1
0
mirror of https://git.FreeBSD.org/ports.git synced 2024-11-23 00:43:28 +00:00

Add libsvm 2.33, a library for Support Vector Machines.

PR:		32997
Submitted by:	Chia-Hsing Yu <davidyu@oio.cx>
This commit is contained in:
Pete Fritchman 2001-12-19 03:44:59 +00:00
parent 01dec72133
commit ecefb5ebe9
Notes: svn2git 2021-03-31 03:12:20 +00:00
svn path=/head/; revision=51781
7 changed files with 70 additions and 0 deletions

View File

@ -3,6 +3,7 @@
SUBDIR += chemtool
SUBDIR += clhep
SUBDIR += libsvm
SUBDIR += mpqc
SUBDIR += xmakemol

22
science/libsvm/Makefile Normal file
View File

@ -0,0 +1,22 @@
# New ports collection Makefile for: libsvm
# Date created: Oct 28 2001
# Whom: Chia-Hsing Yu <davidyu@oio.cx>
#
# $FreeBSD$
#
PORTNAME= libsvm
PORTVERSION= 2.33
CATEGORIES= science math
MASTER_SITES= http://www.csie.ntu.edu.tw/~cjlin/libsvm/
MAINTAINER= davidyu@oio.cx
post-install:
.if !defined(NOPORTDOCS)
@${MKDIR} ${DOCSDIR}
${INSTALL_DATA} ${WRKSRC}/README ${PREFIX}/share/doc/libsvm
${INSTALL_DATA} ${WRKSRC}/COPYRIGHT ${PREFIX}/share/doc/libsvm
.endif
.include <bsd.port.mk>

1
science/libsvm/distinfo Normal file
View File

@ -0,0 +1 @@
MD5 (libsvm-2.33.tar.gz) = 7a8a37463ef2fc95e8f85a3e2d7f1a26

View File

@ -0,0 +1,20 @@
$FreeBSD$
--- Makefile.orig Sat Sep 22 11:04:16 2001
+++ Makefile Tue Dec 18 22:39:11 2001
@@ -1,5 +1,5 @@
-CXXC = g++
-CFLAGS = -Wall -O3 -g
+CXXC = ${CXX}
+CFLAGS += -g
all: svm-train svm-predict svm-scale
@@ -13,3 +13,7 @@
$(CXXC) $(CFLAGS) -c svm.cpp
clean:
rm -f *~ svm.o svm-train svm-predict svm-scale
+
+install:
+ install -d ${PREFIX}/bin/
+ install -s -c -m 755 svm-train svm-predict svm-scale ${PREFIX}/bin/

View File

@ -0,0 +1 @@
A library for Support Vector Machines

19
science/libsvm/pkg-descr Normal file
View File

@ -0,0 +1,19 @@
LIBSVM is an integrated software for support vector classification, (C-SVC,
nu-SVC ), regression (epsilon-SVR, nu-SVR) and distribution estimation
(one-class SVM ). It supports multi-class classification. The basic algorithm
is a simplification of both SMO by Platt and SVMLight by Joachims. It is also
a simplification of the modification 2 of SMO by Keerthi et al.
Our goal is to help users from other fields to easily use SVM as a tool.
LIBSVM provides a simple interface where users can easily link it with their
own programs. Main features of LIBSVM include
Different SVM formulations
Efficient multi-class classification
Cross validation for model selection
Weighted SVM for unbalanced data
Both C++ and Java sources
GUI demonstrating SVM classification and regression
WWW: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Author: Chih-Chung Chang and Chih-Jen Lin <cjlin@csie.ntu.edu.tw>

6
science/libsvm/pkg-plist Normal file
View File

@ -0,0 +1,6 @@
bin/svm-predict
bin/svm-scale
bin/svm-train
%%PORTDOCS%%share/doc/libsvm/README
%%PORTDOCS%%share/doc/libsvm/COPYRIGHT
%%PORTDOCS%%@dirrm share/doc/libsvm