diff --git a/sys/conf/files.pc98 b/sys/conf/files.pc98 index bc2a1c847d49..be67ce42a261 100644 --- a/sys/conf/files.pc98 +++ b/sys/conf/files.pc98 @@ -149,6 +149,7 @@ i386/i386/initcpu.c standard i386/i386/io.c optional io i386/i386/k6_mem.c optional mem i386/i386/locore.s standard no-obj +i386/i386/machdep.c standard i386/i386/mem.c optional mem i386/i386/minidump_machdep.c standard i386/i386/mp_clock.c optional smp @@ -237,7 +238,6 @@ pc98/pc98/busiosubr.c standard pc98/pc98/canbepm.c optional canbepm pc98/pc98/canbus.c optional canbus pc98/pc98/canbus_if.m optional canbus -pc98/pc98/machdep.c standard pc98/pc98/pc98_machdep.c standard # # x86 shared code between IA32, AMD64 and PC98 architectures diff --git a/sys/i386/i386/machdep.c b/sys/i386/i386/machdep.c index 8892c5656ca7..34b147dcc5fd 100644 --- a/sys/i386/i386/machdep.c +++ b/sys/i386/i386/machdep.c @@ -109,7 +109,11 @@ __FBSDID("$FreeBSD$"); #include #endif +#ifdef PC98 +#include +#else #include +#endif #include @@ -204,6 +208,14 @@ SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); int _udatasel, _ucodesel; u_int basemem; +#ifdef PC98 +int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */ +int need_post_dma_flush; /* If 1, use invd after DMA transfer. */ + +static int ispc98 = 1; +SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, ""); +#endif + int cold = 1; #ifdef COMPAT_43 @@ -259,7 +271,8 @@ cpu_startup(dummy) { uintmax_t memsize; char *sysenv; - + +#ifndef PC98 /* * On MacBooks, we need to disallow the legacy USB circuit to * generate an SMI# because this can cause several problems, @@ -285,6 +298,7 @@ cpu_startup(dummy) } freeenv(sysenv); } +#endif /* !PC98 */ /* * Good {morning,afternoon,evening,night}. @@ -1235,6 +1249,7 @@ SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait, #define STATE_MWAIT 0x1 #define STATE_SLEEPING 0x2 +#ifndef PC98 static void cpu_idle_acpi(sbintime_t sbt) { @@ -1253,6 +1268,7 @@ cpu_idle_acpi(sbintime_t sbt) __asm __volatile("sti; hlt"); *state = STATE_RUNNING; } +#endif /* !PC98 */ #ifndef XEN static void @@ -1370,7 +1386,7 @@ cpu_probe_amdc1e(void) } } -#ifdef XEN +#if defined(PC98) || defined(XEN) void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt; #else void (*cpu_idle_fn)(sbintime_t) = cpu_idle_acpi; @@ -1458,7 +1474,9 @@ struct { { cpu_idle_spin, "spin" }, { cpu_idle_mwait, "mwait" }, { cpu_idle_hlt, "hlt" }, +#ifndef PC98 { cpu_idle_acpi, "acpi" }, +#endif { NULL, NULL } }; @@ -1475,9 +1493,11 @@ idle_sysctl_available(SYSCTL_HANDLER_ARGS) if (strstr(idle_tbl[i].id_name, "mwait") && (cpu_feature2 & CPUID2_MON) == 0) continue; +#ifndef PC98 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; +#endif p += sprintf(p, "%s%s", p != avail ? ", " : "", idle_tbl[i].id_name); } @@ -1512,9 +1532,11 @@ idle_sysctl(SYSCTL_HANDLER_ARGS) if (strstr(idle_tbl[i].id_name, "mwait") && (cpu_feature2 & CPUID2_MON) == 0) continue; +#ifndef PC98 if (strcmp(idle_tbl[i].id_name, "acpi") == 0 && cpu_idle_hook == NULL) continue; +#endif if (strcmp(idle_tbl[i].id_name, buf)) continue; cpu_idle_fn = idle_tbl[i].id_fn; @@ -2000,7 +2022,7 @@ sdtossd(sd, ssd) ssd->ssd_gran = sd->sd_gran; } -#ifndef XEN +#if !defined(PC98) && !defined(XEN) static int add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap, int *physmap_idxp) @@ -2107,7 +2129,9 @@ add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap, if (!add_smap_entry(smap, physmap, physmap_idxp)) break; } +#endif /* !PC98 && !XEN */ +#ifndef XEN static void basemem_setup(void) { @@ -2155,7 +2179,7 @@ basemem_setup(void) for (i = basemem / 4; i < 160; i++) pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U; } -#endif +#endif /* !XEN */ /* * Populate the (physmap) array with base/bound pairs describing the @@ -2170,6 +2194,271 @@ basemem_setup(void) * * XXX first should be vm_paddr_t. */ +#ifdef PC98 +static void +getmemsize(int first) +{ + int off, physmap_idx, pa_indx, da_indx; + u_long physmem_tunable, memtest; + vm_paddr_t physmap[PHYSMAP_SIZE]; + pt_entry_t *pte; + quad_t dcons_addr, dcons_size; + int i; + int pg_n; + u_int extmem; + u_int under16; + vm_paddr_t pa; + + bzero(physmap, sizeof(physmap)); + + /* XXX - some of EPSON machines can't use PG_N */ + pg_n = PG_N; + if (pc98_machine_type & M_EPSON_PC98) { + switch (epson_machine_id) { +#ifdef WB_CACHE + default: +#endif + case EPSON_PC486_HX: + case EPSON_PC486_HG: + case EPSON_PC486_HA: + pg_n = 0; + break; + } + } + + under16 = pc98_getmemsize(&basemem, &extmem); + basemem_setup(); + + physmap[0] = 0; + physmap[1] = basemem * 1024; + physmap_idx = 2; + physmap[physmap_idx] = 0x100000; + physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024; + + /* + * Now, physmap contains a map of physical memory. + */ + +#ifdef SMP + /* make hole for AP bootstrap code */ + physmap[1] = mp_bootaddress(physmap[1]); +#endif + + /* + * Maxmem isn't the "maximum memory", it's one larger than the + * highest page of the physical address space. It should be + * called something like "Maxphyspage". We may adjust this + * based on ``hw.physmem'' and the results of the memory test. + */ + Maxmem = atop(physmap[physmap_idx + 1]); + +#ifdef MAXMEM + Maxmem = MAXMEM / 4; +#endif + + if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable)) + Maxmem = atop(physmem_tunable); + + /* + * By default keep the memtest enabled. Use a general name so that + * one could eventually do more with the code than just disable it. + */ + memtest = 1; + TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); + + if (atop(physmap[physmap_idx + 1]) != Maxmem && + (boothowto & RB_VERBOSE)) + printf("Physical memory use set to %ldK\n", Maxmem * 4); + + /* + * If Maxmem has been increased beyond what the system has detected, + * extend the last memory segment to the new limit. + */ + if (atop(physmap[physmap_idx + 1]) < Maxmem) + physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem); + + /* + * We need to divide chunk if Maxmem is larger than 16MB and + * under 16MB area is not full of memory. + * (1) system area (15-16MB region) is cut off + * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY") + */ + if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) { + /* 15M - 16M region is cut off, so need to divide chunk */ + physmap[physmap_idx + 1] = under16 * 1024; + physmap_idx += 2; + physmap[physmap_idx] = 0x1000000; + physmap[physmap_idx + 1] = physmap[2] + extmem * 1024; + } + + /* call pmap initialization to make new kernel address space */ + pmap_bootstrap(first); + + /* + * Size up each available chunk of physical memory. + */ + physmap[0] = PAGE_SIZE; /* mask off page 0 */ + pa_indx = 0; + da_indx = 1; + phys_avail[pa_indx++] = physmap[0]; + phys_avail[pa_indx] = physmap[0]; + dump_avail[da_indx] = physmap[0]; + pte = CMAP3; + + /* + * Get dcons buffer address + */ + if (getenv_quad("dcons.addr", &dcons_addr) == 0 || + getenv_quad("dcons.size", &dcons_size) == 0) + dcons_addr = 0; + + /* + * physmap is in bytes, so when converting to page boundaries, + * round up the start address and round down the end address. + */ + for (i = 0; i <= physmap_idx; i += 2) { + vm_paddr_t end; + + end = ptoa((vm_paddr_t)Maxmem); + if (physmap[i + 1] < end) + end = trunc_page(physmap[i + 1]); + for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { + int tmp, page_bad, full; + int *ptr = (int *)CADDR3; + + full = FALSE; + /* + * block out kernel memory as not available. + */ + if (pa >= KERNLOAD && pa < first) + goto do_dump_avail; + + /* + * block out dcons buffer + */ + if (dcons_addr > 0 + && pa >= trunc_page(dcons_addr) + && pa < dcons_addr + dcons_size) + goto do_dump_avail; + + page_bad = FALSE; + if (memtest == 0) + goto skip_memtest; + + /* + * map page into kernel: valid, read/write,non-cacheable + */ + *pte = pa | PG_V | PG_RW | pg_n; + invltlb(); + + tmp = *(int *)ptr; + /* + * Test for alternating 1's and 0's + */ + *(volatile int *)ptr = 0xaaaaaaaa; + if (*(volatile int *)ptr != 0xaaaaaaaa) + page_bad = TRUE; + /* + * Test for alternating 0's and 1's + */ + *(volatile int *)ptr = 0x55555555; + if (*(volatile int *)ptr != 0x55555555) + page_bad = TRUE; + /* + * Test for all 1's + */ + *(volatile int *)ptr = 0xffffffff; + if (*(volatile int *)ptr != 0xffffffff) + page_bad = TRUE; + /* + * Test for all 0's + */ + *(volatile int *)ptr = 0x0; + if (*(volatile int *)ptr != 0x0) + page_bad = TRUE; + /* + * Restore original value. + */ + *(int *)ptr = tmp; + +skip_memtest: + /* + * Adjust array of valid/good pages. + */ + if (page_bad == TRUE) + continue; + /* + * If this good page is a continuation of the + * previous set of good pages, then just increase + * the end pointer. Otherwise start a new chunk. + * Note that "end" points one higher than end, + * making the range >= start and < end. + * If we're also doing a speculative memory + * test and we at or past the end, bump up Maxmem + * so that we keep going. The first bad page + * will terminate the loop. + */ + if (phys_avail[pa_indx] == pa) { + phys_avail[pa_indx] += PAGE_SIZE; + } else { + pa_indx++; + if (pa_indx == PHYS_AVAIL_ARRAY_END) { + printf( + "Too many holes in the physical address space, giving up\n"); + pa_indx--; + full = TRUE; + goto do_dump_avail; + } + phys_avail[pa_indx++] = pa; /* start */ + phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ + } + physmem++; +do_dump_avail: + if (dump_avail[da_indx] == pa) { + dump_avail[da_indx] += PAGE_SIZE; + } else { + da_indx++; + if (da_indx == DUMP_AVAIL_ARRAY_END) { + da_indx--; + goto do_next; + } + dump_avail[da_indx++] = pa; /* start */ + dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ + } +do_next: + if (full) + break; + } + } + *pte = 0; + invltlb(); + + /* + * XXX + * The last chunk must contain at least one page plus the message + * buffer to avoid complicating other code (message buffer address + * calculation, etc.). + */ + while (phys_avail[pa_indx - 1] + PAGE_SIZE + + round_page(msgbufsize) >= phys_avail[pa_indx]) { + physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); + phys_avail[pa_indx--] = 0; + phys_avail[pa_indx--] = 0; + } + + Maxmem = atop(phys_avail[pa_indx]); + + /* Trim off space for the message buffer. */ + phys_avail[pa_indx] -= round_page(msgbufsize); + + /* Map the message buffer. */ + for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE) + pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] + + off); + + PT_UPDATES_FLUSH(); +} +#else /* PC98 */ static void getmemsize(int first) { @@ -2567,6 +2856,7 @@ getmemsize(int first) PT_UPDATES_FLUSH(); } +#endif /* PC98 */ #ifdef XEN #define MTOPSIZE (1<<(14 + PAGE_SHIFT)) @@ -2830,6 +3120,13 @@ init386(first) */ proc_linkup0(&proc0, &thread0); +#ifdef PC98 + /* + * Initialize DMAC + */ + pc98_init_dmac(); +#endif + metadata_missing = 0; if (bootinfo.bi_modulep) { preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE; @@ -2993,7 +3290,9 @@ init386(first) #ifdef DEV_ISA #ifdef DEV_ATPIC +#ifndef PC98 elcr_probe(); +#endif atpic_startup(); #else /* Reset and mask the atpics and leave them shut down. */ @@ -3027,6 +3326,9 @@ init386(first) setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); initializecpu(); /* Initialize CPU registers */ +#ifdef PC98 + initializecpucache(); +#endif /* make an initial tss so cpu can get interrupt stack on syscall! */ /* Note: -16 is so we can grow the trapframe if we came from vm86 */ @@ -3114,6 +3416,7 @@ cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) pcpu->pc_acpi_id = 0xffffffff; } +#ifndef PC98 static int smap_sysctl_handler(SYSCTL_HANDLER_ARGS) { @@ -3149,6 +3452,7 @@ smap_sysctl_handler(SYSCTL_HANDLER_ARGS) } SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE|CTLFLAG_RD, NULL, 0, smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data"); +#endif /* !PC98 */ void spinlock_enter(void) diff --git a/sys/pc98/pc98/machdep.c b/sys/pc98/pc98/machdep.c deleted file mode 100644 index 848af79928b3..000000000000 --- a/sys/pc98/pc98/machdep.c +++ /dev/null @@ -1,2999 +0,0 @@ -/*- - * Copyright (c) 1992 Terrence R. Lambert. - * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. - * All rights reserved. - * - * This code is derived from software contributed to Berkeley by - * William Jolitz. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. All advertising materials mentioning features or use of this software - * must display the following acknowledgement: - * This product includes software developed by the University of - * California, Berkeley and its contributors. - * 4. Neither the name of the University nor the names of its contributors - * may be used to endorse or promote products derived from this software - * without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND - * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE - * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL - * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS - * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) - * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT - * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY - * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF - * SUCH DAMAGE. - * - * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 - */ - -#include -__FBSDID("$FreeBSD$"); - -#include "opt_apic.h" -#include "opt_atpic.h" -#include "opt_compat.h" -#include "opt_cpu.h" -#include "opt_ddb.h" -#include "opt_inet.h" -#include "opt_isa.h" -#include "opt_kstack_pages.h" -#include "opt_maxmem.h" -#include "opt_mp_watchdog.h" -#include "opt_npx.h" -#include "opt_perfmon.h" - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#ifdef SMP -#include -#endif -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include -#include -#include - -#ifdef DDB -#ifndef KDB -#error KDB must be enabled in order for DDB to work! -#endif -#include -#include -#endif - -#include - -#include - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#ifdef PERFMON -#include -#endif -#ifdef SMP -#include -#endif - -#ifdef DEV_APIC -#include -#endif - -#ifdef DEV_ISA -#include -#endif - -/* Sanity check for __curthread() */ -CTASSERT(offsetof(struct pcpu, pc_curthread) == 0); - -extern void init386(int first); -extern void dblfault_handler(void); - -#define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) -#define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) - -#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU) -#define CPU_ENABLE_SSE -#endif - -static void cpu_startup(void *); -static void fpstate_drop(struct thread *td); -static void get_fpcontext(struct thread *td, mcontext_t *mcp); -static int set_fpcontext(struct thread *td, const mcontext_t *mcp); -#ifdef CPU_ENABLE_SSE -static void set_fpregs_xmm(struct save87 *, struct savexmm *); -static void fill_fpregs_xmm(struct savexmm *, struct save87 *); -#endif /* CPU_ENABLE_SSE */ -SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); - -int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */ -int need_post_dma_flush; /* If 1, use invd after DMA transfer. */ - -int _udatasel, _ucodesel; -u_int basemem; - -static int ispc98 = 1; -SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, ""); - -int cold = 1; - -#ifdef COMPAT_43 -static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask); -#endif -#ifdef COMPAT_FREEBSD4 -static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask); -#endif - -long Maxmem = 0; -long realmem = 0; - -/* - * The number of PHYSMAP entries must be one less than the number of - * PHYSSEG entries because the PHYSMAP entry that spans the largest - * physical address that is accessible by ISA DMA is split into two - * PHYSSEG entries. - */ -#define PHYSMAP_SIZE (2 * (VM_PHYSSEG_MAX - 1)) - -vm_paddr_t phys_avail[PHYSMAP_SIZE + 2]; -vm_paddr_t dump_avail[PHYSMAP_SIZE + 2]; - -/* must be 2 less so 0 0 can signal end of chunks */ -#define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(phys_avail[0])) - 2) -#define DUMP_AVAIL_ARRAY_END ((sizeof(dump_avail) / sizeof(dump_avail[0])) - 2) - -struct kva_md_info kmi; - -static struct trapframe proc0_tf; -struct pcpu __pcpu[MAXCPU]; - -struct mtx icu_lock; - -struct mem_range_softc mem_range_softc; - - /* Default init_ops implementation. */ - struct init_ops init_ops = { - .early_clock_source_init = i8254_init, - .early_delay = i8254_delay, - }; - -static void -cpu_startup(dummy) - void *dummy; -{ - uintmax_t memsize; - - /* - * Good {morning,afternoon,evening,night}. - */ - startrtclock(); - printcpuinfo(); - panicifcpuunsupported(); -#ifdef PERFMON - perfmon_init(); -#endif - realmem = Maxmem; - - /* - * Display physical memory. - */ - memsize = ptoa((uintmax_t)Maxmem); - printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20); - - /* - * Display any holes after the first chunk of extended memory. - */ - if (bootverbose) { - int indx; - - printf("Physical memory chunk(s):\n"); - for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { - vm_paddr_t size; - - size = phys_avail[indx + 1] - phys_avail[indx]; - printf( - "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", - (uintmax_t)phys_avail[indx], - (uintmax_t)phys_avail[indx + 1] - 1, - (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); - } - } - - vm_ksubmap_init(&kmi); - - printf("avail memory = %ju (%ju MB)\n", - ptoa((uintmax_t)vm_cnt.v_free_count), - ptoa((uintmax_t)vm_cnt.v_free_count) / 1048576); - - /* - * Set up buffers, so they can be used to read disk labels. - */ - bufinit(); - vm_pager_bufferinit(); - cpu_setregs(); -} - -/* - * Send an interrupt to process. - * - * Stack is set up to allow sigcode stored - * at top to call routine, followed by kcall - * to sigreturn routine below. After sigreturn - * resets the signal mask, the stack, and the - * frame pointer, it returns to the user - * specified pc, psl. - */ -#ifdef COMPAT_43 -static void -osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) -{ - struct osigframe sf, *fp; - struct proc *p; - struct thread *td; - struct sigacts *psp; - struct trapframe *regs; - int sig; - int oonstack; - - td = curthread; - p = td->td_proc; - PROC_LOCK_ASSERT(p, MA_OWNED); - sig = ksi->ksi_signo; - psp = p->p_sigacts; - mtx_assert(&psp->ps_mtx, MA_OWNED); - regs = td->td_frame; - oonstack = sigonstack(regs->tf_esp); - - /* Allocate space for the signal handler context. */ - if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && - SIGISMEMBER(psp->ps_sigonstack, sig)) { - fp = (struct osigframe *)(td->td_sigstk.ss_sp + - td->td_sigstk.ss_size - sizeof(struct osigframe)); -#if defined(COMPAT_43) - td->td_sigstk.ss_flags |= SS_ONSTACK; -#endif - } else - fp = (struct osigframe *)regs->tf_esp - 1; - - /* Translate the signal if appropriate. */ - if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) - sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; - - /* Build the argument list for the signal handler. */ - sf.sf_signum = sig; - sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc; - bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo)); - if (SIGISMEMBER(psp->ps_siginfo, sig)) { - /* Signal handler installed with SA_SIGINFO. */ - sf.sf_arg2 = (register_t)&fp->sf_siginfo; - sf.sf_siginfo.si_signo = sig; - sf.sf_siginfo.si_code = ksi->ksi_code; - sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher; - sf.sf_addr = 0; - } else { - /* Old FreeBSD-style arguments. */ - sf.sf_arg2 = ksi->ksi_code; - sf.sf_addr = (register_t)ksi->ksi_addr; - sf.sf_ahu.sf_handler = catcher; - } - mtx_unlock(&psp->ps_mtx); - PROC_UNLOCK(p); - - /* Save most if not all of trap frame. */ - sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax; - sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx; - sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx; - sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx; - sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi; - sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi; - sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs; - sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds; - sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss; - sf.sf_siginfo.si_sc.sc_es = regs->tf_es; - sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs; - sf.sf_siginfo.si_sc.sc_gs = rgs(); - sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp; - - /* Build the signal context to be used by osigreturn(). */ - sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0; - SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask); - sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp; - sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp; - sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip; - sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags; - sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno; - sf.sf_siginfo.si_sc.sc_err = regs->tf_err; - - /* - * If we're a vm86 process, we want to save the segment registers. - * We also change eflags to be our emulated eflags, not the actual - * eflags. - */ - if (regs->tf_eflags & PSL_VM) { - /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */ - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; - - sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs; - sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs; - sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es; - sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds; - - if (vm86->vm86_has_vme == 0) - sf.sf_siginfo.si_sc.sc_ps = - (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | - (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); - - /* See sendsig() for comments. */ - tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); - } - - /* - * Copy the sigframe out to the user's stack. - */ - if (copyout(&sf, fp, sizeof(*fp)) != 0) { -#ifdef DEBUG - printf("process %ld has trashed its stack\n", (long)p->p_pid); -#endif - PROC_LOCK(p); - sigexit(td, SIGILL); - } - - regs->tf_esp = (int)fp; - if (p->p_sysent->sv_sigcode_base != 0) { - regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode - - szosigcode; - } else { - /* a.out sysentvec does not use shared page */ - regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode; - } - regs->tf_eflags &= ~(PSL_T | PSL_D); - regs->tf_cs = _ucodesel; - regs->tf_ds = _udatasel; - regs->tf_es = _udatasel; - regs->tf_fs = _udatasel; - load_gs(_udatasel); - regs->tf_ss = _udatasel; - PROC_LOCK(p); - mtx_lock(&psp->ps_mtx); -} -#endif /* COMPAT_43 */ - -#ifdef COMPAT_FREEBSD4 -static void -freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) -{ - struct sigframe4 sf, *sfp; - struct proc *p; - struct thread *td; - struct sigacts *psp; - struct trapframe *regs; - int sig; - int oonstack; - - td = curthread; - p = td->td_proc; - PROC_LOCK_ASSERT(p, MA_OWNED); - sig = ksi->ksi_signo; - psp = p->p_sigacts; - mtx_assert(&psp->ps_mtx, MA_OWNED); - regs = td->td_frame; - oonstack = sigonstack(regs->tf_esp); - - /* Save user context. */ - bzero(&sf, sizeof(sf)); - sf.sf_uc.uc_sigmask = *mask; - sf.sf_uc.uc_stack = td->td_sigstk; - sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) - ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; - sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; - sf.sf_uc.uc_mcontext.mc_gs = rgs(); - bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs)); - bzero(sf.sf_uc.uc_mcontext.mc_fpregs, - sizeof(sf.sf_uc.uc_mcontext.mc_fpregs)); - bzero(sf.sf_uc.uc_mcontext.__spare__, - sizeof(sf.sf_uc.uc_mcontext.__spare__)); - bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__)); - - /* Allocate space for the signal handler context. */ - if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && - SIGISMEMBER(psp->ps_sigonstack, sig)) { - sfp = (struct sigframe4 *)(td->td_sigstk.ss_sp + - td->td_sigstk.ss_size - sizeof(struct sigframe4)); -#if defined(COMPAT_43) - td->td_sigstk.ss_flags |= SS_ONSTACK; -#endif - } else - sfp = (struct sigframe4 *)regs->tf_esp - 1; - - /* Translate the signal if appropriate. */ - if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) - sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; - - /* Build the argument list for the signal handler. */ - sf.sf_signum = sig; - sf.sf_ucontext = (register_t)&sfp->sf_uc; - bzero(&sf.sf_si, sizeof(sf.sf_si)); - if (SIGISMEMBER(psp->ps_siginfo, sig)) { - /* Signal handler installed with SA_SIGINFO. */ - sf.sf_siginfo = (register_t)&sfp->sf_si; - sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; - - /* Fill in POSIX parts */ - sf.sf_si.si_signo = sig; - sf.sf_si.si_code = ksi->ksi_code; - sf.sf_si.si_addr = ksi->ksi_addr; - } else { - /* Old FreeBSD-style arguments. */ - sf.sf_siginfo = ksi->ksi_code; - sf.sf_addr = (register_t)ksi->ksi_addr; - sf.sf_ahu.sf_handler = catcher; - } - mtx_unlock(&psp->ps_mtx); - PROC_UNLOCK(p); - - /* - * If we're a vm86 process, we want to save the segment registers. - * We also change eflags to be our emulated eflags, not the actual - * eflags. - */ - if (regs->tf_eflags & PSL_VM) { - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; - - sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs; - sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs; - sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es; - sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds; - - if (vm86->vm86_has_vme == 0) - sf.sf_uc.uc_mcontext.mc_eflags = - (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | - (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); - - /* - * Clear PSL_NT to inhibit T_TSSFLT faults on return from - * syscalls made by the signal handler. This just avoids - * wasting time for our lazy fixup of such faults. PSL_NT - * does nothing in vm86 mode, but vm86 programs can set it - * almost legitimately in probes for old cpu types. - */ - tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); - } - - /* - * Copy the sigframe out to the user's stack. - */ - if (copyout(&sf, sfp, sizeof(*sfp)) != 0) { -#ifdef DEBUG - printf("process %ld has trashed its stack\n", (long)p->p_pid); -#endif - PROC_LOCK(p); - sigexit(td, SIGILL); - } - - regs->tf_esp = (int)sfp; - regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode - - szfreebsd4_sigcode; - regs->tf_eflags &= ~(PSL_T | PSL_D); - regs->tf_cs = _ucodesel; - regs->tf_ds = _udatasel; - regs->tf_es = _udatasel; - regs->tf_fs = _udatasel; - regs->tf_ss = _udatasel; - PROC_LOCK(p); - mtx_lock(&psp->ps_mtx); -} -#endif /* COMPAT_FREEBSD4 */ - -void -sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) -{ - struct sigframe sf, *sfp; - struct proc *p; - struct thread *td; - struct sigacts *psp; - char *sp; - struct trapframe *regs; - struct segment_descriptor *sdp; - int sig; - int oonstack; - - td = curthread; - p = td->td_proc; - PROC_LOCK_ASSERT(p, MA_OWNED); - sig = ksi->ksi_signo; - psp = p->p_sigacts; - mtx_assert(&psp->ps_mtx, MA_OWNED); -#ifdef COMPAT_FREEBSD4 - if (SIGISMEMBER(psp->ps_freebsd4, sig)) { - freebsd4_sendsig(catcher, ksi, mask); - return; - } -#endif -#ifdef COMPAT_43 - if (SIGISMEMBER(psp->ps_osigset, sig)) { - osendsig(catcher, ksi, mask); - return; - } -#endif - regs = td->td_frame; - oonstack = sigonstack(regs->tf_esp); - - /* Save user context. */ - bzero(&sf, sizeof(sf)); - sf.sf_uc.uc_sigmask = *mask; - sf.sf_uc.uc_stack = td->td_sigstk; - sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) - ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; - sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; - sf.sf_uc.uc_mcontext.mc_gs = rgs(); - bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs)); - sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */ - get_fpcontext(td, &sf.sf_uc.uc_mcontext); - fpstate_drop(td); - /* - * Unconditionally fill the fsbase and gsbase into the mcontext. - */ - sdp = &td->td_pcb->pcb_fsd; - sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 | - sdp->sd_lobase; - sdp = &td->td_pcb->pcb_gsd; - sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 | - sdp->sd_lobase; - sf.sf_uc.uc_mcontext.mc_flags = 0; - bzero(sf.sf_uc.uc_mcontext.mc_spare2, - sizeof(sf.sf_uc.uc_mcontext.mc_spare2)); - bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__)); - - /* Allocate space for the signal handler context. */ - if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && - SIGISMEMBER(psp->ps_sigonstack, sig)) { - sp = td->td_sigstk.ss_sp + - td->td_sigstk.ss_size - sizeof(struct sigframe); -#if defined(COMPAT_43) - td->td_sigstk.ss_flags |= SS_ONSTACK; -#endif - } else - sp = (char *)regs->tf_esp - sizeof(struct sigframe); - /* Align to 16 bytes. */ - sfp = (struct sigframe *)((unsigned int)sp & ~0xF); - - /* Translate the signal if appropriate. */ - if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize) - sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; - - /* Build the argument list for the signal handler. */ - sf.sf_signum = sig; - sf.sf_ucontext = (register_t)&sfp->sf_uc; - bzero(&sf.sf_si, sizeof(sf.sf_si)); - if (SIGISMEMBER(psp->ps_siginfo, sig)) { - /* Signal handler installed with SA_SIGINFO. */ - sf.sf_siginfo = (register_t)&sfp->sf_si; - sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; - - /* Fill in POSIX parts */ - sf.sf_si = ksi->ksi_info; - sf.sf_si.si_signo = sig; /* maybe a translated signal */ - } else { - /* Old FreeBSD-style arguments. */ - sf.sf_siginfo = ksi->ksi_code; - sf.sf_addr = (register_t)ksi->ksi_addr; - sf.sf_ahu.sf_handler = catcher; - } - mtx_unlock(&psp->ps_mtx); - PROC_UNLOCK(p); - - /* - * If we're a vm86 process, we want to save the segment registers. - * We also change eflags to be our emulated eflags, not the actual - * eflags. - */ - if (regs->tf_eflags & PSL_VM) { - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; - - sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs; - sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs; - sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es; - sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds; - - if (vm86->vm86_has_vme == 0) - sf.sf_uc.uc_mcontext.mc_eflags = - (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | - (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); - - /* - * Clear PSL_NT to inhibit T_TSSFLT faults on return from - * syscalls made by the signal handler. This just avoids - * wasting time for our lazy fixup of such faults. PSL_NT - * does nothing in vm86 mode, but vm86 programs can set it - * almost legitimately in probes for old cpu types. - */ - tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); - } - - /* - * Copy the sigframe out to the user's stack. - */ - if (copyout(&sf, sfp, sizeof(*sfp)) != 0) { -#ifdef DEBUG - printf("process %ld has trashed its stack\n", (long)p->p_pid); -#endif - PROC_LOCK(p); - sigexit(td, SIGILL); - } - - regs->tf_esp = (int)sfp; - regs->tf_eip = p->p_sysent->sv_sigcode_base; - if (regs->tf_eip == 0) - regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode; - regs->tf_eflags &= ~(PSL_T | PSL_D); - regs->tf_cs = _ucodesel; - regs->tf_ds = _udatasel; - regs->tf_es = _udatasel; - regs->tf_fs = _udatasel; - regs->tf_ss = _udatasel; - PROC_LOCK(p); - mtx_lock(&psp->ps_mtx); -} - -/* - * System call to cleanup state after a signal - * has been taken. Reset signal mask and - * stack state from context left by sendsig (above). - * Return to previous pc and psl as specified by - * context left by sendsig. Check carefully to - * make sure that the user has not modified the - * state to gain improper privileges. - * - * MPSAFE - */ -#ifdef COMPAT_43 -int -osigreturn(td, uap) - struct thread *td; - struct osigreturn_args /* { - struct osigcontext *sigcntxp; - } */ *uap; -{ - struct osigcontext sc; - struct trapframe *regs; - struct osigcontext *scp; - int eflags, error; - ksiginfo_t ksi; - - regs = td->td_frame; - error = copyin(uap->sigcntxp, &sc, sizeof(sc)); - if (error != 0) - return (error); - scp = ≻ - eflags = scp->sc_ps; - if (eflags & PSL_VM) { - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86; - - /* - * if pcb_ext == 0 or vm86_inited == 0, the user hasn't - * set up the vm86 area, and we can't enter vm86 mode. - */ - if (td->td_pcb->pcb_ext == 0) - return (EINVAL); - vm86 = &td->td_pcb->pcb_ext->ext_vm86; - if (vm86->vm86_inited == 0) - return (EINVAL); - - /* Go back to user mode if both flags are set. */ - if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - } - - if (vm86->vm86_has_vme) { - eflags = (tf->tf_eflags & ~VME_USERCHANGE) | - (eflags & VME_USERCHANGE) | PSL_VM; - } else { - vm86->vm86_eflags = eflags; /* save VIF, VIP */ - eflags = (tf->tf_eflags & ~VM_USERCHANGE) | - (eflags & VM_USERCHANGE) | PSL_VM; - } - tf->tf_vm86_ds = scp->sc_ds; - tf->tf_vm86_es = scp->sc_es; - tf->tf_vm86_fs = scp->sc_fs; - tf->tf_vm86_gs = scp->sc_gs; - tf->tf_ds = _udatasel; - tf->tf_es = _udatasel; - tf->tf_fs = _udatasel; - } else { - /* - * Don't allow users to change privileged or reserved flags. - */ - if (!EFL_SECURE(eflags, regs->tf_eflags)) { - return (EINVAL); - } - - /* - * Don't allow users to load a valid privileged %cs. Let the - * hardware check for invalid selectors, excess privilege in - * other selectors, invalid %eip's and invalid %esp's. - */ - if (!CS_SECURE(scp->sc_cs)) { - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_trapno = T_PROTFLT; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - return (EINVAL); - } - regs->tf_ds = scp->sc_ds; - regs->tf_es = scp->sc_es; - regs->tf_fs = scp->sc_fs; - } - - /* Restore remaining registers. */ - regs->tf_eax = scp->sc_eax; - regs->tf_ebx = scp->sc_ebx; - regs->tf_ecx = scp->sc_ecx; - regs->tf_edx = scp->sc_edx; - regs->tf_esi = scp->sc_esi; - regs->tf_edi = scp->sc_edi; - regs->tf_cs = scp->sc_cs; - regs->tf_ss = scp->sc_ss; - regs->tf_isp = scp->sc_isp; - regs->tf_ebp = scp->sc_fp; - regs->tf_esp = scp->sc_sp; - regs->tf_eip = scp->sc_pc; - regs->tf_eflags = eflags; - -#if defined(COMPAT_43) - if (scp->sc_onstack & 1) - td->td_sigstk.ss_flags |= SS_ONSTACK; - else - td->td_sigstk.ss_flags &= ~SS_ONSTACK; -#endif - kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL, - SIGPROCMASK_OLD); - return (EJUSTRETURN); -} -#endif /* COMPAT_43 */ - -#ifdef COMPAT_FREEBSD4 -/* - * MPSAFE - */ -int -freebsd4_sigreturn(td, uap) - struct thread *td; - struct freebsd4_sigreturn_args /* { - const ucontext4 *sigcntxp; - } */ *uap; -{ - struct ucontext4 uc; - struct trapframe *regs; - struct ucontext4 *ucp; - int cs, eflags, error; - ksiginfo_t ksi; - - error = copyin(uap->sigcntxp, &uc, sizeof(uc)); - if (error != 0) - return (error); - ucp = &uc; - regs = td->td_frame; - eflags = ucp->uc_mcontext.mc_eflags; - if (eflags & PSL_VM) { - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86; - - /* - * if pcb_ext == 0 or vm86_inited == 0, the user hasn't - * set up the vm86 area, and we can't enter vm86 mode. - */ - if (td->td_pcb->pcb_ext == 0) - return (EINVAL); - vm86 = &td->td_pcb->pcb_ext->ext_vm86; - if (vm86->vm86_inited == 0) - return (EINVAL); - - /* Go back to user mode if both flags are set. */ - if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - } - if (vm86->vm86_has_vme) { - eflags = (tf->tf_eflags & ~VME_USERCHANGE) | - (eflags & VME_USERCHANGE) | PSL_VM; - } else { - vm86->vm86_eflags = eflags; /* save VIF, VIP */ - eflags = (tf->tf_eflags & ~VM_USERCHANGE) | - (eflags & VM_USERCHANGE) | PSL_VM; - } - bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe)); - tf->tf_eflags = eflags; - tf->tf_vm86_ds = tf->tf_ds; - tf->tf_vm86_es = tf->tf_es; - tf->tf_vm86_fs = tf->tf_fs; - tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs; - tf->tf_ds = _udatasel; - tf->tf_es = _udatasel; - tf->tf_fs = _udatasel; - } else { - /* - * Don't allow users to change privileged or reserved flags. - */ - if (!EFL_SECURE(eflags, regs->tf_eflags)) { - uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n", - td->td_proc->p_pid, td->td_name, eflags); - return (EINVAL); - } - - /* - * Don't allow users to load a valid privileged %cs. Let the - * hardware check for invalid selectors, excess privilege in - * other selectors, invalid %eip's and invalid %esp's. - */ - cs = ucp->uc_mcontext.mc_cs; - if (!CS_SECURE(cs)) { - uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n", - td->td_proc->p_pid, td->td_name, cs); - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_trapno = T_PROTFLT; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - return (EINVAL); - } - - bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs)); - } - -#if defined(COMPAT_43) - if (ucp->uc_mcontext.mc_onstack & 1) - td->td_sigstk.ss_flags |= SS_ONSTACK; - else - td->td_sigstk.ss_flags &= ~SS_ONSTACK; -#endif - kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); - return (EJUSTRETURN); -} -#endif /* COMPAT_FREEBSD4 */ - -/* - * MPSAFE - */ -int -sys_sigreturn(td, uap) - struct thread *td; - struct sigreturn_args /* { - const struct __ucontext *sigcntxp; - } */ *uap; -{ - ucontext_t uc; - struct trapframe *regs; - ucontext_t *ucp; - int cs, eflags, error, ret; - ksiginfo_t ksi; - - error = copyin(uap->sigcntxp, &uc, sizeof(uc)); - if (error != 0) - return (error); - ucp = &uc; - regs = td->td_frame; - eflags = ucp->uc_mcontext.mc_eflags; - if (eflags & PSL_VM) { - struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; - struct vm86_kernel *vm86; - - /* - * if pcb_ext == 0 or vm86_inited == 0, the user hasn't - * set up the vm86 area, and we can't enter vm86 mode. - */ - if (td->td_pcb->pcb_ext == 0) - return (EINVAL); - vm86 = &td->td_pcb->pcb_ext->ext_vm86; - if (vm86->vm86_inited == 0) - return (EINVAL); - - /* Go back to user mode if both flags are set. */ - if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - } - - if (vm86->vm86_has_vme) { - eflags = (tf->tf_eflags & ~VME_USERCHANGE) | - (eflags & VME_USERCHANGE) | PSL_VM; - } else { - vm86->vm86_eflags = eflags; /* save VIF, VIP */ - eflags = (tf->tf_eflags & ~VM_USERCHANGE) | - (eflags & VM_USERCHANGE) | PSL_VM; - } - bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe)); - tf->tf_eflags = eflags; - tf->tf_vm86_ds = tf->tf_ds; - tf->tf_vm86_es = tf->tf_es; - tf->tf_vm86_fs = tf->tf_fs; - tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs; - tf->tf_ds = _udatasel; - tf->tf_es = _udatasel; - tf->tf_fs = _udatasel; - } else { - /* - * Don't allow users to change privileged or reserved flags. - */ - if (!EFL_SECURE(eflags, regs->tf_eflags)) { - uprintf("pid %d (%s): sigreturn eflags = 0x%x\n", - td->td_proc->p_pid, td->td_name, eflags); - return (EINVAL); - } - - /* - * Don't allow users to load a valid privileged %cs. Let the - * hardware check for invalid selectors, excess privilege in - * other selectors, invalid %eip's and invalid %esp's. - */ - cs = ucp->uc_mcontext.mc_cs; - if (!CS_SECURE(cs)) { - uprintf("pid %d (%s): sigreturn cs = 0x%x\n", - td->td_proc->p_pid, td->td_name, cs); - ksiginfo_init_trap(&ksi); - ksi.ksi_signo = SIGBUS; - ksi.ksi_code = BUS_OBJERR; - ksi.ksi_trapno = T_PROTFLT; - ksi.ksi_addr = (void *)regs->tf_eip; - trapsignal(td, &ksi); - return (EINVAL); - } - - ret = set_fpcontext(td, &ucp->uc_mcontext); - if (ret != 0) - return (ret); - bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs)); - } - -#if defined(COMPAT_43) - if (ucp->uc_mcontext.mc_onstack & 1) - td->td_sigstk.ss_flags |= SS_ONSTACK; - else - td->td_sigstk.ss_flags &= ~SS_ONSTACK; -#endif - - kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); - return (EJUSTRETURN); -} - -/* - * Machine dependent boot() routine - * - * I haven't seen anything to put here yet - * Possibly some stuff might be grafted back here from boot() - */ -void -cpu_boot(int howto) -{ -} - -/* - * Flush the D-cache for non-DMA I/O so that the I-cache can - * be made coherent later. - */ -void -cpu_flush_dcache(void *ptr, size_t len) -{ - /* Not applicable */ -} - -/* Get current clock frequency for the given cpu id. */ -int -cpu_est_clockrate(int cpu_id, uint64_t *rate) -{ - uint64_t tsc1, tsc2; - register_t reg; - - if (pcpu_find(cpu_id) == NULL || rate == NULL) - return (EINVAL); - if ((cpu_feature & CPUID_TSC) == 0) - return (EOPNOTSUPP); - -#ifdef SMP - if (smp_cpus > 1) { - /* Schedule ourselves on the indicated cpu. */ - thread_lock(curthread); - sched_bind(curthread, cpu_id); - thread_unlock(curthread); - } -#endif - - /* Calibrate by measuring a short delay. */ - reg = intr_disable(); - tsc1 = rdtsc(); - DELAY(1000); - tsc2 = rdtsc(); - intr_restore(reg); - *rate = (tsc2 - tsc1) * 1000; - -#ifdef SMP - if (smp_cpus > 1) { - thread_lock(curthread); - sched_unbind(curthread); - thread_unlock(curthread); - } -#endif - - return (0); -} - - -/* - * Shutdown the CPU as much as possible - */ -void -cpu_halt(void) -{ - for (;;) - halt(); -} - -static int idle_mwait = 1; /* Use MONITOR/MWAIT for short idle. */ -SYSCTL_INT(_machdep, OID_AUTO, idle_mwait, CTLFLAG_RWTUN, &idle_mwait, - 0, "Use MONITOR/MWAIT for short idle"); - -#define STATE_RUNNING 0x0 -#define STATE_MWAIT 0x1 -#define STATE_SLEEPING 0x2 - -static void -cpu_idle_hlt(sbintime_t sbt) -{ - int *state; - - state = (int *)PCPU_PTR(monitorbuf); - *state = STATE_SLEEPING; - - /* - * Since we may be in a critical section from cpu_idle(), if - * an interrupt fires during that critical section we may have - * a pending preemption. If the CPU halts, then that thread - * may not execute until a later interrupt awakens the CPU. - * To handle this race, check for a runnable thread after - * disabling interrupts and immediately return if one is - * found. Also, we must absolutely guarentee that hlt is - * the next instruction after sti. This ensures that any - * interrupt that fires after the call to disable_intr() will - * immediately awaken the CPU from hlt. Finally, please note - * that on x86 this works fine because of interrupts enabled only - * after the instruction following sti takes place, while IF is set - * to 1 immediately, allowing hlt instruction to acknowledge the - * interrupt. - */ - disable_intr(); - if (sched_runnable()) - enable_intr(); - else - __asm __volatile("sti; hlt"); - *state = STATE_RUNNING; -} - -/* - * MWAIT cpu power states. Lower 4 bits are sub-states. - */ -#define MWAIT_C0 0xf0 -#define MWAIT_C1 0x00 -#define MWAIT_C2 0x10 -#define MWAIT_C3 0x20 -#define MWAIT_C4 0x30 - -static void -cpu_idle_mwait(sbintime_t sbt) -{ - int *state; - - state = (int *)PCPU_PTR(monitorbuf); - *state = STATE_MWAIT; - - /* See comments in cpu_idle_hlt(). */ - disable_intr(); - if (sched_runnable()) { - enable_intr(); - *state = STATE_RUNNING; - return; - } - cpu_monitor(state, 0, 0); - if (*state == STATE_MWAIT) - __asm __volatile("sti; mwait" : : "a" (MWAIT_C1), "c" (0)); - else - enable_intr(); - *state = STATE_RUNNING; -} - -static void -cpu_idle_spin(sbintime_t sbt) -{ - int *state; - int i; - - state = (int *)PCPU_PTR(monitorbuf); - *state = STATE_RUNNING; - - /* - * The sched_runnable() call is racy but as long as there is - * a loop missing it one time will have just a little impact if any - * (and it is much better than missing the check at all). - */ - for (i = 0; i < 1000; i++) { - if (sched_runnable()) - return; - cpu_spinwait(); - } -} - -void (*cpu_idle_fn)(sbintime_t) = cpu_idle_hlt; - -void -cpu_idle(int busy) -{ - sbintime_t sbt = -1; - - CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", - busy, curcpu); -#if defined(MP_WATCHDOG) - ap_watchdog(PCPU_GET(cpuid)); -#endif - /* If we are busy - try to use fast methods. */ - if (busy) { - if ((cpu_feature2 & CPUID2_MON) && idle_mwait) { - cpu_idle_mwait(busy); - goto out; - } - } - - /* If we have time - switch timers into idle mode. */ - if (!busy) { - critical_enter(); - sbt = cpu_idleclock(); - } - - /* Call main idle method. */ - cpu_idle_fn(sbt); - - /* Switch timers back into active mode. */ - if (!busy) { - cpu_activeclock(); - critical_exit(); - } -out: - CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", - busy, curcpu); -} - -int -cpu_idle_wakeup(int cpu) -{ - struct pcpu *pcpu; - int *state; - - pcpu = pcpu_find(cpu); - state = (int *)pcpu->pc_monitorbuf; - /* - * This doesn't need to be atomic since missing the race will - * simply result in unnecessary IPIs. - */ - if (*state == STATE_SLEEPING) - return (0); - if (*state == STATE_MWAIT) - *state = STATE_RUNNING; - return (1); -} - -/* - * Ordered by speed/power consumption. - */ -struct { - void *id_fn; - char *id_name; -} idle_tbl[] = { - { cpu_idle_spin, "spin" }, - { cpu_idle_mwait, "mwait" }, - { cpu_idle_hlt, "hlt" }, - { NULL, NULL } -}; - -static int -idle_sysctl_available(SYSCTL_HANDLER_ARGS) -{ - char *avail, *p; - int error; - int i; - - avail = malloc(256, M_TEMP, M_WAITOK); - p = avail; - for (i = 0; idle_tbl[i].id_name != NULL; i++) { - if (strstr(idle_tbl[i].id_name, "mwait") && - (cpu_feature2 & CPUID2_MON) == 0) - continue; - p += sprintf(p, "%s%s", p != avail ? ", " : "", - idle_tbl[i].id_name); - } - error = sysctl_handle_string(oidp, avail, 0, req); - free(avail, M_TEMP); - return (error); -} - -SYSCTL_PROC(_machdep, OID_AUTO, idle_available, CTLTYPE_STRING | CTLFLAG_RD, - 0, 0, idle_sysctl_available, "A", "list of available idle functions"); - -static int -idle_sysctl(SYSCTL_HANDLER_ARGS) -{ - char buf[16]; - int error; - char *p; - int i; - - p = "unknown"; - for (i = 0; idle_tbl[i].id_name != NULL; i++) { - if (idle_tbl[i].id_fn == cpu_idle_fn) { - p = idle_tbl[i].id_name; - break; - } - } - strncpy(buf, p, sizeof(buf)); - error = sysctl_handle_string(oidp, buf, sizeof(buf), req); - if (error != 0 || req->newptr == NULL) - return (error); - for (i = 0; idle_tbl[i].id_name != NULL; i++) { - if (strstr(idle_tbl[i].id_name, "mwait") && - (cpu_feature2 & CPUID2_MON) == 0) - continue; - if (strcmp(idle_tbl[i].id_name, buf)) - continue; - cpu_idle_fn = idle_tbl[i].id_fn; - return (0); - } - return (EINVAL); -} - -SYSCTL_PROC(_machdep, OID_AUTO, idle, CTLTYPE_STRING | CTLFLAG_RW, 0, 0, - idle_sysctl, "A", "currently selected idle function"); - -/* - * Reset registers to default values on exec. - */ -void -exec_setregs(struct thread *td, struct image_params *imgp, u_long stack) -{ - struct trapframe *regs = td->td_frame; - struct pcb *pcb = td->td_pcb; - - /* Reset pc->pcb_gs and %gs before possibly invalidating it. */ - pcb->pcb_gs = _udatasel; - load_gs(_udatasel); - - mtx_lock_spin(&dt_lock); - if (td->td_proc->p_md.md_ldt) - user_ldt_free(td); - else - mtx_unlock_spin(&dt_lock); - - bzero((char *)regs, sizeof(struct trapframe)); - regs->tf_eip = imgp->entry_addr; - regs->tf_esp = stack; - regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T); - regs->tf_ss = _udatasel; - regs->tf_ds = _udatasel; - regs->tf_es = _udatasel; - regs->tf_fs = _udatasel; - regs->tf_cs = _ucodesel; - - /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */ - regs->tf_ebx = imgp->ps_strings; - - /* - * Reset the hardware debug registers if they were in use. - * They won't have any meaning for the newly exec'd process. - */ - if (pcb->pcb_flags & PCB_DBREGS) { - pcb->pcb_dr0 = 0; - pcb->pcb_dr1 = 0; - pcb->pcb_dr2 = 0; - pcb->pcb_dr3 = 0; - pcb->pcb_dr6 = 0; - pcb->pcb_dr7 = 0; - if (pcb == curpcb) { - /* - * Clear the debug registers on the running - * CPU, otherwise they will end up affecting - * the next process we switch to. - */ - reset_dbregs(); - } - pcb->pcb_flags &= ~PCB_DBREGS; - } - - /* - * Initialize the math emulator (if any) for the current process. - * Actually, just clear the bit that says that the emulator has - * been initialized. Initialization is delayed until the process - * traps to the emulator (if it is done at all) mainly because - * emulators don't provide an entry point for initialization. - */ - td->td_pcb->pcb_flags &= ~FP_SOFTFP; - pcb->pcb_initial_npxcw = __INITIAL_NPXCW__; - - /* - * Drop the FP state if we hold it, so that the process gets a - * clean FP state if it uses the FPU again. - */ - fpstate_drop(td); - - /* - * XXX - Linux emulator - * Make sure sure edx is 0x0 on entry. Linux binaries depend - * on it. - */ - td->td_retval[1] = 0; -} - -void -cpu_setregs(void) -{ - unsigned int cr0; - - cr0 = rcr0(); - - /* - * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support: - * - * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT - * instructions. We must set the CR0_MP bit and use the CR0_TS - * bit to control the trap, because setting the CR0_EM bit does - * not cause WAIT instructions to trap. It's important to trap - * WAIT instructions - otherwise the "wait" variants of no-wait - * control instructions would degenerate to the "no-wait" variants - * after FP context switches but work correctly otherwise. It's - * particularly important to trap WAITs when there is no NPX - - * otherwise the "wait" variants would always degenerate. - * - * Try setting CR0_NE to get correct error reporting on 486DX's. - * Setting it should fail or do nothing on lesser processors. - */ - cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM; - load_cr0(cr0); - load_gs(_udatasel); -} - -u_long bootdev; /* not a struct cdev *- encoding is different */ -SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev, - CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)"); - -/* - * Initialize 386 and configure to run kernel - */ - -/* - * Initialize segments & interrupt table - */ - -int _default_ldt; - -union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */ -union descriptor ldt[NLDT]; /* local descriptor table */ -static struct gate_descriptor idt0[NIDT]; -struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ -struct region_descriptor r_gdt, r_idt; /* table descriptors */ -struct mtx dt_lock; /* lock for GDT and LDT */ - -#if defined(I586_CPU) && !defined(NO_F00F_HACK) -extern int has_f00f_bug; -#endif - -static struct i386tss dblfault_tss; -static char dblfault_stack[PAGE_SIZE]; - -extern vm_offset_t proc0kstack; - - -/* - * software prototypes -- in more palatable form. - * - * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret - * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it) - */ -struct soft_segment_descriptor gdt_segs[] = { -/* GNULL_SEL 0 Null Descriptor */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = SEL_KPL, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -/* GPRIV_SEL 1 SMP Per-Processor Private Data Descriptor */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_KPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GUFS_SEL 2 %fs Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GUGS_SEL 3 %gs Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GCODE_SEL 4 Code Descriptor for kernel */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMERA, - .ssd_dpl = SEL_KPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GDATA_SEL 5 Data Descriptor for kernel */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_KPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GUCODE_SEL 6 Code Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMERA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GUDATA_SEL 7 Data Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */ -{ .ssd_base = 0x400, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_KPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GPROC0_SEL 9 Proc 0 Tss Descriptor */ -{ - .ssd_base = 0x0, - .ssd_limit = sizeof(struct i386tss)-1, - .ssd_type = SDT_SYS386TSS, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -/* GLDT_SEL 10 LDT Descriptor */ -{ .ssd_base = (int) ldt, - .ssd_limit = sizeof(ldt)-1, - .ssd_type = SDT_SYSLDT, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -/* GUSERLDT_SEL 11 User LDT Descriptor per process */ -{ .ssd_base = (int) ldt, - .ssd_limit = (512 * sizeof(union descriptor)-1), - .ssd_type = SDT_SYSLDT, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -/* GPANIC_SEL 12 Panic Tss Descriptor */ -{ .ssd_base = (int) &dblfault_tss, - .ssd_limit = sizeof(struct i386tss)-1, - .ssd_type = SDT_SYS386TSS, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -/* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */ -{ .ssd_base = 0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMERA, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 1 }, -/* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */ -{ .ssd_base = 0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMERA, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 1 }, -/* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */ -{ .ssd_base = 0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -/* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */ -{ .ssd_base = 0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 1 }, -/* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */ -{ .ssd_base = 0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = 0, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 1 }, -/* GNDIS_SEL 18 NDIS Descriptor */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = 0, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, -}; - -static struct soft_segment_descriptor ldt_segs[] = { - /* Null Descriptor - overwritten by call gate */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = 0, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, - /* Null Descriptor - overwritten by call gate */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = 0, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, - /* Null Descriptor - overwritten by call gate */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = 0, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, - /* Code Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMERA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, - /* Null Descriptor - overwritten by call gate */ -{ .ssd_base = 0x0, - .ssd_limit = 0x0, - .ssd_type = 0, - .ssd_dpl = 0, - .ssd_p = 0, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 0, - .ssd_gran = 0 }, - /* Data Descriptor for user */ -{ .ssd_base = 0x0, - .ssd_limit = 0xfffff, - .ssd_type = SDT_MEMRWA, - .ssd_dpl = SEL_UPL, - .ssd_p = 1, - .ssd_xx = 0, .ssd_xx1 = 0, - .ssd_def32 = 1, - .ssd_gran = 1 }, -}; - -void -setidt(idx, func, typ, dpl, selec) - int idx; - inthand_t *func; - int typ; - int dpl; - int selec; -{ - struct gate_descriptor *ip; - - ip = idt + idx; - ip->gd_looffset = (int)func; - ip->gd_selector = selec; - ip->gd_stkcpy = 0; - ip->gd_xx = 0; - ip->gd_type = typ; - ip->gd_dpl = dpl; - ip->gd_p = 1; - ip->gd_hioffset = ((int)func)>>16 ; -} - -extern inthand_t - IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), - IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), - IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), - IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), - IDTVEC(xmm), -#ifdef KDTRACE_HOOKS - IDTVEC(dtrace_ret), -#endif - IDTVEC(lcall_syscall), IDTVEC(int0x80_syscall); - -#ifdef DDB -/* - * Display the index and function name of any IDT entries that don't use - * the default 'rsvd' entry point. - */ -DB_SHOW_COMMAND(idt, db_show_idt) -{ - struct gate_descriptor *ip; - int idx; - uintptr_t func; - - ip = idt; - for (idx = 0; idx < NIDT && !db_pager_quit; idx++) { - func = (ip->gd_hioffset << 16 | ip->gd_looffset); - if (func != (uintptr_t)&IDTVEC(rsvd)) { - db_printf("%3d\t", idx); - db_printsym(func, DB_STGY_PROC); - db_printf("\n"); - } - ip++; - } -} - -/* Show privileged registers. */ -DB_SHOW_COMMAND(sysregs, db_show_sysregs) -{ - uint64_t idtr, gdtr; - - idtr = ridt(); - db_printf("idtr\t0x%08x/%04x\n", - (u_int)(idtr >> 16), (u_int)idtr & 0xffff); - gdtr = rgdt(); - db_printf("gdtr\t0x%08x/%04x\n", - (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff); - db_printf("ldtr\t0x%04x\n", rldt()); - db_printf("tr\t0x%04x\n", rtr()); - db_printf("cr0\t0x%08x\n", rcr0()); - db_printf("cr2\t0x%08x\n", rcr2()); - db_printf("cr3\t0x%08x\n", rcr3()); - db_printf("cr4\t0x%08x\n", rcr4()); -} -#endif - -void -sdtossd(sd, ssd) - struct segment_descriptor *sd; - struct soft_segment_descriptor *ssd; -{ - ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; - ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; - ssd->ssd_type = sd->sd_type; - ssd->ssd_dpl = sd->sd_dpl; - ssd->ssd_p = sd->sd_p; - ssd->ssd_def32 = sd->sd_def32; - ssd->ssd_gran = sd->sd_gran; -} - -static void -basemem_setup(void) -{ - vm_paddr_t pa; - pt_entry_t *pte; - int i; - - if (basemem > 640) { - printf("Preposterous BIOS basemem of %uK, truncating to 640K\n", - basemem); - basemem = 640; - } - - /* - * XXX if biosbasemem is now < 640, there is a `hole' - * between the end of base memory and the start of - * ISA memory. The hole may be empty or it may - * contain BIOS code or data. Map it read/write so - * that the BIOS can write to it. (Memory from 0 to - * the physical end of the kernel is mapped read-only - * to begin with and then parts of it are remapped. - * The parts that aren't remapped form holes that - * remain read-only and are unused by the kernel. - * The base memory area is below the physical end of - * the kernel and right now forms a read-only hole. - * The part of it from PAGE_SIZE to - * (trunc_page(biosbasemem * 1024) - 1) will be - * remapped and used by the kernel later.) - * - * This code is similar to the code used in - * pmap_mapdev, but since no memory needs to be - * allocated we simply change the mapping. - */ - for (pa = trunc_page(basemem * 1024); - pa < ISA_HOLE_START; pa += PAGE_SIZE) - pmap_kenter(KERNBASE + pa, pa); - - /* - * Map pages between basemem and ISA_HOLE_START, if any, r/w into - * the vm86 page table so that vm86 can scribble on them using - * the vm86 map too. XXX: why 2 ways for this and only 1 way for - * page 0, at least as initialized here? - */ - pte = (pt_entry_t *)vm86paddr; - for (i = basemem / 4; i < 160; i++) - pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U; -} - -/* - * Populate the (physmap) array with base/bound pairs describing the - * available physical memory in the system, then test this memory and - * build the phys_avail array describing the actually-available memory. - * - * If we cannot accurately determine the physical memory map, then use - * value from the 0xE801 call, and failing that, the RTC. - * - * Total memory size may be set by the kernel environment variable - * hw.physmem or the compile-time define MAXMEM. - * - * XXX first should be vm_paddr_t. - */ -static void -getmemsize(int first) -{ - int off, physmap_idx, pa_indx, da_indx; - u_long physmem_tunable, memtest; - vm_paddr_t physmap[PHYSMAP_SIZE]; - pt_entry_t *pte; - quad_t dcons_addr, dcons_size; - int i; - int pg_n; - u_int extmem; - u_int under16; - vm_paddr_t pa; - - bzero(physmap, sizeof(physmap)); - - /* XXX - some of EPSON machines can't use PG_N */ - pg_n = PG_N; - if (pc98_machine_type & M_EPSON_PC98) { - switch (epson_machine_id) { -#ifdef WB_CACHE - default: -#endif - case EPSON_PC486_HX: - case EPSON_PC486_HG: - case EPSON_PC486_HA: - pg_n = 0; - break; - } - } - - under16 = pc98_getmemsize(&basemem, &extmem); - basemem_setup(); - - physmap[0] = 0; - physmap[1] = basemem * 1024; - physmap_idx = 2; - physmap[physmap_idx] = 0x100000; - physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024; - - /* - * Now, physmap contains a map of physical memory. - */ - -#ifdef SMP - /* make hole for AP bootstrap code */ - physmap[1] = mp_bootaddress(physmap[1]); -#endif - - /* - * Maxmem isn't the "maximum memory", it's one larger than the - * highest page of the physical address space. It should be - * called something like "Maxphyspage". We may adjust this - * based on ``hw.physmem'' and the results of the memory test. - */ - Maxmem = atop(physmap[physmap_idx + 1]); - -#ifdef MAXMEM - Maxmem = MAXMEM / 4; -#endif - - if (TUNABLE_ULONG_FETCH("hw.physmem", &physmem_tunable)) - Maxmem = atop(physmem_tunable); - - /* - * By default keep the memtest enabled. Use a general name so that - * one could eventually do more with the code than just disable it. - */ - memtest = 1; - TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); - - if (atop(physmap[physmap_idx + 1]) != Maxmem && - (boothowto & RB_VERBOSE)) - printf("Physical memory use set to %ldK\n", Maxmem * 4); - - /* - * If Maxmem has been increased beyond what the system has detected, - * extend the last memory segment to the new limit. - */ - if (atop(physmap[physmap_idx + 1]) < Maxmem) - physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem); - - /* - * We need to divide chunk if Maxmem is larger than 16MB and - * under 16MB area is not full of memory. - * (1) system area (15-16MB region) is cut off - * (2) extended memory is only over 16MB area (ex. Melco "HYPERMEMORY") - */ - if ((under16 != 16 * 1024) && (extmem > 15 * 1024)) { - /* 15M - 16M region is cut off, so need to divide chunk */ - physmap[physmap_idx + 1] = under16 * 1024; - physmap_idx += 2; - physmap[physmap_idx] = 0x1000000; - physmap[physmap_idx + 1] = physmap[2] + extmem * 1024; - } - - /* call pmap initialization to make new kernel address space */ - pmap_bootstrap(first); - - /* - * Size up each available chunk of physical memory. - */ - physmap[0] = PAGE_SIZE; /* mask off page 0 */ - pa_indx = 0; - da_indx = 1; - phys_avail[pa_indx++] = physmap[0]; - phys_avail[pa_indx] = physmap[0]; - dump_avail[da_indx] = physmap[0]; - pte = CMAP3; - - /* - * Get dcons buffer address - */ - if (getenv_quad("dcons.addr", &dcons_addr) == 0 || - getenv_quad("dcons.size", &dcons_size) == 0) - dcons_addr = 0; - - /* - * physmap is in bytes, so when converting to page boundaries, - * round up the start address and round down the end address. - */ - for (i = 0; i <= physmap_idx; i += 2) { - vm_paddr_t end; - - end = ptoa((vm_paddr_t)Maxmem); - if (physmap[i + 1] < end) - end = trunc_page(physmap[i + 1]); - for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { - int tmp, page_bad, full; - int *ptr = (int *)CADDR3; - - full = FALSE; - /* - * block out kernel memory as not available. - */ - if (pa >= KERNLOAD && pa < first) - goto do_dump_avail; - - /* - * block out dcons buffer - */ - if (dcons_addr > 0 - && pa >= trunc_page(dcons_addr) - && pa < dcons_addr + dcons_size) - goto do_dump_avail; - - page_bad = FALSE; - if (memtest == 0) - goto skip_memtest; - - /* - * map page into kernel: valid, read/write,non-cacheable - */ - *pte = pa | PG_V | PG_RW | pg_n; - invltlb(); - - tmp = *(int *)ptr; - /* - * Test for alternating 1's and 0's - */ - *(volatile int *)ptr = 0xaaaaaaaa; - if (*(volatile int *)ptr != 0xaaaaaaaa) - page_bad = TRUE; - /* - * Test for alternating 0's and 1's - */ - *(volatile int *)ptr = 0x55555555; - if (*(volatile int *)ptr != 0x55555555) - page_bad = TRUE; - /* - * Test for all 1's - */ - *(volatile int *)ptr = 0xffffffff; - if (*(volatile int *)ptr != 0xffffffff) - page_bad = TRUE; - /* - * Test for all 0's - */ - *(volatile int *)ptr = 0x0; - if (*(volatile int *)ptr != 0x0) - page_bad = TRUE; - /* - * Restore original value. - */ - *(int *)ptr = tmp; - -skip_memtest: - /* - * Adjust array of valid/good pages. - */ - if (page_bad == TRUE) - continue; - /* - * If this good page is a continuation of the - * previous set of good pages, then just increase - * the end pointer. Otherwise start a new chunk. - * Note that "end" points one higher than end, - * making the range >= start and < end. - * If we're also doing a speculative memory - * test and we at or past the end, bump up Maxmem - * so that we keep going. The first bad page - * will terminate the loop. - */ - if (phys_avail[pa_indx] == pa) { - phys_avail[pa_indx] += PAGE_SIZE; - } else { - pa_indx++; - if (pa_indx == PHYS_AVAIL_ARRAY_END) { - printf( - "Too many holes in the physical address space, giving up\n"); - pa_indx--; - full = TRUE; - goto do_dump_avail; - } - phys_avail[pa_indx++] = pa; /* start */ - phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ - } - physmem++; -do_dump_avail: - if (dump_avail[da_indx] == pa) { - dump_avail[da_indx] += PAGE_SIZE; - } else { - da_indx++; - if (da_indx == DUMP_AVAIL_ARRAY_END) { - da_indx--; - goto do_next; - } - dump_avail[da_indx++] = pa; /* start */ - dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ - } -do_next: - if (full) - break; - } - } - *pte = 0; - invltlb(); - - /* - * XXX - * The last chunk must contain at least one page plus the message - * buffer to avoid complicating other code (message buffer address - * calculation, etc.). - */ - while (phys_avail[pa_indx - 1] + PAGE_SIZE + - round_page(msgbufsize) >= phys_avail[pa_indx]) { - physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); - phys_avail[pa_indx--] = 0; - phys_avail[pa_indx--] = 0; - } - - Maxmem = atop(phys_avail[pa_indx]); - - /* Trim off space for the message buffer. */ - phys_avail[pa_indx] -= round_page(msgbufsize); - - /* Map the message buffer. */ - for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE) - pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] + - off); - - PT_UPDATES_FLUSH(); -} - -void -init386(first) - int first; -{ - struct gate_descriptor *gdp; - int gsel_tss, metadata_missing, x, pa; - size_t kstack0_sz; - struct pcpu *pc; - - thread0.td_kstack = proc0kstack; - thread0.td_kstack_pages = KSTACK_PAGES; - kstack0_sz = thread0.td_kstack_pages * PAGE_SIZE; - thread0.td_pcb = (struct pcb *)(thread0.td_kstack + kstack0_sz) - 1; - - /* - * This may be done better later if it gets more high level - * components in it. If so just link td->td_proc here. - */ - proc_linkup0(&proc0, &thread0); - - /* - * Initialize DMAC - */ - pc98_init_dmac(); - - metadata_missing = 0; - if (bootinfo.bi_modulep) { - preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE; - preload_bootstrap_relocate(KERNBASE); - } else { - metadata_missing = 1; - } - if (envmode == 1) - kern_envp = static_env; - else if (bootinfo.bi_envp) - kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE; - - /* Init basic tunables, hz etc */ - init_param1(); - - /* - * Make gdt memory segments. All segments cover the full 4GB - * of address space and permissions are enforced at page level. - */ - gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1); - - pc = &__pcpu[0]; - gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1); - gdt_segs[GPRIV_SEL].ssd_base = (int) pc; - gdt_segs[GPROC0_SEL].ssd_base = (int) &pc->pc_common_tss; - - for (x = 0; x < NGDT; x++) - ssdtosd(&gdt_segs[x], &gdt[x].sd); - - r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; - r_gdt.rd_base = (int) gdt; - mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN); - lgdt(&r_gdt); - - pcpu_init(pc, 0, sizeof(struct pcpu)); - for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE) - pmap_kenter(pa + KERNBASE, pa); - dpcpu_init((void *)(first + KERNBASE), 0); - first += DPCPU_SIZE; - PCPU_SET(prvspace, pc); - PCPU_SET(curthread, &thread0); - PCPU_SET(curpcb, thread0.td_pcb); - - /* - * Initialize mutexes. - * - * icu_lock: in order to allow an interrupt to occur in a critical - * section, to set pcpu->ipending (etc...) properly, we - * must be able to get the icu lock, so it can't be - * under witness. - */ - mutex_init(); - mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE); - - /* make ldt memory segments */ - ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1); - ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1); - for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++) - ssdtosd(&ldt_segs[x], &ldt[x].sd); - - _default_ldt = GSEL(GLDT_SEL, SEL_KPL); - lldt(_default_ldt); - PCPU_SET(currentldt, _default_ldt); - - /* exceptions */ - for (x = 0; x < NIDT; x++) - setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_DE, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL - , GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL)); - setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_AC, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL, - GSEL(GCODE_SEL, SEL_KPL)); -#ifdef KDTRACE_HOOKS - setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386TGT, SEL_UPL, - GSEL(GCODE_SEL, SEL_KPL)); -#endif - - r_idt.rd_limit = sizeof(idt0) - 1; - r_idt.rd_base = (int) idt; - lidt(&r_idt); - - /* - * Initialize the i8254 before the console so that console - * initialization can use DELAY(). - */ - clock_init(); - - /* - * Initialize the console before we print anything out. - */ - cninit(); - - if (metadata_missing) - printf("WARNING: loader(8) metadata is missing!\n"); - -#ifdef DEV_ISA -#ifdef DEV_ATPIC - atpic_startup(); -#else - /* Reset and mask the atpics and leave them shut down. */ - atpic_reset(); - - /* - * Point the ICU spurious interrupt vectors at the APIC spurious - * interrupt handler. - */ - setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); -#endif -#endif - -#ifdef DDB - db_fetch_ksymtab(bootinfo.bi_symtab,bootinfo.bi_esymtab); -#endif - - kdb_init(); - -#ifdef KDB - if (boothowto & RB_KDB) - kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); -#endif - - finishidentcpu(); /* Final stage of CPU initialization */ - setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, - GSEL(GCODE_SEL, SEL_KPL)); - initializecpu(); /* Initialize CPU registers */ - initializecpucache(); - - /* make an initial tss so cpu can get interrupt stack on syscall! */ - /* Note: -16 is so we can grow the trapframe if we came from vm86 */ - PCPU_SET(common_tss.tss_esp0, thread0.td_kstack + - kstack0_sz - sizeof(struct pcb) - 16); - PCPU_SET(common_tss.tss_ss0, GSEL(GDATA_SEL, SEL_KPL)); - gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); - PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd); - PCPU_SET(common_tssd, *PCPU_GET(tss_gdt)); - PCPU_SET(common_tss.tss_ioopt, (sizeof (struct i386tss)) << 16); - ltr(gsel_tss); - - /* pointer to selector slot for %fs/%gs */ - PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd); - - dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 = - dblfault_tss.tss_esp2 = (int)&dblfault_stack[sizeof(dblfault_stack)]; - dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 = - dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL); - dblfault_tss.tss_cr3 = (int)IdlePTD; - dblfault_tss.tss_eip = (int)dblfault_handler; - dblfault_tss.tss_eflags = PSL_KERNEL; - dblfault_tss.tss_ds = dblfault_tss.tss_es = - dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL); - dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL); - dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL); - dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL); - - vm86_initialize(); - getmemsize(first); - init_param2(physmem); - - /* now running on new page tables, configured,and u/iom is accessible */ - - msgbufinit(msgbufp, msgbufsize); - - /* make a call gate to reenter kernel with */ - gdp = &ldt[LSYS5CALLS_SEL].gd; - - x = (int) &IDTVEC(lcall_syscall); - gdp->gd_looffset = x; - gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL); - gdp->gd_stkcpy = 1; - gdp->gd_type = SDT_SYS386CGT; - gdp->gd_dpl = SEL_UPL; - gdp->gd_p = 1; - gdp->gd_hioffset = x >> 16; - - /* XXX does this work? */ - /* XXX yes! */ - ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL]; - ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL]; - - /* transfer to user mode */ - - _ucodesel = GSEL(GUCODE_SEL, SEL_UPL); - _udatasel = GSEL(GUDATA_SEL, SEL_UPL); - - /* setup proc 0's pcb */ - thread0.td_pcb->pcb_flags = 0; - thread0.td_pcb->pcb_cr3 = (int)IdlePTD; - thread0.td_pcb->pcb_ext = 0; - thread0.td_frame = &proc0_tf; -} - -void -cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) -{ - -} - -void -spinlock_enter(void) -{ - struct thread *td; - register_t flags; - - td = curthread; - if (td->td_md.md_spinlock_count == 0) { - flags = intr_disable(); - td->td_md.md_spinlock_count = 1; - td->td_md.md_saved_flags = flags; - } else - td->td_md.md_spinlock_count++; - critical_enter(); -} - -void -spinlock_exit(void) -{ - struct thread *td; - register_t flags; - - td = curthread; - critical_exit(); - flags = td->td_md.md_saved_flags; - td->td_md.md_spinlock_count--; - if (td->td_md.md_spinlock_count == 0) - intr_restore(flags); -} - -#if defined(I586_CPU) && !defined(NO_F00F_HACK) -static void f00f_hack(void *unused); -SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL); - -static void -f00f_hack(void *unused) -{ - struct gate_descriptor *new_idt; - vm_offset_t tmp; - - if (!has_f00f_bug) - return; - - GIANT_REQUIRED; - - printf("Intel Pentium detected, installing workaround for F00F bug\n"); - - tmp = kmem_malloc(kernel_arena, PAGE_SIZE * 2, M_WAITOK | M_ZERO); - if (tmp == 0) - panic("kmem_alloc returned 0"); - - /* Put the problematic entry (#6) at the end of the lower page. */ - new_idt = (struct gate_descriptor*) - (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor)); - bcopy(idt, new_idt, sizeof(idt0)); - r_idt.rd_base = (u_int)new_idt; - lidt(&r_idt); - idt = new_idt; - pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ); -} -#endif /* defined(I586_CPU) && !NO_F00F_HACK */ - -/* - * Construct a PCB from a trapframe. This is called from kdb_trap() where - * we want to start a backtrace from the function that caused us to enter - * the debugger. We have the context in the trapframe, but base the trace - * on the PCB. The PCB doesn't have to be perfect, as long as it contains - * enough for a backtrace. - */ -void -makectx(struct trapframe *tf, struct pcb *pcb) -{ - - pcb->pcb_edi = tf->tf_edi; - pcb->pcb_esi = tf->tf_esi; - pcb->pcb_ebp = tf->tf_ebp; - pcb->pcb_ebx = tf->tf_ebx; - pcb->pcb_eip = tf->tf_eip; - pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8; -} - -int -ptrace_set_pc(struct thread *td, u_long addr) -{ - - td->td_frame->tf_eip = addr; - return (0); -} - -int -ptrace_single_step(struct thread *td) -{ - td->td_frame->tf_eflags |= PSL_T; - return (0); -} - -int -ptrace_clear_single_step(struct thread *td) -{ - td->td_frame->tf_eflags &= ~PSL_T; - return (0); -} - -int -fill_regs(struct thread *td, struct reg *regs) -{ - struct pcb *pcb; - struct trapframe *tp; - - tp = td->td_frame; - pcb = td->td_pcb; - regs->r_gs = pcb->pcb_gs; - return (fill_frame_regs(tp, regs)); -} - -int -fill_frame_regs(struct trapframe *tp, struct reg *regs) -{ - regs->r_fs = tp->tf_fs; - regs->r_es = tp->tf_es; - regs->r_ds = tp->tf_ds; - regs->r_edi = tp->tf_edi; - regs->r_esi = tp->tf_esi; - regs->r_ebp = tp->tf_ebp; - regs->r_ebx = tp->tf_ebx; - regs->r_edx = tp->tf_edx; - regs->r_ecx = tp->tf_ecx; - regs->r_eax = tp->tf_eax; - regs->r_eip = tp->tf_eip; - regs->r_cs = tp->tf_cs; - regs->r_eflags = tp->tf_eflags; - regs->r_esp = tp->tf_esp; - regs->r_ss = tp->tf_ss; - return (0); -} - -int -set_regs(struct thread *td, struct reg *regs) -{ - struct pcb *pcb; - struct trapframe *tp; - - tp = td->td_frame; - if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) || - !CS_SECURE(regs->r_cs)) - return (EINVAL); - pcb = td->td_pcb; - tp->tf_fs = regs->r_fs; - tp->tf_es = regs->r_es; - tp->tf_ds = regs->r_ds; - tp->tf_edi = regs->r_edi; - tp->tf_esi = regs->r_esi; - tp->tf_ebp = regs->r_ebp; - tp->tf_ebx = regs->r_ebx; - tp->tf_edx = regs->r_edx; - tp->tf_ecx = regs->r_ecx; - tp->tf_eax = regs->r_eax; - tp->tf_eip = regs->r_eip; - tp->tf_cs = regs->r_cs; - tp->tf_eflags = regs->r_eflags; - tp->tf_esp = regs->r_esp; - tp->tf_ss = regs->r_ss; - pcb->pcb_gs = regs->r_gs; - return (0); -} - -#ifdef CPU_ENABLE_SSE -static void -fill_fpregs_xmm(sv_xmm, sv_87) - struct savexmm *sv_xmm; - struct save87 *sv_87; -{ - register struct env87 *penv_87 = &sv_87->sv_env; - register struct envxmm *penv_xmm = &sv_xmm->sv_env; - int i; - - bzero(sv_87, sizeof(*sv_87)); - - /* FPU control/status */ - penv_87->en_cw = penv_xmm->en_cw; - penv_87->en_sw = penv_xmm->en_sw; - penv_87->en_tw = penv_xmm->en_tw; - penv_87->en_fip = penv_xmm->en_fip; - penv_87->en_fcs = penv_xmm->en_fcs; - penv_87->en_opcode = penv_xmm->en_opcode; - penv_87->en_foo = penv_xmm->en_foo; - penv_87->en_fos = penv_xmm->en_fos; - - /* FPU registers */ - for (i = 0; i < 8; ++i) - sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc; -} - -static void -set_fpregs_xmm(sv_87, sv_xmm) - struct save87 *sv_87; - struct savexmm *sv_xmm; -{ - register struct env87 *penv_87 = &sv_87->sv_env; - register struct envxmm *penv_xmm = &sv_xmm->sv_env; - int i; - - /* FPU control/status */ - penv_xmm->en_cw = penv_87->en_cw; - penv_xmm->en_sw = penv_87->en_sw; - penv_xmm->en_tw = penv_87->en_tw; - penv_xmm->en_fip = penv_87->en_fip; - penv_xmm->en_fcs = penv_87->en_fcs; - penv_xmm->en_opcode = penv_87->en_opcode; - penv_xmm->en_foo = penv_87->en_foo; - penv_xmm->en_fos = penv_87->en_fos; - - /* FPU registers */ - for (i = 0; i < 8; ++i) - sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i]; -} -#endif /* CPU_ENABLE_SSE */ - -int -fill_fpregs(struct thread *td, struct fpreg *fpregs) -{ - - KASSERT(td == curthread || TD_IS_SUSPENDED(td) || - P_SHOULDSTOP(td->td_proc), - ("not suspended thread %p", td)); -#ifdef DEV_NPX - npxgetregs(td); -#else - bzero(fpregs, sizeof(*fpregs)); -#endif -#ifdef CPU_ENABLE_SSE - if (cpu_fxsr) - fill_fpregs_xmm(&td->td_pcb->pcb_user_save.sv_xmm, - (struct save87 *)fpregs); - else -#endif /* CPU_ENABLE_SSE */ - bcopy(&td->td_pcb->pcb_user_save.sv_87, fpregs, - sizeof(*fpregs)); - return (0); -} - -int -set_fpregs(struct thread *td, struct fpreg *fpregs) -{ - -#ifdef CPU_ENABLE_SSE - if (cpu_fxsr) - set_fpregs_xmm((struct save87 *)fpregs, - &td->td_pcb->pcb_user_save.sv_xmm); - else -#endif /* CPU_ENABLE_SSE */ - bcopy(fpregs, &td->td_pcb->pcb_user_save.sv_87, - sizeof(*fpregs)); -#ifdef DEV_NPX - npxuserinited(td); -#endif - return (0); -} - -/* - * Get machine context. - */ -int -get_mcontext(struct thread *td, mcontext_t *mcp, int flags) -{ - struct trapframe *tp; - struct segment_descriptor *sdp; - - tp = td->td_frame; - - PROC_LOCK(curthread->td_proc); - mcp->mc_onstack = sigonstack(tp->tf_esp); - PROC_UNLOCK(curthread->td_proc); - mcp->mc_gs = td->td_pcb->pcb_gs; - mcp->mc_fs = tp->tf_fs; - mcp->mc_es = tp->tf_es; - mcp->mc_ds = tp->tf_ds; - mcp->mc_edi = tp->tf_edi; - mcp->mc_esi = tp->tf_esi; - mcp->mc_ebp = tp->tf_ebp; - mcp->mc_isp = tp->tf_isp; - mcp->mc_eflags = tp->tf_eflags; - if (flags & GET_MC_CLEAR_RET) { - mcp->mc_eax = 0; - mcp->mc_edx = 0; - mcp->mc_eflags &= ~PSL_C; - } else { - mcp->mc_eax = tp->tf_eax; - mcp->mc_edx = tp->tf_edx; - } - mcp->mc_ebx = tp->tf_ebx; - mcp->mc_ecx = tp->tf_ecx; - mcp->mc_eip = tp->tf_eip; - mcp->mc_cs = tp->tf_cs; - mcp->mc_esp = tp->tf_esp; - mcp->mc_ss = tp->tf_ss; - mcp->mc_len = sizeof(*mcp); - get_fpcontext(td, mcp); - sdp = &td->td_pcb->pcb_fsd; - mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; - sdp = &td->td_pcb->pcb_gsd; - mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; - mcp->mc_flags = 0; - bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2)); - return (0); -} - -/* - * Set machine context. - * - * However, we don't set any but the user modifiable flags, and we won't - * touch the cs selector. - */ -int -set_mcontext(struct thread *td, const mcontext_t *mcp) -{ - struct trapframe *tp; - int eflags, ret; - - tp = td->td_frame; - if (mcp->mc_len != sizeof(*mcp)) - return (EINVAL); - eflags = (mcp->mc_eflags & PSL_USERCHANGE) | - (tp->tf_eflags & ~PSL_USERCHANGE); - if ((ret = set_fpcontext(td, mcp)) == 0) { - tp->tf_fs = mcp->mc_fs; - tp->tf_es = mcp->mc_es; - tp->tf_ds = mcp->mc_ds; - tp->tf_edi = mcp->mc_edi; - tp->tf_esi = mcp->mc_esi; - tp->tf_ebp = mcp->mc_ebp; - tp->tf_ebx = mcp->mc_ebx; - tp->tf_edx = mcp->mc_edx; - tp->tf_ecx = mcp->mc_ecx; - tp->tf_eax = mcp->mc_eax; - tp->tf_eip = mcp->mc_eip; - tp->tf_eflags = eflags; - tp->tf_esp = mcp->mc_esp; - tp->tf_ss = mcp->mc_ss; - td->td_pcb->pcb_gs = mcp->mc_gs; - ret = 0; - } - return (ret); -} - -static void -get_fpcontext(struct thread *td, mcontext_t *mcp) -{ - -#ifndef DEV_NPX - mcp->mc_fpformat = _MC_FPFMT_NODEV; - mcp->mc_ownedfp = _MC_FPOWNED_NONE; - bzero(mcp->mc_fpstate, sizeof(mcp->mc_fpstate)); -#else - mcp->mc_ownedfp = npxgetregs(td); - bcopy(&td->td_pcb->pcb_user_save, &mcp->mc_fpstate[0], - sizeof(mcp->mc_fpstate)); - mcp->mc_fpformat = npxformat(); -#endif -} - -static int -set_fpcontext(struct thread *td, const mcontext_t *mcp) -{ - - if (mcp->mc_fpformat == _MC_FPFMT_NODEV) - return (0); - else if (mcp->mc_fpformat != _MC_FPFMT_387 && - mcp->mc_fpformat != _MC_FPFMT_XMM) - return (EINVAL); - else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) - /* We don't care what state is left in the FPU or PCB. */ - fpstate_drop(td); - else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU || - mcp->mc_ownedfp == _MC_FPOWNED_PCB) { -#ifdef DEV_NPX -#ifdef CPU_ENABLE_SSE - if (cpu_fxsr) - ((union savefpu *)&mcp->mc_fpstate)->sv_xmm.sv_env. - en_mxcsr &= cpu_mxcsr_mask; -#endif - npxsetregs(td, (union savefpu *)&mcp->mc_fpstate); -#endif - } else - return (EINVAL); - return (0); -} - -static void -fpstate_drop(struct thread *td) -{ - - KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu")); - critical_enter(); -#ifdef DEV_NPX - if (PCPU_GET(fpcurthread) == td) - npxdrop(); -#endif - /* - * XXX force a full drop of the npx. The above only drops it if we - * owned it. npxgetregs() has the same bug in the !cpu_fxsr case. - * - * XXX I don't much like npxgetregs()'s semantics of doing a full - * drop. Dropping only to the pcb matches fnsave's behaviour. - * We only need to drop to !PCB_INITDONE in sendsig(). But - * sendsig() is the only caller of npxgetregs()... perhaps we just - * have too many layers. - */ - curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE | - PCB_NPXUSERINITDONE); - critical_exit(); -} - -int -fill_dbregs(struct thread *td, struct dbreg *dbregs) -{ - struct pcb *pcb; - - if (td == NULL) { - dbregs->dr[0] = rdr0(); - dbregs->dr[1] = rdr1(); - dbregs->dr[2] = rdr2(); - dbregs->dr[3] = rdr3(); - dbregs->dr[4] = rdr4(); - dbregs->dr[5] = rdr5(); - dbregs->dr[6] = rdr6(); - dbregs->dr[7] = rdr7(); - } else { - pcb = td->td_pcb; - dbregs->dr[0] = pcb->pcb_dr0; - dbregs->dr[1] = pcb->pcb_dr1; - dbregs->dr[2] = pcb->pcb_dr2; - dbregs->dr[3] = pcb->pcb_dr3; - dbregs->dr[4] = 0; - dbregs->dr[5] = 0; - dbregs->dr[6] = pcb->pcb_dr6; - dbregs->dr[7] = pcb->pcb_dr7; - } - return (0); -} - -int -set_dbregs(struct thread *td, struct dbreg *dbregs) -{ - struct pcb *pcb; - int i; - - if (td == NULL) { - load_dr0(dbregs->dr[0]); - load_dr1(dbregs->dr[1]); - load_dr2(dbregs->dr[2]); - load_dr3(dbregs->dr[3]); - load_dr4(dbregs->dr[4]); - load_dr5(dbregs->dr[5]); - load_dr6(dbregs->dr[6]); - load_dr7(dbregs->dr[7]); - } else { - /* - * Don't let an illegal value for dr7 get set. Specifically, - * check for undefined settings. Setting these bit patterns - * result in undefined behaviour and can lead to an unexpected - * TRCTRAP. - */ - for (i = 0; i < 4; i++) { - if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02) - return (EINVAL); - if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02) - return (EINVAL); - } - - pcb = td->td_pcb; - - /* - * Don't let a process set a breakpoint that is not within the - * process's address space. If a process could do this, it - * could halt the system by setting a breakpoint in the kernel - * (if ddb was enabled). Thus, we need to check to make sure - * that no breakpoints are being enabled for addresses outside - * process's address space. - * - * XXX - what about when the watched area of the user's - * address space is written into from within the kernel - * ... wouldn't that still cause a breakpoint to be generated - * from within kernel mode? - */ - - if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) { - /* dr0 is enabled */ - if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS) - return (EINVAL); - } - - if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) { - /* dr1 is enabled */ - if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS) - return (EINVAL); - } - - if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) { - /* dr2 is enabled */ - if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS) - return (EINVAL); - } - - if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) { - /* dr3 is enabled */ - if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS) - return (EINVAL); - } - - pcb->pcb_dr0 = dbregs->dr[0]; - pcb->pcb_dr1 = dbregs->dr[1]; - pcb->pcb_dr2 = dbregs->dr[2]; - pcb->pcb_dr3 = dbregs->dr[3]; - pcb->pcb_dr6 = dbregs->dr[6]; - pcb->pcb_dr7 = dbregs->dr[7]; - - pcb->pcb_flags |= PCB_DBREGS; - } - - return (0); -} - -/* - * Return > 0 if a hardware breakpoint has been hit, and the - * breakpoint was in user space. Return 0, otherwise. - */ -int -user_dbreg_trap(void) -{ - u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */ - u_int32_t bp; /* breakpoint bits extracted from dr6 */ - int nbp; /* number of breakpoints that triggered */ - caddr_t addr[4]; /* breakpoint addresses */ - int i; - - dr7 = rdr7(); - if ((dr7 & 0x000000ff) == 0) { - /* - * all GE and LE bits in the dr7 register are zero, - * thus the trap couldn't have been caused by the - * hardware debug registers - */ - return 0; - } - - nbp = 0; - dr6 = rdr6(); - bp = dr6 & 0x0000000f; - - if (!bp) { - /* - * None of the breakpoint bits are set meaning this - * trap was not caused by any of the debug registers - */ - return 0; - } - - /* - * at least one of the breakpoints were hit, check to see - * which ones and if any of them are user space addresses - */ - - if (bp & 0x01) { - addr[nbp++] = (caddr_t)rdr0(); - } - if (bp & 0x02) { - addr[nbp++] = (caddr_t)rdr1(); - } - if (bp & 0x04) { - addr[nbp++] = (caddr_t)rdr2(); - } - if (bp & 0x08) { - addr[nbp++] = (caddr_t)rdr3(); - } - - for (i = 0; i < nbp; i++) { - if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) { - /* - * addr[i] is in user space - */ - return nbp; - } - } - - /* - * None of the breakpoints are in user space. - */ - return 0; -} - -#ifdef KDB - -/* - * Provide inb() and outb() as functions. They are normally only available as - * inline functions, thus cannot be called from the debugger. - */ - -/* silence compiler warnings */ -u_char inb_(u_short); -void outb_(u_short, u_char); - -u_char -inb_(u_short port) -{ - return inb(port); -} - -void -outb_(u_short port, u_char data) -{ - outb(port, data); -} - -#endif /* KDB */