations of Gibbs sampling. WWW: http://cran.r-project.org/web/packages/LearnBayes/ Feature safe: yes
This commit is contained in:
parent
5dac4c27d1
commit
38a5b84414
Notes:
svn2git
2021-03-31 03:12:20 +00:00
svn path=/head/; revision=307669
@ -8,6 +8,7 @@
|
||||
SUBDIR += R
|
||||
SUBDIR += R-cran-Formula
|
||||
SUBDIR += R-cran-KFAS
|
||||
SUBDIR += R-cran-LearnBayes
|
||||
SUBDIR += R-cran-MCMCpack
|
||||
SUBDIR += R-cran-RSvgDevice
|
||||
SUBDIR += R-cran-SuppDists
|
||||
|
18
math/R-cran-LearnBayes/Makefile
Normal file
18
math/R-cran-LearnBayes/Makefile
Normal file
@ -0,0 +1,18 @@
|
||||
# Created by: TAKATSU Tomonari <tota@FreeBSD.org>
|
||||
# $FreeBSD$
|
||||
|
||||
PORTNAME= LearnBayes
|
||||
PORTVERSION= 2.12
|
||||
CATEGORIES= math
|
||||
DISTNAME= ${PORTNAME}_${PORTVERSION}
|
||||
|
||||
MAINTAINER= tota@FreeBSD.org
|
||||
COMMENT= Functions for Learning Bayesian Inference
|
||||
|
||||
LICENSE= GPLv2 GPLv3
|
||||
LICENSE_COMB= dual
|
||||
|
||||
USE_R_MOD= yes
|
||||
R_MOD_AUTOPLIST= yes
|
||||
|
||||
.include <bsd.port.mk>
|
2
math/R-cran-LearnBayes/distinfo
Normal file
2
math/R-cran-LearnBayes/distinfo
Normal file
@ -0,0 +1,2 @@
|
||||
SHA256 (LearnBayes_2.12.tar.gz) = 5559d5fcceda7b695a62b88b8288a15367ea176b6d8769a8f811f0e9b8a3d37a
|
||||
SIZE (LearnBayes_2.12.tar.gz) = 88819
|
9
math/R-cran-LearnBayes/pkg-descr
Normal file
9
math/R-cran-LearnBayes/pkg-descr
Normal file
@ -0,0 +1,9 @@
|
||||
LearnBayes contains a collection of functions helpful in learning
|
||||
the basic tenets of Bayesian statistical inference. It contains
|
||||
functions for summarizing basic one and two parameter posterior
|
||||
distributions and predictive distributions. It contains MCMC
|
||||
algorithms for summarizing posterior distributions defined by the
|
||||
user. It also contains functions for regression models, hierarchical
|
||||
models, Bayesian tests, and illustrations of Gibbs sampling.
|
||||
|
||||
WWW: http://cran.r-project.org/web/packages/LearnBayes/
|
Loading…
Reference in New Issue
Block a user