First, a file is mmap(2)ed and then mlock(2)ed. Later, it is truncated.
Under "normal" circumstances, i.e., when the file is not mlock(2)ed, the
pages beyond the EOF are unmapped and freed. However, when the file is
mlock(2)ed, the pages beyond the EOF are unmapped but not freed because
they have a non-zero wire count. This can be a mistake. Specifically,
it is a mistake if the sole reason why the pages are wired is because of
wired, managed mappings. Previously, unmapping the pages destroys these
wired, managed mappings, but does not reduce the pages' wire count.
Consequently, when the file is unmapped, the pages are not unwired
because the wired mapping has been destroyed. Moreover, when the vm
object is finally destroyed, the pages are leaked because they are still
wired. The fix is to reduce the pages' wired count by the number of
wired, managed mappings destroyed. To do this, I introduce a new pmap
function pmap_page_wired_mappings() that returns the number of managed
mappings to the given physical page that are wired, and I use this
function in vm_object_page_remove().
Reviewed by: tegge
MFC after: 6 weeks
silent NULL pointer dereference in the i386 and sparc64 pmap_pinit()
when the kmem_alloc_nofault() failed to allocate address space. Both
functions now return error instead of panicing or dereferencing NULL.
As consequence, vmspace_exec() and vmspace_unshare() returns the errno
int. struct vmspace arg was added to vm_forkproc() to avoid dealing
with failed allocation when most of the fork1() job is already done.
The kernel stack for the thread is now set up in the thread_alloc(),
that itself may return NULL. Also, allocation of the first process
thread is performed in the fork1() to properly deal with stack
allocation failure. proc_linkup() is separated into proc_linkup()
called from fork1(), and proc_linkup0(), that is used to set up the
kernel process (was known as swapper).
In collaboration with: Peter Holm
Reviewed by: jhb
default object rather than cache it was to have
vm_pager_has_page(object, pindex, ...) == FALSE to imply that there is
no cached page in object at pindex. This allows to avoid explicit
checks for cached pages in vm_object_backing_scan().
For now, we need the same bandaid for the swap object, otherwise both
the vm_page_lookup() and the pager can report that there is no page at
offset, while page is stored in the cache. Also, this fixes another
instance of the KASSERT("object type is incompatible") failure in the
vm_page_cache_transfer().
Reported and tested by: Peter Holm
Reviewed by: alc
MFC after: 3 days
that would have an offset beyond the end of the target object. Such
pages should remain in the source object.
MFC after: 3 days
Diagnosed and reviewed by: Kostik Belousov
Reported and tested by: Peter Holm
from Mac OS X Leopard--rationalize naming for entry points to
the following general forms:
mac_<object>_<method/action>
mac_<object>_check_<method/action>
The previous naming scheme was inconsistent and mostly
reversed from the new scheme. Also, make object types more
consistent and remove spaces from object types that contain
multiple parts ("posix_sem" -> "posixsem") to make mechanical
parsing easier. Introduce a new "netinet" object type for
certain IPv4/IPv6-related methods. Also simplify, slightly,
some entry point names.
All MAC policy modules will need to be recompiled, and modules
not updates as part of this commit will need to be modified to
conform to the new KPI.
Sponsored by: SPARTA (original patches against Mac OS X)
Obtained from: TrustedBSD Project, Apple Computer
cache: vnode_pager_setsize() must handle the case where a file is
truncated to a non-page-size-aligned boundary and there is a cached
page underlying the new end of file.
Reported by: kris, tegge
Tested by: kris
MFC after: 3 days
since revision 1.1. Specifically, neither traversal of the vm map checks
whether the end of the vm map has been reached. Consequently, the first
traversal can wrap around and bogusly return an error.
This error has gone unnoticed for so long because no one had ever before
tried msync(2)ing a region above the stack.
Reported by: peter
MFC after: 1 week
to kproc_xxx as they actually make whole processes.
Thos makes way for us to add REAL kthread_create() and friends
that actually make theads. it turns out that most of these
calls actually end up being moved back to the thread version
when it's added. but we need to make this cosmetic change first.
I'd LOVE to do this rename in 7.0 so that we can eventually MFC the
new kthread_xxx() calls.
it must first ensure that the page is no longer mapped. This is
trivially accomplished by calling pmap_remove_all() a little earlier
in vm_page_cache(). While I'm in the neighborbood, make a related
panic message a little more useful.
Approved by: re (kensmith)
Reported by: Peter Holm and Konstantin Belousov
Reviewed by: Konstantin Belousov
a consequence of sparc64/sparc64/vm_machdep.c revision 1.76. It occurs
when uma_small_free() frees a page. The solution has two parts: (1) Mark
pages allocated with VM_ALLOC_NOOBJ as PG_UNMANAGED. (2) Defer the lock
assertion in pmap_page_is_mapped() until after PG_UNMANAGED is tested.
This is safe because both PG_UNMANAGED and PG_FICTITIOUS are immutable
flags, i.e., they do not change state between the time that a page is
allocated and freed.
Approved by: re (kensmith)
PR: 116794
cache: vm_object_page_remove() should convert any cached pages that
fall with the specified range to free pages. Otherwise, there could
be a problem if a file is first truncated and then regrown.
Specifically, some old data from prior to the truncation might reappear.
Generalize vm_page_cache_free() to support the conversion of either a
subset or the entirety of an object's cached pages.
Reported by: tegge
Reviewed by: tegge
Approved by: re (kensmith)
ways:
(1) Cached pages are no longer kept in the object's resident page
splay tree and memq. Instead, they are kept in a separate per-object
splay tree of cached pages. However, access to this new per-object
splay tree is synchronized by the _free_ page queues lock, not to be
confused with the heavily contended page queues lock. Consequently, a
cached page can be reclaimed by vm_page_alloc(9) without acquiring the
object's lock or the page queues lock.
This solves a problem independently reported by tegge@ and Isilon.
Specifically, they observed the page daemon consuming a great deal of
CPU time because of pages bouncing back and forth between the cache
queue (PQ_CACHE) and the inactive queue (PQ_INACTIVE). The source of
this problem turned out to be a deadlock avoidance strategy employed
when selecting a cached page to reclaim in vm_page_select_cache().
However, the root cause was really that reclaiming a cached page
required the acquisition of an object lock while the page queues lock
was already held. Thus, this change addresses the problem at its
root, by eliminating the need to acquire the object's lock.
Moreover, keeping cached pages in the object's primary splay tree and
memq was, in effect, optimizing for the uncommon case. Cached pages
are reclaimed far, far more often than they are reactivated. Instead,
this change makes reclamation cheaper, especially in terms of
synchronization overhead, and reactivation more expensive, because
reactivated pages will have to be reentered into the object's primary
splay tree and memq.
(2) Cached pages are now stored alongside free pages in the physical
memory allocator's buddy queues, increasing the likelihood that large
allocations of contiguous physical memory (i.e., superpages) will
succeed.
Finally, as a result of this change long-standing restrictions on when
and where a cached page can be reclaimed and returned by
vm_page_alloc(9) are eliminated. Specifically, calls to
vm_page_alloc(9) specifying VM_ALLOC_INTERRUPT can now reclaim and
return a formerly cached page. Consequently, a call to malloc(9)
specifying M_NOWAIT is less likely to fail.
Discussed with: many over the course of the summer, including jeff@,
Justin Husted @ Isilon, peter@, tegge@
Tested by: an earlier version by kris@
Approved by: re (kensmith)
changes the units from seconds to the value of 'ticks' when swapped
in/out. ULE does not have a periodic timer that scans all threads in
the system and as such maintaining a per-second counter is difficult.
- Change computations requiring the unit in seconds to subtract ticks
and divide by hz. This does make the wraparound condition hz times
more frequent but this is still in the range of several months to
years and the adverse effects are minimal.
Approved by: re
- p_sflag was mostly protected by PROC_LOCK rather than the PROC_SLOCK or
previously the sched_lock. These bugs have existed for some time.
- Allow swapout to try each thread in a process individually and then
swapin the whole process if any of these fail. This allows us to move
most scheduler related swap flags into td_flags.
- Keep ki_sflag for backwards compat but change all in source tools to
use the new and more correct location of P_INMEM.
Reported by: pho
Reviewed by: attilio, kib
Approved by: re (kensmith)
status after vm_pager_put_pages() is VM_PAGER_PEND, then it could have
already been recycled, i.e., freed and reallocated to a new purpose;
thus, asserting that such pages cannot be written is inappropriate.
Reported by: kris
Submitted by: tegge
Approved by: re (kensmith)
MFC after: 1 week
For this, introduce vm_map_fixed() that does that for MAP_FIXED case.
Dropping the lock allowed for parallel thread to occupy the freed space.
Reported by: Tijl Coosemans <tijl ulyssis org>
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
sys/vm/device_pager.c:
Protect the creation of the phys pager with non-NULL handle with the
phys_pager_mtx. Lookup of phys pager in the pagers list by handle is now
synchronized with its removal from the list, and phys_pager_mtx is put
before vm object lock in lock order. Dispose the phys_pager_alloc_lock
and tsleep calls, together with acquiring Giant, since phys_pager_mtx
now covers the same block.
Reviewed by: alc
Approved by: re (kensmith)
of device pager in the pagers list by handle is now synchronized with
its removal from the list, and dev_pager_mtx is put before vm object
lock in lock order. Dispose the dev_pager_sx lock, since dev_pager_mtx
now covers the same block.
Noted by: kensmith
Reviewed by: alc
Approved by: re (kensmith)
vm_object_terminate() on a device-backed object at the same time that
another processor, call it Pa, is performing dev_pager_alloc() on the
same device. The problem is that vm_pager_object_lookup() should not be
allowed to return a doomed object, i.e., an object with OBJ_DEAD set,
but it does. In detail, the unfortunate sequence of events is: Pt in
vm_object_terminate() holds the doomed object's lock and sets OBJ_DEAD
on the object. Pa in dev_pager_alloc() holds dev_pager_sx and calls
vm_pager_object_lookup(), which returns the doomed object. Next, Pa
calls vm_object_reference(), which requires the doomed object's lock, so
Pa waits for Pt to release the doomed object's lock. Pt proceeds to the
point in vm_object_terminate() where it releases the doomed object's
lock. Pa is now able to complete vm_object_reference() because it can
now complete the acquisition of the doomed object's lock. So, now the
doomed object has a reference count of one! Pa releases dev_pager_sx
and returns the doomed object from dev_pager_alloc(). Pt now acquires
dev_pager_mtx, removes the doomed object from dev_pager_object_list,
releases dev_pager_mtx, and finally calls uma_zfree with the doomed
object. However, the doomed object is still in use by Pa.
Repeating my key point, vm_pager_object_lookup() must not return a
doomed object. Moreover, the test for the object's state, i.e.,
doomed or not, and the increment of the object's reference count
should be carried out atomically.
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
d_mmap methods. prep_cdevsw() already installs the shims that
acquire/drop Giant for the methods of a driver that specified the
D_NEEDGIANT flag.
Reviewed by: alc
Approved by: re (kensmith)
1. Rewrite the backward scan. Specifically, reverse the order in which
pages are allocated so that upon failure it is never necessary to
free pages that were just allocated. Moreover, any allocated pages
can be put to use. This makes the backward scan behave just like the
forward scan.
2. Eliminate an explicit, unsynchronized check for low memory before
calling vm_page_alloc(). It serves no useful purpose. It is, in
effect, optimizing the uncommon case at the expense of the common
case.
Approved by: re (hrs)
MFC after: 3 weeks
vm_phys_free_pages(). Rename vm_phys_alloc_pages_locked() to
vm_phys_alloc_pages() and vm_phys_free_pages_locked() to
vm_phys_free_pages(). Add comments regarding the need for the free page
queues lock to be held by callers to these functions. No functional
changes.
Approved by: re (hrs)
vm_page_cowfault(). Initially, if vm_page_cowfault() sleeps, the given
page is wired, preventing it from being recycled. However, when
transmission of the page completes, the page is unwired and returned to
the page queues. At that point, the page is not in any special state
that prevents it from being recycled. Consequently, vm_page_cowfault()
should verify that the page is still held by the same vm object before
retrying the replacement of the page. Note: The containing object is,
however, safe from being recycled by virtue of having a non-zero
paging-in-progress count.
While I'm here, add some assertions and comments.
Approved by: re (rwatson)
MFC After: 3 weeks
vm_fault_additional_pages() that was introduced in revision 1.47. Then
as now, it is unnecessary because dev_pager_haspage() returns zero for
both the number of pages to read ahead and read behind, producing the
same exact behavior by vm_fault_additional_pages() as the special case
handling.
Approved by: re (rwatson)
tracks the total number of reactivated pages. (We have not been
counting reactivations by vm_fault() since revision 1.46.)
Correct a comment in vm_fault_additional_pages().
Approved by: re (kensmith)
MFC after: 1 week
of Giant in vm_pageout_scan() with VFS_LOCK_GIANT(), I had to eliminate
the acquisition of the vnode interlock before releasing the vm object's
lock because the vnode interlock cannot be held when VFS_LOCK_GIANT() is
performed. Unfortunately, this allows the vnode to be recycled between
the release of the vm object's lock and the vget() on the vnode.
In this revision, I prevent the vnode from being recycled by acquiring
another reference to the vm object and underlying vnode before releasing
the vm object's lock.
This change also addresses another preexisting but trivial problem. By
acquiring another reference to the vm object, I also prevent the vm
object from being recycled. Previously, the "vnodes skipped" counter
could be wrong because if it examined a recycled vm object.
Reported by: kib
Reviewed by: kib
Approved by: re (kensmith)
MFC after: 3 weeks
passed to vm_pageout_clean() cannot possibly be PG_UNMANAGED because
it came from the inactive queue and PG_UNMANAGED pages are not in any
page queue. Moreover, PG_UNMANAGED pages only exist in OBJT_PHYS
objects, and all pages within a OBJT_PHYS object are PG_UNMANAGED.
So, if the page that is passed to vm_pageout_clean() is not
PG_UNMANAGED, then it cannot be from an OBJT_PHYS object and its
neighbors from the same object cannot themselves be PG_UNMANAGED.
Reviewed by: tegge