/* $Id: isp.c,v 1.2 1998/09/15 08:42:55 gibbs Exp $ */ /* * Machine and OS Independent (well, as best as possible) * code for the Qlogic ISP SCSI adapters. * *--------------------------------------- * Copyright (c) 1997, 1998 by Matthew Jacob * NASA/Ames Research Center * All rights reserved. *--------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Inspiration and ideas about this driver are from Erik Moe's Linux driver * (qlogicisp.c) and Dave Miller's SBus version of same (qlogicisp.c). Some * ideas dredged from the Solaris driver. */ /* * Include header file appropriate for platform we're building on. */ #ifdef __NetBSD__ #include #endif #ifdef __FreeBSD__ #include #endif #ifdef __linux__ #include #endif /* * General defines */ #define MBOX_DELAY_COUNT 1000000 / 100 /* * Local static data */ static const char tgtiqd[36] = { 0x03, 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x51, 0x4C, 0x4F, 0x47, 0x49, 0x43, 0x20, 0x20, #ifdef __NetBSD__ 0x4E, 0x45, 0x54, 0x42, 0x53, 0x44, 0x20, 0x20, #else # ifdef __FreeBSD__ 0x46, 0x52, 0x45, 0x45, 0x42, 0x52, 0x44, 0x20, # else # ifdef linux 0x4C, 0x49, 0x4E, 0x55, 0x58, 0x20, 0x20, 0x20, # else # endif # endif #endif 0x54, 0x41, 0x52, 0x47, 0x45, 0x54, 0x20, 0x20, 0x20, 0x20, 0x20, 0x31 }; /* * Local function prototypes. */ static int isp_parse_async __P((struct ispsoftc *, u_int16_t)); static int isp_handle_other_response __P((struct ispsoftc *, ispstatusreq_t *, u_int8_t *)); #if defined(ISP2100_TARGET_MODE) || defined(ISP_TARGET_MODE) static int isp_modify_lun __P((struct ispsoftc *, int, int, int)); #endif static void isp_parse_status __P((struct ispsoftc *, ispstatusreq_t *, ISP_SCSI_XFER_T *)); static void isp_fibre_init __P((struct ispsoftc *)); static void isp_fw_state __P((struct ispsoftc *)); static void isp_dumpregs __P((struct ispsoftc *, const char *)); static void isp_dumpxflist __P((struct ispsoftc *)); static void isp_prtstst __P((ispstatusreq_t *)); static void isp_mboxcmd __P((struct ispsoftc *, mbreg_t *)); static void isp_update __P((struct ispsoftc *)); static void isp_setdfltparm __P((struct ispsoftc *)); static int isp_read_nvram __P((struct ispsoftc *)); static void isp_rdnvram_word __P((struct ispsoftc *, int, u_int16_t *)); /* * Reset Hardware. * * Hit the chip over the head, download new f/w. * * Locking done elsewhere. */ void isp_reset(isp) struct ispsoftc *isp; { static char once = 1; mbreg_t mbs; int loops, i, dodnld = 1; char *revname; isp->isp_state = ISP_NILSTATE; /* * Basic types (SCSI, FibreChannel and PCI or SBus) * have been set in the MD code. We figure out more * here. */ isp->isp_dblev = DFLT_DBLEVEL; if (isp->isp_type & ISP_HA_FC) { revname = "2100"; } else { sdparam *sdp = isp->isp_param; int rev = ISP_READ(isp, BIU_CONF0) & BIU_CONF0_HW_MASK; switch (rev) { default: PRINTF("%s: unknown chip rev. 0x%x- assuming a 1020\n", isp->isp_name, rev); /* FALLTHROUGH */ case 1: revname = "1020"; isp->isp_type = ISP_HA_SCSI_1020; sdp->isp_clock = 40; break; case 2: /* * Some 1020A chips are Ultra Capable, but don't * run the clock rate up for that unless told to * do so by the Ultra Capable bits being set. */ revname = "1020A"; isp->isp_type = ISP_HA_SCSI_1020A; sdp->isp_clock = 40; break; case 3: revname = "1040"; isp->isp_type = ISP_HA_SCSI_1040; sdp->isp_clock = 60; break; case 4: revname = "1040A"; isp->isp_type = ISP_HA_SCSI_1040A; sdp->isp_clock = 60; break; case 5: revname = "1040B"; isp->isp_type = ISP_HA_SCSI_1040B; sdp->isp_clock = 60; break; } /* * Try and figure out if we're connected to a differential bus. * You have to pause the RISC processor to read SXP registers. */ ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); i = 100; while ((ISP_READ(isp, HCCR) & HCCR_PAUSE) == 0) { SYS_DELAY(20); if (--i == 0) { PRINTF("%s: unable to pause RISC processor\n", isp->isp_name); i = -1; break; } } if (i > 0) { if (isp->isp_bustype != ISP_BT_SBUS) { ISP_SETBITS(isp, BIU_CONF1, BIU_PCI_CONF1_SXP); } if (ISP_READ(isp, SXP_PINS_DIFF) & SXP_PINS_DIFF_MODE) { IDPRINTF(2, ("%s: Differential Mode Set\n", isp->isp_name)); sdp->isp_diffmode = 1; } else { sdp->isp_diffmode = 0; } if (isp->isp_bustype != ISP_BT_SBUS) { ISP_CLRBITS(isp, BIU_CONF1, BIU_PCI_CONF1_SXP); } /* * Figure out whether we're ultra capable. */ i = ISP_READ(isp, RISC_PSR); if (isp->isp_bustype != ISP_BT_SBUS) { i &= RISC_PSR_PCI_ULTRA; } else { i &= RISC_PSR_SBUS_ULTRA; } if (i) { IDPRINTF(2, ("%s: Ultra Mode Capable\n", isp->isp_name)); sdp->isp_clock = 60; } else { sdp->isp_clock = 40; } /* * Restart processor */ ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); } /* * Machine dependent clock (if set) overrides * our generic determinations. */ if (isp->isp_mdvec->dv_clock) { if (isp->isp_mdvec->dv_clock < sdp->isp_clock) { sdp->isp_clock = isp->isp_mdvec->dv_clock; } } } /* * Do MD specific pre initialization */ ISP_RESET0(isp); if (once == 1) { once = 0; /* * Get the current running firmware revision out of the * chip before we hit it over the head (if this is our * first time through). Note that we store this as the * 'ROM' firmware revision- which it may not be. In any * case, we don't really use this yet, but we may in * the future. */ mbs.param[0] = MBOX_ABOUT_FIRMWARE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { IDPRINTF(3, ("%s: initial ABOUT FIRMWARE command " "failed\n", isp->isp_name)); } else { isp->isp_romfw_rev = (((u_int16_t) mbs.param[1]) << 10) + mbs.param[2]; } } /* * Hit the chip over the head with hammer, * and give the ISP a chance to recover. */ if (isp->isp_type & ISP_HA_SCSI) { ISP_WRITE(isp, BIU_ICR, BIU_ICR_SOFT_RESET); /* * A slight delay... */ SYS_DELAY(100); /* * Clear data && control DMA engines. */ ISP_WRITE(isp, CDMA_CONTROL, DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT); ISP_WRITE(isp, DDMA_CONTROL, DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT); } else { ISP_WRITE(isp, BIU2100_CSR, BIU2100_SOFT_RESET); /* * A slight delay... */ SYS_DELAY(100); ISP_WRITE(isp, CDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); ISP_WRITE(isp, TDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); ISP_WRITE(isp, RDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); } /* * Wait for ISP to be ready to go... */ loops = MBOX_DELAY_COUNT; for (;;) { if (isp->isp_type & ISP_HA_SCSI) { if (!(ISP_READ(isp, BIU_ICR) & BIU_ICR_SOFT_RESET)) break; } else { if (!(ISP_READ(isp, BIU2100_CSR) & BIU2100_SOFT_RESET)) break; } SYS_DELAY(100); if (--loops < 0) { isp_dumpregs(isp, "chip reset timed out"); return; } } /* * More initialization */ if (isp->isp_type & ISP_HA_SCSI) { ISP_WRITE(isp, BIU_CONF1, 0); } else { ISP_WRITE(isp, BIU2100_CSR, 0); /* * All 2100's are 60Mhz with fast rams onboard. */ ISP_WRITE(isp, RISC_MTR2100, 0x1212); } ISP_WRITE(isp, HCCR, HCCR_CMD_RESET); SYS_DELAY(100); if (isp->isp_type & ISP_HA_SCSI) { ISP_SETBITS(isp, BIU_CONF1, isp->isp_mdvec->dv_conf1); if (isp->isp_mdvec->dv_conf1 & BIU_BURST_ENABLE) { ISP_SETBITS(isp, CDMA_CONF, DMA_ENABLE_BURST); ISP_SETBITS(isp, DDMA_CONF, DMA_ENABLE_BURST); } } ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); /* release paused processor */ /* * Do MD specific post initialization */ ISP_RESET1(isp); /* * Enable interrupts */ ENABLE_INTS(isp); /* * Do some sanity checking. */ mbs.param[0] = MBOX_NO_OP; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "NOP test failed"); return; } if (isp->isp_type & ISP_HA_SCSI) { mbs.param[0] = MBOX_MAILBOX_REG_TEST; mbs.param[1] = 0xdead; mbs.param[2] = 0xbeef; mbs.param[3] = 0xffff; mbs.param[4] = 0x1111; mbs.param[5] = 0xa5a5; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "Mailbox Register test didn't complete"); return; } if (mbs.param[1] != 0xdead || mbs.param[2] != 0xbeef || mbs.param[3] != 0xffff || mbs.param[4] != 0x1111 || mbs.param[5] != 0xa5a5) { isp_dumpregs(isp, "Register Test Failed"); return; } } /* * Download new Firmware, unless requested not to do so. * This is made slightly trickier in some cases where the * firmware of the ROM revision is newer than the revision * compiled into the driver. So, where we used to compare * versions of our f/w and the ROM f/w, now we just see * whether we have f/w at all and whether a config flag * has disabled our download. */ if ((isp->isp_mdvec->dv_fwlen == 0) || (isp->isp_confopts & ISP_CFG_NORELOAD)) { dodnld = 0; } if (dodnld) { for (i = 0; i < isp->isp_mdvec->dv_fwlen; i++) { mbs.param[0] = MBOX_WRITE_RAM_WORD; mbs.param[1] = isp->isp_mdvec->dv_codeorg + i; mbs.param[2] = isp->isp_mdvec->dv_ispfw[i]; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "f/w download failed"); return; } } if (isp->isp_mdvec->dv_fwlen) { /* * Verify that it downloaded correctly. */ mbs.param[0] = MBOX_VERIFY_CHECKSUM; mbs.param[1] = isp->isp_mdvec->dv_codeorg; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "ram checksum failure"); return; } } } else { IDPRINTF(3, ("%s: skipping f/w download\n", isp->isp_name)); } /* * Now start it rolling. * * If we didn't actually download f/w, * we still need to (re)start it. */ mbs.param[0] = MBOX_EXEC_FIRMWARE; mbs.param[1] = isp->isp_mdvec->dv_codeorg; isp_mboxcmd(isp, &mbs); if (isp->isp_type & ISP_HA_SCSI) { sdparam *sdp = isp->isp_param; /* * Set CLOCK RATE, but only if asked to. */ if (sdp->isp_clock) { mbs.param[0] = MBOX_SET_CLOCK_RATE; mbs.param[1] = sdp->isp_clock; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set CLOCKRATE"); /* but continue */ } else { IDPRINTF(3, ("%s: setting input clock to %d\n", isp->isp_name, sdp->isp_clock)); } } } mbs.param[0] = MBOX_ABOUT_FIRMWARE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "ABOUT FIRMWARE command failed"); return; } PRINTF("%s: Board Revision %s, %s F/W Revision %d.%d\n", isp->isp_name, revname, dodnld? "loaded" : "resident", mbs.param[1], mbs.param[2]); isp->isp_fwrev = (((u_int16_t) mbs.param[1]) << 10) + mbs.param[2]; if (isp->isp_romfw_rev && dodnld) { PRINTF("%s: Last F/W revision was %d.%d\n", isp->isp_name, isp->isp_romfw_rev >> 10, isp->isp_romfw_rev & 0x3ff); } isp_fw_state(isp); isp->isp_state = ISP_RESETSTATE; } /* * Initialize Hardware to known state * * Locks are held before coming here. */ void isp_init(isp) struct ispsoftc *isp; { sdparam *sdp; mbreg_t mbs; int tgt; /* * Must do first. */ isp_setdfltparm(isp); /* * If we're fibre, we have a completely different * initialization method. */ if (isp->isp_type & ISP_HA_FC) { isp_fibre_init(isp); return; } sdp = isp->isp_param; /* * Set (possibly new) Initiator ID. */ mbs.param[0] = MBOX_SET_INIT_SCSI_ID; mbs.param[1] = sdp->isp_initiator_id; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set initiator id"); return; } /* * Set Retry Delay and Count */ mbs.param[0] = MBOX_SET_RETRY_COUNT; mbs.param[1] = sdp->isp_retry_count; mbs.param[2] = sdp->isp_retry_delay; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set retry count and delay"); return; } /* * Set ASYNC DATA SETUP time. This is very important. */ mbs.param[0] = MBOX_SET_ASYNC_DATA_SETUP_TIME; mbs.param[1] = sdp->isp_async_data_setup; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set async data setup time"); return; } /* * Set ACTIVE Negation State. */ mbs.param[0] = MBOX_SET_ACTIVE_NEG_STATE; mbs.param[1] = (sdp->isp_req_ack_active_neg << 4) | (sdp->isp_data_line_active_neg << 5); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set active neg state"); return; } /* * Set the Tag Aging limit */ mbs.param[0] = MBOX_SET_TAG_AGE_LIMIT; mbs.param[1] = sdp->isp_tag_aging; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set tag age limit"); return; } /* * Set selection timeout. */ mbs.param[0] = MBOX_SET_SELECT_TIMEOUT; mbs.param[1] = sdp->isp_selection_timeout; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set selection timeout"); return; } /* * Set per-target parameters to a safe minimum. */ for (tgt = 0; tgt < MAX_TARGETS; tgt++) { int maxlun, lun; if (sdp->isp_devparam[tgt].dev_enable == 0) continue; mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[1] = tgt << 8; mbs.param[2] = DPARM_SAFE_DFLT; mbs.param[3] = 0; /* * It is not quite clear when this changed over so that * we could force narrow and async, so assume >= 7.55. * * Otherwise, a SCSI bus reset issued below will force * the back to the narrow, async state (but see note * below also). Technically we should also do without * Parity. */ if (isp->isp_fwrev >= ISP_FW_REV(7, 55)) { mbs.param[2] |= DPARM_NARROW | DPARM_ASYNC; } sdp->isp_devparam[tgt].cur_dflags = mbs.param[2] >> 8; IDPRINTF(3, ("\n%s: tgt %d cflags %x offset %x period %x\n", isp->isp_name, tgt, mbs.param[2], mbs.param[3] >> 8, mbs.param[3] & 0xff)); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set parameters for tgt %d\n", isp->isp_name, tgt); PRINTF("%s: flags %x offset %x period %x\n", isp->isp_name, sdp->isp_devparam[tgt].dev_flags, sdp->isp_devparam[tgt].sync_offset, sdp->isp_devparam[tgt].sync_period); mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[1] = tgt << 8; mbs.param[2] = DPARM_SAFE_DFLT; mbs.param[3] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed even to set defaults for " "target %d\n", isp->isp_name, tgt); continue; } } maxlun = (isp->isp_fwrev >= ISP_FW_REV(7, 55))? 32 : 8; for (lun = 0; lun < maxlun; lun++) { mbs.param[0] = MBOX_SET_DEV_QUEUE_PARAMS; mbs.param[1] = (tgt << 8) | lun; mbs.param[2] = sdp->isp_max_queue_depth; mbs.param[3] = sdp->isp_devparam[tgt].exc_throttle; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set device queue " "parameters for target %d, lun %d\n", isp->isp_name, tgt, lun); break; } } } /* * Set up DMA for the request and result mailboxes. */ if (ISP_MBOXDMASETUP(isp)) { PRINTF("%s: can't setup dma mailboxes\n", isp->isp_name); return; } mbs.param[0] = MBOX_INIT_RES_QUEUE; mbs.param[1] = RESULT_QUEUE_LEN; mbs.param[2] = (u_int16_t) (isp->isp_result_dma >> 16); mbs.param[3] = (u_int16_t) (isp->isp_result_dma & 0xffff); mbs.param[4] = 0; mbs.param[5] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "set of response queue failed"); return; } isp->isp_residx = 0; mbs.param[0] = MBOX_INIT_REQ_QUEUE; mbs.param[1] = RQUEST_QUEUE_LEN; mbs.param[2] = (u_int16_t) (isp->isp_rquest_dma >> 16); mbs.param[3] = (u_int16_t) (isp->isp_rquest_dma & 0xffff); mbs.param[4] = 0; mbs.param[5] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "set of request queue failed"); return; } isp->isp_reqidx = isp->isp_reqodx = 0; /* * XXX: See whether or not for 7.55 F/W or later we * XXX: can do without this, and see whether we should * XXX: honor the NVRAM SCSI_RESET_DISABLE token. */ mbs.param[0] = MBOX_BUS_RESET; mbs.param[1] = 3; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "SCSI bus reset failed"); } /* * This is really important to have set after a bus reset. */ isp->isp_sendmarker = 1; isp->isp_state = ISP_INITSTATE; } /* * Fibre Channel specific initialization. * * Locks are held before coming here. */ static void isp_fibre_init(isp) struct ispsoftc *isp; { fcparam *fcp; isp_icb_t *icbp; mbreg_t mbs; int count; u_int8_t lwfs; fcp = isp->isp_param; if (ISP_MBOXDMASETUP(isp)) { PRINTF("%s: can't setup DMA for mailboxes\n", isp->isp_name); return; } icbp = (isp_icb_t *) fcp->isp_scratch; bzero(icbp, sizeof (*icbp)); icbp->icb_version = ICB_VERSION1; fcp->isp_fwoptions = 0; #ifdef ISP2100_TARGET_MODE fcp->isp_fwoptions |= ICBOPT_TGT_ENABLE | ICBOPT_INI_TGTTYPE; icbp->icb_iqdevtype = 0x23; /* DPQ_SUPPORTED/PROCESSOR */ #endif icbp->icb_fwoptions = fcp->isp_fwoptions; icbp->icb_maxfrmlen = fcp->isp_maxfrmlen; if (icbp->icb_maxfrmlen < ICB_MIN_FRMLEN || icbp->icb_maxfrmlen > ICB_MAX_FRMLEN) { PRINTF("%s: bad frame length (%d) from NVRAM- using %d\n", isp->isp_name, fcp->isp_maxfrmlen, ICB_DFLT_FRMLEN); } icbp->icb_maxalloc = fcp->isp_maxalloc; icbp->icb_execthrottle = fcp->isp_execthrottle; icbp->icb_retry_delay = fcp->isp_retry_delay; icbp->icb_retry_count = fcp->isp_retry_count; MAKE_NODE_NAME_FROM_WWN(icbp->icb_nodename, fcp->isp_wwn); icbp->icb_rqstqlen = RQUEST_QUEUE_LEN; icbp->icb_rsltqlen = RESULT_QUEUE_LEN; icbp->icb_rqstaddr[RQRSP_ADDR0015] = (u_int16_t) (isp->isp_rquest_dma & 0xffff); icbp->icb_rqstaddr[RQRSP_ADDR1631] = (u_int16_t) (isp->isp_rquest_dma >> 16); icbp->icb_respaddr[RQRSP_ADDR0015] = (u_int16_t) (isp->isp_result_dma & 0xffff); icbp->icb_respaddr[RQRSP_ADDR1631] = (u_int16_t) (isp->isp_result_dma >> 16); for (count = 0; count < 10; count++) { mbs.param[0] = MBOX_INIT_FIRMWARE; mbs.param[1] = 0; mbs.param[2] = (u_int16_t) (fcp->isp_scdma >> 16); mbs.param[3] = (u_int16_t) (fcp->isp_scdma & 0xffff); mbs.param[4] = 0; mbs.param[5] = 0; mbs.param[6] = 0; mbs.param[7] = 0; isp_mboxcmd(isp, &mbs); switch (mbs.param[0]) { case MBOX_COMMAND_COMPLETE: count = 10; break; case ASYNC_LIP_OCCURRED: case ASYNC_LOOP_UP: case ASYNC_LOOP_DOWN: case ASYNC_LOOP_RESET: case ASYNC_PDB_CHANGED: case ASYNC_CHANGE_NOTIFY: if (count > 9) { PRINTF("%s: too many retries to get going- " "giving up\n", isp->isp_name); return; } break; default: isp_dumpregs(isp, "INIT FIRMWARE failed"); return; } } isp->isp_reqidx = isp->isp_reqodx = 0; isp->isp_residx = 0; /* * Wait up to 12 seconds for FW to go to READY state. * This used to be 3 seconds, but that lost. * * This is all very much not right. The problem here * is that the cable may not be plugged in, or there * may be many many members of the loop that haven't * been logged into. * * This model of doing things doesn't support dynamic * attachment, so we just plain lose (for now). */ lwfs = FW_CONFIG_WAIT; for (count = 0; count < 12000; count++) { isp_fw_state(isp); if (lwfs != fcp->isp_fwstate) { PRINTF("%s: Firmware State %s -> %s\n", isp->isp_name, fw_statename(lwfs), fw_statename(fcp->isp_fwstate)); lwfs = fcp->isp_fwstate; } if (fcp->isp_fwstate == FW_READY) { break; } SYS_DELAY(1000); /* wait one millisecond */ } isp->isp_sendmarker = 1; /* * Get our Loop ID * (if possible) */ if (fcp->isp_fwstate == FW_READY) { mbs.param[0] = MBOX_GET_LOOP_ID; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "GET LOOP ID failed"); return; } fcp->isp_loopid = mbs.param[1]; fcp->isp_alpa = mbs.param[2]; PRINTF("%s: Loop ID 0x%x, ALPA 0x%x\n", isp->isp_name, fcp->isp_loopid, fcp->isp_alpa); isp->isp_state = ISP_INITSTATE; DISABLE_INTS(isp); if (isp->isp_fwrev >= ISP_FW_REV(1, 13)) { #if defined(ISP2100_TARGET_MODE) || defined(ISP_TARGET_MODE) if (isp_modify_lun(isp, 0, 1, 1)) { PRINTF("%s: failed to establish target mode\n", isp->isp_name); } #endif } ENABLE_INTS(isp); } else { PRINTF("%s: failed to go to FW READY state- will not attach\n", isp->isp_name); } } /* * Free any associated resources prior to decommissioning and * set the card to a known state (so it doesn't wake up and kick * us when we aren't expecting it to). * * Locks are held before coming here. */ void isp_uninit(isp) struct ispsoftc *isp; { /* * Leave with interrupts disabled. */ DISABLE_INTS(isp); /* * Stop the watchdog timer (if started). */ STOP_WATCHDOG(isp_watch, isp); } /* * Start a command. Locking is assumed done in the caller. */ int32_t ispscsicmd(xs) ISP_SCSI_XFER_T *xs; { struct ispsoftc *isp; u_int8_t iptr, optr; union { ispreq_t *_reqp; ispreqt2_t *_t2reqp; } _u; #define reqp _u._reqp #define t2reqp _u._t2reqp #define UZSIZE max(sizeof (ispreq_t), sizeof (ispreqt2_t)) int i; XS_INITERR(xs); isp = XS_ISP(xs); if (isp->isp_state != ISP_RUNSTATE) { PRINTF("%s: adapter not ready\n", isp->isp_name); XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } /* * We *could* do the different sequence type that has clos * to the whole Queue Entry for the command,. */ if (XS_CDBLEN(xs) > ((isp->isp_type & ISP_HA_FC)? 16 : 12)) { PRINTF("%s: unsupported cdb length (%d)\n", isp->isp_name, XS_CDBLEN(xs)); XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } /* * First check to see if any HBA or Device * parameters need to be updated. */ if (isp->isp_update) { isp_update(isp); } optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow\n", isp->isp_name); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } if (isp->isp_type & ISP_HA_FC) { DISABLE_INTS(isp); } if (isp->isp_sendmarker) { u_int8_t niptr; ispmarkreq_t *marker = (ispmarkreq_t *) reqp; bzero((void *) marker, sizeof (*marker)); marker->req_header.rqs_entry_count = 1; marker->req_header.rqs_entry_type = RQSTYPE_MARKER; marker->req_modifier = SYNC_ALL; isp->isp_sendmarker = 0; niptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (niptr == optr) { ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; if (isp->isp_type & ISP_HA_FC) { ENABLE_INTS(isp); } PRINTF("%s: Request Queue Overflow+\n", isp->isp_name); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = niptr; } bzero((void *) reqp, UZSIZE); reqp->req_header.rqs_entry_count = 1; if (isp->isp_type & ISP_HA_FC) { reqp->req_header.rqs_entry_type = RQSTYPE_T2RQS; } else { reqp->req_header.rqs_entry_type = RQSTYPE_REQUEST; } reqp->req_header.rqs_flags = 0; reqp->req_header.rqs_seqno = isp->isp_seqno++; for (i = 0; i < RQUEST_QUEUE_LEN; i++) { if (isp->isp_xflist[i] == NULL) break; } if (i == RQUEST_QUEUE_LEN) { if (isp->isp_type & ISP_HA_FC) ENABLE_INTS(isp); PRINTF("%s: ran out of xflist pointers?????\n", isp->isp_name); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } else { /* * Never have a handle that is zero, so * set req_handle off by one. */ isp->isp_xflist[i] = xs; reqp->req_handle = i+1; } if (isp->isp_type & ISP_HA_FC) { /* * See comment in isp_intr */ XS_RESID(xs) = 0; /* * Fibre Channel always requires some kind of tag. * If we're marked as "Can't Tag", just do simple * instead of ordered tags. It's pretty clear to me * that we shouldn't do head of queue tagging in * this case. */ if (XS_CANTAG(xs)) { t2reqp->req_flags = XS_KINDOF_TAG(xs); } else { t2reqp->req_flags = REQFLAG_STAG; } } else { sdparam *sdp = (sdparam *)isp->isp_param; if ((sdp->isp_devparam[XS_TGT(xs)].cur_dflags & DPARM_TQING) && XS_CANTAG(xs)) { reqp->req_flags = XS_KINDOF_TAG(xs); } else { reqp->req_flags = 0; } } reqp->req_lun_trn = XS_LUN(xs); reqp->req_target = XS_TGT(xs); if (isp->isp_type & ISP_HA_SCSI) { reqp->req_cdblen = XS_CDBLEN(xs); } bcopy((void *)XS_CDBP(xs), reqp->req_cdb, XS_CDBLEN(xs)); IDPRINTF(5, ("%s(%d.%d): START%d cmd 0x%x datalen %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), reqp->req_header.rqs_seqno, reqp->req_cdb[0], XS_XFRLEN(xs))); reqp->req_time = XS_TIME(xs) / 1000; if (reqp->req_time == 0 && XS_TIME(xs)) reqp->req_time = 1; if (ISP_DMASETUP(isp, xs, reqp, &iptr, optr)) { if (isp->isp_type & ISP_HA_FC) ENABLE_INTS(isp); /* dmasetup sets actual error */ return (CMD_COMPLETE); } XS_SETERR(xs, HBA_NOERROR); ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; if (isp->isp_type & ISP_HA_FC) { ENABLE_INTS(isp); } isp->isp_nactive++; return (CMD_QUEUED); #undef reqp #undef t2reqp } /* * isp control * Locks (ints blocked) assumed held. */ int isp_control(isp, ctl, arg) struct ispsoftc *isp; ispctl_t ctl; void *arg; { ISP_SCSI_XFER_T *xs; mbreg_t mbs; int i; switch (ctl) { default: PRINTF("%s: isp_control unknown control op %x\n", isp->isp_name, ctl); break; case ISPCTL_RESET_BUS: mbs.param[0] = MBOX_BUS_RESET; mbs.param[1] = (isp->isp_type & ISP_HA_FC)? 5: 2; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "isp_control SCSI bus reset failed"); break; } /* * This is really important to have set after a bus reset. */ isp->isp_sendmarker = 1; PRINTF("%s: driver initiated bus reset\n", isp->isp_name); return (0); case ISPCTL_RESET_DEV: /* * Note that under parallel SCSI, this issues a BDR message. * Under FC, we could probably be using ABORT TASK SET * command. */ mbs.param[0] = MBOX_ABORT_TARGET; mbs.param[1] = ((long)arg) << 8; mbs.param[2] = 2; /* 'delay', in seconds */ isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "SCSI Target reset failed"); break; } PRINTF("%s: Target %d Reset Succeeded\n", isp->isp_name, (int) ((long) arg)); isp->isp_sendmarker = 1; return (0); case ISPCTL_ABORT_CMD: xs = (ISP_SCSI_XFER_T *) arg; for (i = 0; i < RQUEST_QUEUE_LEN; i++) { if (xs == isp->isp_xflist[i]) { break; } } if (i == RQUEST_QUEUE_LEN) { PRINTF("%s: isp_control- cannot find command to abort " "in active list\n", isp->isp_name); break; } mbs.param[0] = MBOX_ABORT; mbs.param[1] = XS_TGT(xs) | XS_LUN(xs); mbs.param[2] = (i+1) >> 16; mbs.param[3] = (i+1) & 0xffff; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: isp_control MBOX_ABORT failure (code %x)\n", isp->isp_name, mbs.param[0]); break; } PRINTF("%s: command for target %d lun %d was aborted\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); return (0); case ISPCTL_UPDATE_PARAMS: isp_update(isp); return(0); } return (-1); } /* * Interrupt Service Routine(s). * * External (OS) framework has done the appropriate locking, * and the locking will be held throughout this function. */ int isp_intr(arg) void *arg; { ISP_SCSI_XFER_T *complist[RESULT_QUEUE_LEN], *xs; struct ispsoftc *isp = arg; u_int8_t iptr, optr; u_int16_t isr; int i, ndone = 0; isr = ISP_READ(isp, BIU_ISR); if (isp->isp_type & ISP_HA_FC) { if (isr == 0 || (isr & BIU2100_ISR_RISC_INT) == 0) { if (isr) { IDPRINTF(4, ("%s: isp_intr isr=%x\n", isp->isp_name, isr)); } return (0); } } else { if (isr == 0 || (isr & BIU_ISR_RISC_INT) == 0) { if (isr) { IDPRINTF(4, ("%s: isp_intr isr=%x\n", isp->isp_name, isr)); } return (0); } } if (ISP_READ(isp, BIU_SEMA) & 1) { u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0); if (isp_parse_async(isp, mbox)) return (1); ISP_WRITE(isp, BIU_SEMA, 0); } ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); optr = isp->isp_residx; iptr = ISP_READ(isp, OUTMAILBOX5); if (optr == iptr) { IDPRINTF(4, ("why intr? isr %x iptr %x optr %x\n", isr, optr, iptr)); } ENABLE_INTS(isp); while (optr != iptr) { ispstatusreq_t *sp; u_int8_t oop; int buddaboom = 0; sp = (ispstatusreq_t *) ISP_QUEUE_ENTRY(isp->isp_result, optr); oop = optr; optr = ISP_NXT_QENTRY(optr, RESULT_QUEUE_LEN); if (sp->req_header.rqs_entry_type != RQSTYPE_RESPONSE) { if (isp_handle_other_response(isp, sp, &optr) == 0) { ISP_WRITE(isp, INMAILBOX5, optr); continue; } /* * It really has to be a bounced request just copied * from the request queue to the response queue. */ if (sp->req_header.rqs_entry_type != RQSTYPE_REQUEST) { ISP_WRITE(isp, INMAILBOX5, optr); continue; } PRINTF("%s: not RESPONSE in RESPONSE Queue " "(type 0x%x) @ idx %d (next %d)\n", isp->isp_name, sp->req_header.rqs_entry_type, oop, optr); buddaboom = 1; } if (sp->req_header.rqs_flags & 0xf) { if (sp->req_header.rqs_flags & RQSFLAG_CONTINUATION) { ISP_WRITE(isp, INMAILBOX5, optr); continue; } PRINTF("%s: rqs_flags=%x", isp->isp_name, sp->req_header.rqs_flags & 0xf); if (sp->req_header.rqs_flags & RQSFLAG_FULL) { PRINTF("%s: internal queues full\n", isp->isp_name); /* XXXX: this command *could* get restarted */ buddaboom++; } if (sp->req_header.rqs_flags & RQSFLAG_BADHEADER) { PRINTF("%s: bad header\n", isp->isp_name); buddaboom++; } if (sp->req_header.rqs_flags & RQSFLAG_BADPACKET) { PRINTF("%s: bad request packet\n", isp->isp_name); buddaboom++; } } if (sp->req_handle > RQUEST_QUEUE_LEN || sp->req_handle < 1) { PRINTF("%s: bad request handle %d\n", isp->isp_name, sp->req_handle); ISP_WRITE(isp, INMAILBOX5, optr); continue; } xs = (ISP_SCSI_XFER_T *) isp->isp_xflist[sp->req_handle - 1]; if (xs == NULL) { PRINTF("%s: NULL xs in xflist (handle %x)\n", isp->isp_name, sp->req_handle); isp_dumpxflist(isp); ISP_WRITE(isp, INMAILBOX5, optr); continue; } isp->isp_xflist[sp->req_handle - 1] = NULL; if (sp->req_status_flags & RQSTF_BUS_RESET) { isp->isp_sendmarker = 1; } if (buddaboom) { XS_SETERR(xs, HBA_BOTCH); } XS_STS(xs) = sp->req_scsi_status & 0xff; if (isp->isp_type & ISP_HA_SCSI) { if (sp->req_state_flags & RQSF_GOT_SENSE) { bcopy(sp->req_sense_data, XS_SNSP(xs), XS_SNSLEN(xs)); XS_SNS_IS_VALID(xs); } } else { if (XS_STS(xs) == SCSI_CHECK) { XS_SNS_IS_VALID(xs); bcopy(sp->req_sense_data, XS_SNSP(xs), XS_SNSLEN(xs)); sp->req_state_flags |= RQSF_GOT_SENSE; } } if (XS_NOERR(xs) && XS_STS(xs) == SCSI_BUSY) { XS_SETERR(xs, HBA_TGTBSY); } if (sp->req_header.rqs_entry_type == RQSTYPE_RESPONSE) { if (XS_NOERR(xs)) { if (sp->req_completion_status != RQCS_COMPLETE) { isp_parse_status(isp, sp, xs); } else { XS_SETERR(xs, HBA_NOERROR); } } } else { PRINTF("%s: unknown return %x\n", isp->isp_name, sp->req_header.rqs_entry_type); if (XS_NOERR(xs)) XS_SETERR(xs, HBA_BOTCH); } if (isp->isp_type & ISP_HA_SCSI) { XS_RESID(xs) = sp->req_resid; } else if (sp->req_scsi_status & RQCS_RU) { XS_RESID(xs) = sp->req_resid; IDPRINTF(4, ("%s: cnt %d rsd %d\n", isp->isp_name, XS_XFRLEN(xs), sp->req_resid)); } if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, sp->req_handle - 1); } /* * XXX: If we have a check condition, but no Sense Data, * XXX: mark it as an error (ARQ failed). We need to * XXX: to do a more distinct job because there may * XXX: cases where ARQ is disabled. */ if (XS_STS(xs) == SCSI_CHECK && !(XS_IS_SNS_VALID(xs))) { if (XS_NOERR(xs)) { PRINTF("%s: ARQ Failure\n", isp->isp_name); XS_SETERR(xs, HBA_ARQFAIL); } } if ((isp->isp_dblev >= 5) || (isp->isp_dblev > 2 && !XS_NOERR(xs))) { PRINTF("%s(%d.%d): FIN%d dl%d resid%d STS %x", isp->isp_name, XS_TGT(xs), XS_LUN(xs), sp->req_header.rqs_seqno, XS_XFRLEN(xs), XS_RESID(xs), XS_STS(xs)); if (sp->req_state_flags & RQSF_GOT_SENSE) { PRINTF(" Skey: %x", XS_SNSKEY(xs)); if (!(XS_IS_SNS_VALID(xs))) { PRINTF(" BUT NOT SET"); } } PRINTF(" XS_ERR=0x%x\n", (unsigned int) XS_ERR(xs)); } ISP_WRITE(isp, INMAILBOX5, optr); isp->isp_nactive--; if (isp->isp_nactive < 0) isp->isp_nactive = 0; complist[ndone++] = xs; /* defer completion call until later */ } /* * If we completed any commands, then it's valid to find out * what the outpointer is. */ if (ndone) { isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); } isp->isp_residx = optr; for (i = 0; i < ndone; i++) { xs = complist[i]; if (xs) { XS_CMD_DONE(xs); } } return (1); } /* * Support routines. */ static int isp_parse_async(isp, mbox) struct ispsoftc *isp; u_int16_t mbox; { switch (mbox) { case ASYNC_BUS_RESET: PRINTF("%s: SCSI bus reset detected\n", isp->isp_name); isp->isp_sendmarker = 1; break; case ASYNC_SYSTEM_ERROR: mbox = ISP_READ(isp, OUTMAILBOX1); PRINTF("%s: Internal FW Error @ RISC Addr 0x%x\n", isp->isp_name, mbox); isp_restart(isp); /* no point continuing after this */ return (1); case ASYNC_RQS_XFER_ERR: PRINTF("%s: Request Queue Transfer Error\n", isp->isp_name); break; case ASYNC_RSP_XFER_ERR: PRINTF("%s: Response Queue Transfer Error\n", isp->isp_name); break; case ASYNC_QWAKEUP: /* don't need to be chatty */ mbox = ISP_READ(isp, OUTMAILBOX4); break; case ASYNC_TIMEOUT_RESET: PRINTF("%s: timeout initiated SCSI bus reset\n", isp->isp_name); isp->isp_sendmarker = 1; break; case ASYNC_UNSPEC_TMODE: PRINTF("%s: mystery async target completion\n", isp->isp_name); break; case ASYNC_EXTMSG_UNDERRUN: PRINTF("%s: extended message underrun\n", isp->isp_name); break; case ASYNC_SCAM_INT: PRINTF("%s: SCAM interrupt\n", isp->isp_name); break; case ASYNC_HUNG_SCSI: PRINTF("%s: stalled SCSI Bus after DATA Overrun\n", isp->isp_name); /* XXX: Need to issue SCSI reset at this point */ break; case ASYNC_KILLED_BUS: PRINTF("%s: SCSI Bus reset after DATA Overrun\n", isp->isp_name); break; case ASYNC_BUS_TRANSIT: PRINTF("%s: LBD->HVD Transition 0x%x\n", isp->isp_name, ISP_READ(isp, OUTMAILBOX1)); break; case ASYNC_CMD_CMPLT: PRINTF("%s: fast post completion\n", isp->isp_name); #if 0 fast_post_handle = (ISP_READ(isp, OUTMAILBOX1) << 16) | ISP_READ(isp, OUTMAILBOX2); #endif break; case ASYNC_CTIO_DONE: PRINTF("%s: CTIO done\n", isp->isp_name); break; case ASYNC_LIP_OCCURRED: PRINTF("%s: LIP occurred\n", isp->isp_name); break; case ASYNC_LOOP_UP: PRINTF("%s: Loop UP\n", isp->isp_name); break; case ASYNC_LOOP_DOWN: PRINTF("%s: Loop DOWN\n", isp->isp_name); break; case ASYNC_LOOP_RESET: PRINTF("%s: Loop RESET\n", isp->isp_name); break; case ASYNC_PDB_CHANGED: PRINTF("%s: Port Database Changed\n", isp->isp_name); break; case ASYNC_CHANGE_NOTIFY: PRINTF("%s: Name Server Database Changed\n", isp->isp_name); break; default: PRINTF("%s: async %x\n", isp->isp_name, mbox); break; } return (0); } static int isp_handle_other_response(isp, sp, optrp) struct ispsoftc *isp; ispstatusreq_t *sp; u_int8_t *optrp; { u_int8_t iptr, optr; int reqsize = 0; void *ireqp = NULL; switch (sp->req_header.rqs_entry_type) { case RQSTYPE_REQUEST: return (-1); #if defined(ISP2100_TARGET_MODE) || defined(ISP_TARGET_MODE) case RQSTYPE_NOTIFY_ACK: { ispnotify_t *spx = (ispnotify_t *) sp; PRINTF("%s: Immediate Notify Ack %d.%d Status 0x%x Sequence " "0x%x\n", isp->isp_name, spx->req_initiator, spx->req_lun, spx->req_status, spx->req_sequence); break; } case RQSTYPE_NOTIFY: { ispnotify_t *spx = (ispnotify_t *) sp; PRINTF("%s: Notify loopid %d to lun %d req_status 0x%x " "req_task_flags 0x%x seq 0x%x\n", isp->isp_name, spx->req_initiator, spx->req_lun, spx->req_status, spx->req_task_flags, spx->req_sequence); reqsize = sizeof (*spx); spx->req_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; spx->req_header.rqs_entry_count = 1; spx->req_header.rqs_flags = 0; spx->req_header.rqs_seqno = isp->isp_seqno++; spx->req_handle = (spx->req_initiator<<16) | RQSTYPE_NOTIFY_ACK; if (spx->req_status == IN_RSRC_UNAVAIL) spx->req_flags = LUN_INCR_CMD; else if (spx->req_status == IN_NOCAP) spx->req_flags = LUN_INCR_IMMED; else { reqsize = 0; } ireqp = spx; break; } case RQSTYPE_ENABLE_LUN: { isplun_t *ip = (isplun_t *) sp; if (ip->req_status != 1) { PRINTF("%s: ENABLE LUN returned status 0x%x\n", isp->isp_name, ip->req_status); } break; } case RQSTYPE_ATIO2: { fcparam *fcp = isp->isp_param; ispctiot2_t local, *ct2 = NULL; ispatiot2_t *at2 = (ispatiot2_t *) sp; int s; PRINTF("%s: atio2 loopid %d for lun %d rxid 0x%x flags 0x%x " "task flags 0x%x exec codes 0x%x\n", isp->isp_name, at2->req_initiator, at2->req_lun, at2->req_rxid, at2->req_flags, at2->req_taskflags, at2->req_execodes); switch (at2->req_status & ~ATIO_SENSEVALID) { case ATIO_PATH_INVALID: PRINTF("%s: ATIO2 Path Invalid\n", isp->isp_name); break; case ATIO_NOCAP: PRINTF("%s: ATIO2 No Cap\n", isp->isp_name); break; case ATIO_BDR_MSG: PRINTF("%s: ATIO2 BDR Received\n", isp->isp_name); break; case ATIO_CDB_RECEIVED: ct2 = &local; break; default: PRINTF("%s: unknown req_status 0x%x\n", isp->isp_name, at2->req_status); break; } if (ct2 == NULL) { /* * Just do an ACCEPT on this fellow. */ at2->req_header.rqs_entry_type = RQSTYPE_ATIO2; at2->req_header.rqs_flags = 0; at2->req_flags = 1; ireqp = at2; reqsize = sizeof (*at2); break; } PRINTF("%s: datalen %d cdb0=0x%x\n", isp->isp_name, at2->req_datalen, at2->req_cdb[0]); bzero ((void *) ct2, sizeof (*ct2)); ct2->req_header.rqs_entry_type = RQSTYPE_CTIO2; ct2->req_header.rqs_entry_count = 1; ct2->req_header.rqs_flags = 0; ct2->req_header.rqs_seqno = isp->isp_seqno++; ct2->req_handle = (at2->req_initiator << 16) | at2->req_lun; ct2->req_lun = at2->req_lun; ct2->req_initiator = at2->req_initiator; ct2->req_rxid = at2->req_rxid; ct2->req_flags = CTIO_SEND_STATUS; switch (at2->req_cdb[0]) { case 0x0: /* TUR */ ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE0; ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID; break; case 0x3: /* REQUEST SENSE */ case 0x12: /* INQUIRE */ ct2->req_flags |= CTIO_SEND_DATA | CTIO2_SMODE0; ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID; ct2->req_seg_count = 1; if (at2->req_cdb[0] == 0x12) { s = sizeof(tgtiqd); bcopy((void *)tgtiqd, fcp->isp_scratch, s); } else { s = at2->req_datalen; bzero(fcp->isp_scratch, s); } ct2->req_m.mode0.req_dataseg[0].ds_base = fcp->isp_scdma; ct2->req_m.mode0.req_dataseg[0].ds_count = s; ct2->req_m.mode0.req_datalen = s; #if 0 if (at2->req_datalen < s) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RESP_VALID|CTIO2_RSPOVERUN; } else if (at2->req_datalen > s) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RESP_VALID|CTIO2_RSPUNDERUN; } #endif break; default: /* ALL OTHERS */ ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE1; ct2->req_m.mode1.req_scsi_status = 0; #if 0 if (at2->req_datalen) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RSPUNDERUN; #if BYTE_ORDER == BIG_ENDIAN ct2->req_resid[1] = at2->req_datalen & 0xff; ct2->req_resid[0] = (at2->req_datalen >> 8) & 0xff; ct2->req_resid[3] = (at2->req_datalen >> 16) & 0xff; ct2->req_resid[2] = (at2->req_datalen >> 24) & 0xff; #else ct2->req_resid[0] = at2->req_datalen & 0xff; ct2->req_resid[1] = (at2->req_datalen >> 8) & 0xff; ct2->req_resid[2] = (at2->req_datalen >> 16) & 0xff; ct2->req_resid[3] = (at2->req_datalen >> 24) & 0xff; #endif } #endif if ((at2->req_status & ATIO_SENSEVALID) == 0) { ct2->req_m.mode1.req_sense_len = 18; ct2->req_m.mode1.req_scsi_status |= 2; ct2->req_m.mode1.req_response[0] = 0x70; ct2->req_m.mode1.req_response[2] = 0x2; } else { ct2->req_m.mode1.req_sense_len = 18; ct2->req_m.mode1.req_scsi_status |= at2->req_scsi_status; bcopy((void *)at2->req_sense, (void *)ct2->req_m.mode1.req_response, sizeof (at2->req_sense)); } break; } reqsize = sizeof (*ct2); ireqp = ct2; break; } case RQSTYPE_CTIO2: { ispatiot2_t *at2; ispctiot2_t *ct2 = (ispctiot2_t *) sp; PRINTF("%s: CTIO2 returned status 0x%x\n", isp->isp_name, ct2->req_status); /* * Return the ATIO to the board. */ at2 = (ispatiot2_t *) sp; at2->req_header.rqs_entry_type = RQSTYPE_ATIO2; at2->req_header.rqs_entry_count = 1; at2->req_header.rqs_flags = 0; at2->req_header.rqs_seqno = isp->isp_seqno++; at2->req_status = 1; reqsize = sizeof (*at2); ireqp = at2; break; } #endif default: PRINTF("%s: other response type %x\n", isp->isp_name, sp->req_header.rqs_entry_type); break; } if (reqsize) { void *reqp; optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; reqp = (void *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow other response\n", isp->isp_name); } else { bcopy(ireqp, reqp, reqsize); ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; } } return (0); } #if defined(ISP2100_TARGET_MODE) || defined(ISP_TARGET_MODE) /* * Locks held, and ints disabled (if FC). * * XXX: SETUP ONLY FOR INITIAL ENABLING RIGHT NOW */ static int isp_modify_lun(isp, lun, icnt, ccnt) struct ispsoftc *isp; int lun; /* logical unit to enable, modify, or disable */ int icnt; /* immediate notify count */ int ccnt; /* command count */ { isplun_t *ip = NULL; u_int8_t iptr, optr; optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; ip = (isplun_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow in isp_modify_lun\n", isp->isp_name); return (-1); } bzero((void *) ip, sizeof (*ip)); ip->req_header.rqs_entry_type = RQSTYPE_ENABLE_LUN; ip->req_header.rqs_entry_count = 1; ip->req_header.rqs_flags = 0; ip->req_header.rqs_seqno = isp->isp_seqno++; ip->req_handle = RQSTYPE_ENABLE_LUN; ip->req_lun = lun; ip->req_cmdcount = ccnt; ip->req_imcount = icnt; ip->req_timeout = 0; /* default 30 seconds */ ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; return (0); } #endif static void isp_parse_status(isp, sp, xs) struct ispsoftc *isp; ispstatusreq_t *sp; ISP_SCSI_XFER_T *xs; { switch (sp->req_completion_status) { case RQCS_COMPLETE: XS_SETERR(xs, HBA_NOERROR); return; case RQCS_INCOMPLETE: if ((sp->req_state_flags & RQSF_GOT_TARGET) == 0) { IDPRINTF(3, ("%s: Selection Timeout for target %d\n", isp->isp_name, XS_TGT(xs))); XS_SETERR(xs, HBA_SELTIMEOUT); return; } PRINTF("%s: command incomplete for target %d lun %d, state " "0x%x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), sp->req_state_flags); break; case RQCS_DMA_ERROR: PRINTF("%s: DMA error for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_TRANSPORT_ERROR: PRINTF("%s: transport error\n", isp->isp_name); isp_prtstst(sp); break; case RQCS_RESET_OCCURRED: IDPRINTF(2, ("%s: bus reset destroyed command for target %d " "lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs))); isp->isp_sendmarker = 1; XS_SETERR(xs, HBA_BUSRESET); return; case RQCS_ABORTED: PRINTF("%s: command aborted for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); isp->isp_sendmarker = 1; XS_SETERR(xs, HBA_ABORTED); return; case RQCS_TIMEOUT: IDPRINTF(2, ("%s: command timed out for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs))); XS_SETERR(xs, HBA_CMDTIMEOUT); return; case RQCS_DATA_OVERRUN: if (isp->isp_type & ISP_HA_FC) { XS_RESID(xs) = sp->req_resid; break; } XS_SETERR(xs, HBA_DATAOVR); return; case RQCS_COMMAND_OVERRUN: PRINTF("%s: command overrun for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_STATUS_OVERRUN: PRINTF("%s: status overrun for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_BAD_MESSAGE: PRINTF("%s: message not COMMAND COMPLETE after status on " "target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_NO_MESSAGE_OUT: PRINTF("%s: No MESSAGE OUT phase after selection on " "target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_EXT_ID_FAILED: PRINTF("%s: EXTENDED IDENTIFY failed on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_IDE_MSG_FAILED: PRINTF("%s: target %d lun %d rejected INITIATOR DETECTED " "ERROR message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ABORT_MSG_FAILED: PRINTF("%s: target %d lun %d rejected ABORT message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_REJECT_MSG_FAILED: PRINTF("%s: target %d lun %d rejected MESSAGE REJECT message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_NOP_MSG_FAILED: PRINTF("%s: target %d lun %d rejected NOP message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_PARITY_ERROR_MSG_FAILED: PRINTF("%s: target %d lun %d rejected MESSAGE PARITY ERROR " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_DEVICE_RESET_MSG_FAILED: PRINTF("%s: target %d lun %d rejected BUS DEVICE RESET " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ID_MSG_FAILED: PRINTF("%s: target %d lun %d rejected IDENTIFY " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_UNEXP_BUS_FREE: PRINTF("%s: target %d lun %d had unexeptected bus free\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_DATA_UNDERRUN: if (isp->isp_type & ISP_HA_FC) { XS_RESID(xs) = sp->req_resid; /* an UNDERRUN is not a botch ??? */ } XS_SETERR(xs, HBA_NOERROR); return; case RQCS_XACT_ERR1: PRINTF("%s: HBA attempted queued transaction with disconnect " "not set for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_XACT_ERR2: PRINTF("%s: HBA attempted queued transaction to target " "routine %d on target %d\n", isp->isp_name, XS_LUN(xs), XS_TGT(xs)); break; case RQCS_XACT_ERR3: PRINTF("%s: HBA attempted queued transaction for target %d lun " "%d when queueing disabled\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_BAD_ENTRY: PRINTF("%s: invalid IOCB entry type detected\n", isp->isp_name); break; case RQCS_QUEUE_FULL: PRINTF("%s: internal queues full for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_PHASE_SKIPPED: PRINTF("%s: SCSI phase skipped (e.g., COMMAND COMPLETE w/o " "STATUS phase) for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ARQS_FAILED: PRINTF("%s: Auto Request Sense failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); XS_SETERR(xs, HBA_ARQFAIL); return; case RQCS_WIDE_FAILED: PRINTF("%s: Wide Negotiation failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); if (isp->isp_type & ISP_HA_SCSI) { sdparam *sdp = isp->isp_param; isp->isp_update = 1; sdp->isp_devparam[XS_TGT(xs)].dev_update = 1; sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_WIDE; } XS_SETERR(xs, HBA_NOERROR); return; case RQCS_SYNCXFER_FAILED: PRINTF("%s: SDTR Message failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); if (isp->isp_type & ISP_HA_SCSI) { sdparam *sdp = isp->isp_param; isp->isp_update = 1; sdp->isp_devparam[XS_TGT(xs)].dev_update = 1; sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_SYNC; } break; case RQCS_LVD_BUSERR: PRINTF("%s: Bad LVD Bus condition while talking to target %d " "lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_PORT_UNAVAILABLE: /* * No such port on the loop. Moral equivalent of SELTIMEO */ IDPRINTF(3, ("%s: Port Unavailable for target %d\n", isp->isp_name, XS_TGT(xs))); XS_SETERR(xs, HBA_SELTIMEOUT); return; case RQCS_PORT_LOGGED_OUT: /* * It was there (maybe)- treat as a selection timeout. */ PRINTF("%s: port logout for target %d\n", isp->isp_name, XS_TGT(xs)); XS_SETERR(xs, HBA_SELTIMEOUT); return; case RQCS_PORT_CHANGED: PRINTF("%s: port changed for target %d\n", isp->isp_name, XS_TGT(xs)); break; case RQCS_PORT_BUSY: PRINTF("%s: port busy for target %d\n", isp->isp_name, XS_TGT(xs)); XS_SETERR(xs, HBA_TGTBSY); return; default: PRINTF("%s: comp status %x\n", isp->isp_name, sp->req_completion_status); break; } XS_SETERR(xs, HBA_BOTCH); } #define HINIB(x) ((x) >> 0x4) #define LONIB(x) ((x) & 0xf) #define MAKNIB(a, b) (((a) << 4) | (b)) static u_int8_t mbpcnt[] = { MAKNIB(1, 1), /* 0x00: MBOX_NO_OP */ MAKNIB(5, 5), /* 0x01: MBOX_LOAD_RAM */ MAKNIB(2, 0), /* 0x02: MBOX_EXEC_FIRMWARE */ MAKNIB(5, 5), /* 0x03: MBOX_DUMP_RAM */ MAKNIB(3, 3), /* 0x04: MBOX_WRITE_RAM_WORD */ MAKNIB(2, 3), /* 0x05: MBOX_READ_RAM_WORD */ MAKNIB(6, 6), /* 0x06: MBOX_MAILBOX_REG_TEST */ MAKNIB(2, 3), /* 0x07: MBOX_VERIFY_CHECKSUM */ MAKNIB(1, 3), /* 0x08: MBOX_ABOUT_FIRMWARE */ MAKNIB(0, 0), /* 0x09: */ MAKNIB(0, 0), /* 0x0a: */ MAKNIB(0, 0), /* 0x0b: */ MAKNIB(0, 0), /* 0x0c: */ MAKNIB(0, 0), /* 0x0d: */ MAKNIB(1, 2), /* 0x0e: MBOX_CHECK_FIRMWARE */ MAKNIB(0, 0), /* 0x0f: */ MAKNIB(5, 5), /* 0x10: MBOX_INIT_REQ_QUEUE */ MAKNIB(6, 6), /* 0x11: MBOX_INIT_RES_QUEUE */ MAKNIB(4, 4), /* 0x12: MBOX_EXECUTE_IOCB */ MAKNIB(2, 2), /* 0x13: MBOX_WAKE_UP */ MAKNIB(1, 6), /* 0x14: MBOX_STOP_FIRMWARE */ MAKNIB(4, 4), /* 0x15: MBOX_ABORT */ MAKNIB(2, 2), /* 0x16: MBOX_ABORT_DEVICE */ MAKNIB(3, 3), /* 0x17: MBOX_ABORT_TARGET */ MAKNIB(2, 2), /* 0x18: MBOX_BUS_RESET */ MAKNIB(2, 3), /* 0x19: MBOX_STOP_QUEUE */ MAKNIB(2, 3), /* 0x1a: MBOX_START_QUEUE */ MAKNIB(2, 3), /* 0x1b: MBOX_SINGLE_STEP_QUEUE */ MAKNIB(2, 3), /* 0x1c: MBOX_ABORT_QUEUE */ MAKNIB(2, 4), /* 0x1d: MBOX_GET_DEV_QUEUE_STATUS */ MAKNIB(0, 0), /* 0x1e: */ MAKNIB(1, 3), /* 0x1f: MBOX_GET_FIRMWARE_STATUS */ MAKNIB(1, 3), /* 0x20: MBOX_GET_INIT_SCSI_ID, MBOX_GET_LOOP_ID */ MAKNIB(1, 2), /* 0x21: MBOX_GET_SELECT_TIMEOUT */ MAKNIB(1, 3), /* 0x22: MBOX_GET_RETRY_COUNT */ MAKNIB(1, 2), /* 0x23: MBOX_GET_TAG_AGE_LIMIT */ MAKNIB(1, 2), /* 0x24: MBOX_GET_CLOCK_RATE */ MAKNIB(1, 2), /* 0x25: MBOX_GET_ACT_NEG_STATE */ MAKNIB(1, 2), /* 0x26: MBOX_GET_ASYNC_DATA_SETUP_TIME */ MAKNIB(1, 3), /* 0x27: MBOX_GET_PCI_PARAMS */ MAKNIB(2, 4), /* 0x28: MBOX_GET_TARGET_PARAMS */ MAKNIB(2, 4), /* 0x29: MBOX_GET_DEV_QUEUE_PARAMS */ MAKNIB(0, 0), /* 0x2a: */ MAKNIB(0, 0), /* 0x2b: */ MAKNIB(0, 0), /* 0x2c: */ MAKNIB(0, 0), /* 0x2d: */ MAKNIB(0, 0), /* 0x2e: */ MAKNIB(0, 0), /* 0x2f: */ MAKNIB(2, 2), /* 0x30: MBOX_SET_INIT_SCSI_ID */ MAKNIB(2, 2), /* 0x31: MBOX_SET_SELECT_TIMEOUT */ MAKNIB(3, 3), /* 0x32: MBOX_SET_RETRY_COUNT */ MAKNIB(2, 2), /* 0x33: MBOX_SET_TAG_AGE_LIMIT */ MAKNIB(2, 2), /* 0x34: MBOX_SET_CLOCK_RATE */ MAKNIB(2, 2), /* 0x35: MBOX_SET_ACTIVE_NEG_STATE */ MAKNIB(2, 2), /* 0x36: MBOX_SET_ASYNC_DATA_SETUP_TIME */ MAKNIB(3, 3), /* 0x37: MBOX_SET_PCI_CONTROL_PARAMS */ MAKNIB(4, 4), /* 0x38: MBOX_SET_TARGET_PARAMS */ MAKNIB(4, 4), /* 0x39: MBOX_SET_DEV_QUEUE_PARAMS */ MAKNIB(0, 0), /* 0x3a: */ MAKNIB(0, 0), /* 0x3b: */ MAKNIB(0, 0), /* 0x3c: */ MAKNIB(0, 0), /* 0x3d: */ MAKNIB(0, 0), /* 0x3e: */ MAKNIB(0, 0), /* 0x3f: */ MAKNIB(1, 2), /* 0x40: MBOX_RETURN_BIOS_BLOCK_ADDR */ MAKNIB(6, 1), /* 0x41: MBOX_WRITE_FOUR_RAM_WORDS */ MAKNIB(2, 3), /* 0x42: MBOX_EXEC_BIOS_IOCB */ MAKNIB(0, 0), /* 0x43: */ MAKNIB(0, 0), /* 0x44: */ MAKNIB(0, 0), /* 0x45: */ MAKNIB(0, 0), /* 0x46: */ MAKNIB(0, 0), /* 0x47: */ MAKNIB(0, 0), /* 0x48: */ MAKNIB(0, 0), /* 0x49: */ MAKNIB(0, 0), /* 0x4a: */ MAKNIB(0, 0), /* 0x4b: */ MAKNIB(0, 0), /* 0x4c: */ MAKNIB(0, 0), /* 0x4d: */ MAKNIB(0, 0), /* 0x4e: */ MAKNIB(0, 0), /* 0x4f: */ MAKNIB(0, 0), /* 0x50: */ MAKNIB(0, 0), /* 0x51: */ MAKNIB(0, 0), /* 0x52: */ MAKNIB(0, 0), /* 0x53: */ MAKNIB(8, 0), /* 0x54: MBOX_EXEC_COMMAND_IOCB_A64 */ MAKNIB(0, 0), /* 0x55: */ MAKNIB(0, 0), /* 0x56: */ MAKNIB(0, 0), /* 0x57: */ MAKNIB(0, 0), /* 0x58: */ MAKNIB(0, 0), /* 0x59: */ MAKNIB(0, 0), /* 0x5a: */ MAKNIB(0, 0), /* 0x5b: */ MAKNIB(0, 0), /* 0x5c: */ MAKNIB(0, 0), /* 0x5d: */ MAKNIB(0, 0), /* 0x5e: */ MAKNIB(0, 0), /* 0x5f: */ MAKNIB(8, 6), /* 0x60: MBOX_INIT_FIRMWARE */ MAKNIB(0, 0), /* 0x60: MBOX_GET_INIT_CONTROL_BLOCK (FORMAT?) */ MAKNIB(2, 1), /* 0x62: MBOX_INIT_LIP */ MAKNIB(8, 1), /* 0x63: MBOX_GET_FC_AL_POSITION_MAP */ MAKNIB(8, 1), /* 0x64: MBOX_GET_PORT_DB */ MAKNIB(3, 1), /* 0x65: MBOX_CLEAR_ACA */ MAKNIB(3, 1), /* 0x66: MBOX_TARGET_RESET */ MAKNIB(3, 1), /* 0x67: MBOX_CLEAR_TASK_SET */ MAKNIB(3, 1), /* 0x69: MBOX_ABORT_TASK_SET */ MAKNIB(1, 2) /* 0x69: MBOX_GET_FW_STATE */ }; #define NMBCOM (sizeof (mbpcnt) / sizeof (mbpcnt[0])) static void isp_mboxcmd(isp, mbp) struct ispsoftc *isp; mbreg_t *mbp; { int outparam, inparam; int loops, dld = 0; u_int8_t opcode; if (mbp->param[0] == ISP2100_SET_PCI_PARAM) { opcode = mbp->param[0] = MBOX_SET_PCI_PARAMETERS; inparam = 4; outparam = 4; goto command_known; } else if (mbp->param[0] > NMBCOM) { PRINTF("%s: bad command %x\n", isp->isp_name, mbp->param[0]); return; } opcode = mbp->param[0]; inparam = HINIB(mbpcnt[mbp->param[0]]); outparam = LONIB(mbpcnt[mbp->param[0]]); if (inparam == 0 && outparam == 0) { PRINTF("%s: no parameters for %x\n", isp->isp_name, mbp->param[0]); return; } command_known: /* * Make sure we can send some words.. */ loops = MBOX_DELAY_COUNT; while ((ISP_READ(isp, HCCR) & HCCR_HOST_INT) != 0) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #1\n", isp->isp_name); if (dld++) { return; } PRINTF("%s: but we'll try again, isr=%x\n", isp->isp_name, ISP_READ(isp, BIU_ISR)); if (ISP_READ(isp, BIU_SEMA) & 1) { u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0); if (isp_parse_async(isp, mbox)) return; ISP_WRITE(isp, BIU_SEMA, 0); } ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); goto command_known; } } /* * Write input parameters */ switch (inparam) { case 8: ISP_WRITE(isp, INMAILBOX7, mbp->param[7]); mbp->param[7] = 0; case 7: ISP_WRITE(isp, INMAILBOX6, mbp->param[6]); mbp->param[6] = 0; case 6: ISP_WRITE(isp, INMAILBOX5, mbp->param[5]); mbp->param[5] = 0; case 5: ISP_WRITE(isp, INMAILBOX4, mbp->param[4]); mbp->param[4] = 0; case 4: ISP_WRITE(isp, INMAILBOX3, mbp->param[3]); mbp->param[3] = 0; case 3: ISP_WRITE(isp, INMAILBOX2, mbp->param[2]); mbp->param[2] = 0; case 2: ISP_WRITE(isp, INMAILBOX1, mbp->param[1]); mbp->param[1] = 0; case 1: ISP_WRITE(isp, INMAILBOX0, mbp->param[0]); mbp->param[0] = 0; } /* * Clear semaphore on mailbox registers */ ISP_WRITE(isp, BIU_SEMA, 0); /* * Clear RISC int condition. */ ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); /* * Set Host Interrupt condition so that RISC will pick up mailbox regs. */ ISP_WRITE(isp, HCCR, HCCR_CMD_SET_HOST_INT); /* * Wait until RISC int is set, except 2100 */ if ((isp->isp_type & ISP_HA_FC) == 0) { loops = MBOX_DELAY_COUNT; while ((ISP_READ(isp, BIU_ISR) & BIU_ISR_RISC_INT) == 0) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #2\n", isp->isp_name); return; } } } /* * Check to make sure that the semaphore has been set. */ loops = MBOX_DELAY_COUNT; while ((ISP_READ(isp, BIU_SEMA) & 1) == 0) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #3\n", isp->isp_name); return; } } /* * Make sure that the MBOX_BUSY has gone away */ loops = MBOX_DELAY_COUNT; while (ISP_READ(isp, OUTMAILBOX0) == MBOX_BUSY) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #4\n", isp->isp_name); return; } } /* * Pick up output parameters. */ switch (outparam) { case 8: mbp->param[7] = ISP_READ(isp, OUTMAILBOX7); case 7: mbp->param[6] = ISP_READ(isp, OUTMAILBOX6); case 6: mbp->param[5] = ISP_READ(isp, OUTMAILBOX5); case 5: mbp->param[4] = ISP_READ(isp, OUTMAILBOX4); case 4: mbp->param[3] = ISP_READ(isp, OUTMAILBOX3); case 3: mbp->param[2] = ISP_READ(isp, OUTMAILBOX2); case 2: mbp->param[1] = ISP_READ(isp, OUTMAILBOX1); case 1: mbp->param[0] = ISP_READ(isp, OUTMAILBOX0); } /* * Clear RISC int. */ ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); /* * Release semaphore on mailbox registers */ ISP_WRITE(isp, BIU_SEMA, 0); /* * Just to be chatty here... */ switch(mbp->param[0]) { case MBOX_COMMAND_COMPLETE: break; case MBOX_INVALID_COMMAND: IDPRINTF(2, ("%s: mbox cmd %x failed with INVALID_COMMAND\n", isp->isp_name, opcode)); break; case MBOX_HOST_INTERFACE_ERROR: PRINTF("%s: mbox cmd %x failed with HOST_INTERFACE_ERROR\n", isp->isp_name, opcode); break; case MBOX_TEST_FAILED: PRINTF("%s: mbox cmd %x failed with TEST_FAILED\n", isp->isp_name, opcode); break; case MBOX_COMMAND_ERROR: PRINTF("%s: mbox cmd %x failed with COMMAND_ERROR\n", isp->isp_name, opcode); break; case MBOX_COMMAND_PARAM_ERROR: PRINTF("%s: mbox cmd %x failed with COMMAND_PARAM_ERROR\n", isp->isp_name, opcode); break; case ASYNC_LOOP_UP: case ASYNC_LIP_OCCURRED: break; default: /* * The expected return of EXEC_FIRMWARE is zero. */ if ((opcode == MBOX_EXEC_FIRMWARE && mbp->param[0] != 0) || (opcode != MBOX_EXEC_FIRMWARE)) { PRINTF("%s: mbox cmd %x failed with error %x\n", isp->isp_name, opcode, mbp->param[0]); } break; } } void isp_lostcmd(isp, xs) struct ispsoftc *isp; ISP_SCSI_XFER_T *xs; { mbreg_t mbs; mbs.param[0] = MBOX_GET_FIRMWARE_STATUS; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "couldn't GET FIRMWARE STATUS"); return; } if (mbs.param[1]) { PRINTF("%s: %d commands on completion queue\n", isp->isp_name, mbs.param[1]); } if (XS_NULL(xs)) return; mbs.param[0] = MBOX_GET_DEV_QUEUE_STATUS; mbs.param[1] = (XS_TGT(xs) << 8) | XS_LUN(xs); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "couldn't GET DEVICE QUEUE STATUS"); return; } PRINTF("%s: lost command for target %d lun %d, %d active of %d, " "Queue State: %x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), mbs.param[2], mbs.param[3], mbs.param[1]); isp_dumpregs(isp, "lost command"); /* * XXX: Need to try and do something to recover. */ } static void isp_dumpregs(isp, msg) struct ispsoftc *isp; const char *msg; { PRINTF("%s: %s\n", isp->isp_name, msg); if (isp->isp_type & ISP_HA_SCSI) PRINTF(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); else PRINTF(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); PRINTF(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); PRINTF("risc_hccr=%x\n", ISP_READ(isp, HCCR)); if (isp->isp_type & ISP_HA_SCSI) { ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); PRINTF(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n", ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS), ISP_READ(isp, CDMA_FIFO_STS)); PRINTF(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n", ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS), ISP_READ(isp, DDMA_FIFO_STS)); PRINTF(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n", ISP_READ(isp, SXP_INTERRUPT), ISP_READ(isp, SXP_GROSS_ERR), ISP_READ(isp, SXP_PINS_CONTROL)); ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); } ISP_DUMPREGS(isp); } static void isp_dumpxflist(isp) struct ispsoftc *isp; { volatile ISP_SCSI_XFER_T *xs; int i, hdp; for (hdp = i = 0; i < RQUEST_QUEUE_LEN; i++) { xs = isp->isp_xflist[i]; if (xs == NULL) { continue; } if (hdp == 0) { PRINTF("%s: active requests\n", isp->isp_name); hdp++; } PRINTF(" Active Handle %d: tgt %d lun %d dlen %d\n", i+1, XS_TGT(xs), XS_LUN(xs), XS_XFRLEN(xs)); } } static void isp_fw_state(isp) struct ispsoftc *isp; { mbreg_t mbs; if (isp->isp_type & ISP_HA_FC) { int once = 0; fcparam *fcp = isp->isp_param; again: mbs.param[0] = MBOX_GET_FW_STATE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { if (mbs.param[0] == ASYNC_LIP_OCCURRED || mbs.param[0] == ASYNC_LOOP_UP) { if (once++ < 2) { goto again; } } isp_dumpregs(isp, "GET FIRMWARE STATE failed"); return; } fcp->isp_fwstate = mbs.param[1]; } } static void isp_update(isp) struct ispsoftc *isp; { int tgt; mbreg_t mbs; sdparam *sdp; isp->isp_update = 0; if (isp->isp_type & ISP_HA_FC) { return; } sdp = isp->isp_param; for (tgt = 0; tgt < MAX_TARGETS; tgt++) { if (sdp->isp_devparam[tgt].dev_enable == 0) { continue; } if (sdp->isp_devparam[tgt].dev_update == 0) { continue; } mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[1] = tgt << 8; mbs.param[2] = sdp->isp_devparam[tgt].dev_flags; mbs.param[3] = (sdp->isp_devparam[tgt].sync_offset << 8) | (sdp->isp_devparam[tgt].sync_period); IDPRINTF(3, ("\n%s: tgt %d cflags %x offset %x period %x\n", isp->isp_name, tgt, mbs.param[2], mbs.param[3] >> 8, mbs.param[3] & 0xff)); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to change SCSI parameters for " "target %d\n", isp->isp_name, tgt); } else { char *wt; int x, flags; flags = sdp->isp_devparam[tgt].cur_dflags = sdp->isp_devparam[tgt].dev_flags; x = sdp->isp_devparam[tgt].sync_period & 0xff; if (flags & DPARM_SYNC) { if (x == (ISP_20M_SYNCPARMS & 0xff)) { x = 20; } else if (x == (ISP_10M_SYNCPARMS & 0xff)) { x = 10; } else if (x == (ISP_08M_SYNCPARMS & 0xff)) { x = 8; } else if (x == (ISP_05M_SYNCPARMS & 0xff)) { x = 5; } else if (x == (ISP_04M_SYNCPARMS & 0xff)) { x = 4; } else { x = 0; } } else { x = 0; } switch (flags & (DPARM_WIDE|DPARM_TQING)) { case DPARM_WIDE: wt = ", 16 bit wide\n"; break; case DPARM_TQING: wt = ", Tagged Queueing Enabled\n"; break; case DPARM_WIDE|DPARM_TQING: wt = ", 16 bit wide, Tagged Queueing Enabled\n"; break; default: wt = "\n"; break; } if (x) { IDPRINTF(3, ("%s: Target %d maximum Sync Mode " "at %dMHz%s", isp->isp_name, tgt, x, wt)); } else { IDPRINTF(3, ("%s: Target %d Async Mode%s", isp->isp_name, tgt, wt)); } } sdp->isp_devparam[tgt].dev_update = 0; } } static void isp_setdfltparm(isp) struct ispsoftc *isp; { int i, use_nvram; mbreg_t mbs; sdparam *sdp; /* * Been there, done that, got the T-shirt... */ if (isp->isp_gotdparms) { IDPRINTF(3, ("%s: already have dparms\n", isp->isp_name)); return; } isp->isp_gotdparms = 1; use_nvram = (isp_read_nvram(isp) == 0); if (use_nvram) { return; } if (isp->isp_type & ISP_HA_FC) { fcparam *fcp = (fcparam *) isp->isp_param; fcp->isp_maxfrmlen = ICB_DFLT_FRMLEN; fcp->isp_maxalloc = 256; fcp->isp_execthrottle = 16; fcp->isp_retry_delay = 5; fcp->isp_retry_count = 0; /* * It would be nice to fake up a WWN in case we don't * get one out of NVRAM. Solaris does this for SOCAL * cards that don't have SBus properties- it sets up * a WWN based upon the system MAC Address. */ fcp->isp_wwn = 0; return; } sdp = (sdparam *) isp->isp_param; mbs.param[0] = MBOX_GET_ACT_NEG_STATE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { IDPRINTF(2, ("could not GET ACT NEG STATE\n")); sdp->isp_req_ack_active_neg = 1; sdp->isp_data_line_active_neg = 1; } else { sdp->isp_req_ack_active_neg = (mbs.param[1] >> 4) & 0x1; sdp->isp_data_line_active_neg = (mbs.param[1] >> 5) & 0x1; } for (i = 0; i < MAX_TARGETS; i++) { mbs.param[0] = MBOX_GET_TARGET_PARAMS; mbs.param[1] = i << 8; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: can't get SCSI parameters for target %d\n", isp->isp_name, i); sdp->isp_devparam[i].sync_period = 0; sdp->isp_devparam[i].sync_offset = 0; sdp->isp_devparam[i].dev_flags = DPARM_SAFE_DFLT; continue; } sdp->isp_devparam[i].dev_flags = mbs.param[2]; /* * The maximum period we can really see * here is 100 (decimal), or 400 ns. * For some unknown reason we sometimes * get back wildass numbers from the * boot device's parameters. * * XXX: Hmm- this may be based on a different * XXX: clock rate. */ if ((mbs.param[3] & 0xff) <= 0x64) { sdp->isp_devparam[i].sync_period = mbs.param[3] & 0xff; sdp->isp_devparam[i].sync_offset = mbs.param[3] >> 8; } /* * It is not safe to run Ultra Mode with a clock < 60. */ if (((sdp->isp_clock && sdp->isp_clock < 60) || (isp->isp_type < ISP_HA_SCSI_1020A)) && (sdp->isp_devparam[i].sync_period == (ISP_20M_SYNCPARMS & 0xff))) { sdp->isp_devparam[i].sync_offset = ISP_10M_SYNCPARMS >> 8; sdp->isp_devparam[i].sync_period = ISP_10M_SYNCPARMS & 0xff; } } /* * Set Default Host Adapter Parameters */ sdp->isp_cmd_dma_burst_enable = 1; sdp->isp_data_dma_burst_enabl = 1; sdp->isp_fifo_threshold = 0; sdp->isp_initiator_id = 7; if (isp->isp_type >= ISP_HA_SCSI_1040) { sdp->isp_async_data_setup = 9; } else { sdp->isp_async_data_setup = 6; } sdp->isp_selection_timeout = 250; sdp->isp_max_queue_depth = 128; sdp->isp_tag_aging = 8; sdp->isp_bus_reset_delay = 3; sdp->isp_retry_count = 0; sdp->isp_retry_delay = 1; for (i = 0; i < MAX_TARGETS; i++) { sdp->isp_devparam[i].exc_throttle = 16; sdp->isp_devparam[i].dev_enable = 1; } } /* * Re-initialize the ISP and complete all orphaned commands * with a 'botched' notice. * * Locks held prior to coming here. */ void isp_restart(isp) struct ispsoftc *isp; { ISP_SCSI_XFER_T *tlist[RQUEST_QUEUE_LEN], *xs; int i; for (i = 0; i < RQUEST_QUEUE_LEN; i++) { tlist[i] = (ISP_SCSI_XFER_T *) isp->isp_xflist[i]; } isp_reset(isp); if (isp->isp_state == ISP_RESETSTATE) { isp_init(isp); if (isp->isp_state == ISP_INITSTATE) { isp->isp_state = ISP_RUNSTATE; } } if (isp->isp_state != ISP_RUNSTATE) { PRINTF("%s: isp_restart cannot restart ISP\n", isp->isp_name); } for (i = 0; i < RQUEST_QUEUE_LEN; i++) { xs = tlist[i]; if (XS_NULL(xs)) continue; isp->isp_nactive--; if (isp->isp_nactive < 0) isp->isp_nactive = 0; XS_RESID(xs) = XS_XFRLEN(xs); XS_SETERR(xs, HBA_BUSRESET); XS_CMD_DONE(xs); } } void isp_watch(arg) void *arg; { int i; struct ispsoftc *isp = arg; ISP_SCSI_XFER_T *xs; ISP_LOCKVAL_DECL; /* * Look for completely dead commands (but not polled ones). */ ISP_ILOCK(isp); for (i = 0; i < RQUEST_QUEUE_LEN; i++) { if ((xs = (ISP_SCSI_XFER_T *) isp->isp_xflist[i]) == NULL) { continue; } if (XS_TIME(xs) == 0) { continue; } XS_TIME(xs) -= (WATCH_INTERVAL * 1000); /* * Avoid later thinking that this * transaction is not being timed. * Then give ourselves to watchdog * periods of grace. */ if (XS_TIME(xs) == 0) XS_TIME(xs) = 1; else if (XS_TIME(xs) > -(2 * WATCH_INTERVAL * 1000)) { continue; } if (isp_control(isp, ISPCTL_ABORT_CMD, xs)) { PRINTF("%s: isp_watch failed to abort command\n", isp->isp_name); isp_restart(isp); break; } } ISP_IUNLOCK(isp); RESTART_WATCHDOG(isp_watch, isp); } static void isp_prtstst(sp) ispstatusreq_t *sp; { PRINTF("states->"); if (sp->req_state_flags & RQSF_GOT_BUS) PRINTF("GOT_BUS "); if (sp->req_state_flags & RQSF_GOT_TARGET) PRINTF("GOT_TGT "); if (sp->req_state_flags & RQSF_SENT_CDB) PRINTF("SENT_CDB "); if (sp->req_state_flags & RQSF_XFRD_DATA) PRINTF("XFRD_DATA "); if (sp->req_state_flags & RQSF_GOT_STATUS) PRINTF("GOT_STS "); if (sp->req_state_flags & RQSF_GOT_SENSE) PRINTF("GOT_SNS "); if (sp->req_state_flags & RQSF_XFER_COMPLETE) PRINTF("XFR_CMPLT "); PRINTF("\n"); PRINTF("status->"); if (sp->req_status_flags & RQSTF_DISCONNECT) PRINTF("Disconnect "); if (sp->req_status_flags & RQSTF_SYNCHRONOUS) PRINTF("Sync_xfr "); if (sp->req_status_flags & RQSTF_PARITY_ERROR) PRINTF("Parity "); if (sp->req_status_flags & RQSTF_BUS_RESET) PRINTF("Bus_Reset "); if (sp->req_status_flags & RQSTF_DEVICE_RESET) PRINTF("Device_Reset "); if (sp->req_status_flags & RQSTF_ABORTED) PRINTF("Aborted "); if (sp->req_status_flags & RQSTF_TIMEOUT) PRINTF("Timeout "); if (sp->req_status_flags & RQSTF_NEGOTIATION) PRINTF("Negotiation "); PRINTF("\n"); } /* * NVRAM Routines */ static int isp_read_nvram(isp) struct ispsoftc *isp; { int i, amt; u_int8_t csum, minversion; union { u_int8_t _x[ISP2100_NVRAM_SIZE]; u_int16_t _s[ISP2100_NVRAM_SIZE>>1]; } _n; #define nvram_data _n._x #define nvram_words _n._s if (isp->isp_type & ISP_HA_FC) { amt = ISP2100_NVRAM_SIZE; minversion = 1; } else { amt = ISP_NVRAM_SIZE; minversion = 2; } /* * Just read the first two words first to see if we have a valid * NVRAM to continue reading the rest with. */ for (i = 0; i < 2; i++) { isp_rdnvram_word(isp, i, &nvram_words[i]); } if (nvram_data[0] != 'I' || nvram_data[1] != 'S' || nvram_data[2] != 'P') { if (isp->isp_bustype != ISP_BT_SBUS) { PRINTF("%s: invalid NVRAM header\n", isp->isp_name); } return (-1); } for (i = 2; i < amt>>1; i++) { isp_rdnvram_word(isp, i, &nvram_words[i]); } for (csum = 0, i = 0; i < amt; i++) { csum += nvram_data[i]; } if (csum != 0) { PRINTF("%s: invalid NVRAM checksum\n", isp->isp_name); return (-1); } if (ISP_NVRAM_VERSION(nvram_data) < minversion) { PRINTF("%s: version %d NVRAM not understood\n", isp->isp_name, ISP_NVRAM_VERSION(nvram_data)); return (-1); } if (isp->isp_type & ISP_HA_SCSI) { sdparam *sdp = (sdparam *) isp->isp_param; /* XXX CHECK THIS FOR SANITY XXX */ sdp->isp_fifo_threshold = ISP_NVRAM_FIFO_THRESHOLD(nvram_data); sdp->isp_initiator_id = ISP_NVRAM_INITIATOR_ID(nvram_data); sdp->isp_bus_reset_delay = ISP_NVRAM_BUS_RESET_DELAY(nvram_data); sdp->isp_retry_count = ISP_NVRAM_BUS_RETRY_COUNT(nvram_data); sdp->isp_retry_delay = ISP_NVRAM_BUS_RETRY_DELAY(nvram_data); sdp->isp_async_data_setup = ISP_NVRAM_ASYNC_DATA_SETUP_TIME(nvram_data); if (isp->isp_type >= ISP_HA_SCSI_1040) { if (sdp->isp_async_data_setup < 9) { sdp->isp_async_data_setup = 9; } } else { if (sdp->isp_async_data_setup != 6) { sdp->isp_async_data_setup = 6; } } sdp->isp_req_ack_active_neg = ISP_NVRAM_REQ_ACK_ACTIVE_NEGATION(nvram_data); sdp->isp_data_line_active_neg = ISP_NVRAM_DATA_LINE_ACTIVE_NEGATION(nvram_data); sdp->isp_data_dma_burst_enabl = ISP_NVRAM_DATA_DMA_BURST_ENABLE(nvram_data); sdp->isp_cmd_dma_burst_enable = ISP_NVRAM_CMD_DMA_BURST_ENABLE(nvram_data); sdp->isp_tag_aging = ISP_NVRAM_TAG_AGE_LIMIT(nvram_data); /* XXX ISP_NVRAM_FIFO_THRESHOLD_128 XXX */ sdp->isp_selection_timeout = ISP_NVRAM_SELECTION_TIMEOUT(nvram_data); sdp->isp_max_queue_depth = ISP_NVRAM_MAX_QUEUE_DEPTH(nvram_data); sdp->isp_fast_mttr = ISP_NVRAM_FAST_MTTR_ENABLE(nvram_data); for (i = 0; i < 16; i++) { sdp->isp_devparam[i].dev_enable = ISP_NVRAM_TGT_DEVICE_ENABLE(nvram_data, i); sdp->isp_devparam[i].exc_throttle = ISP_NVRAM_TGT_EXEC_THROTTLE(nvram_data, i); sdp->isp_devparam[i].sync_offset = ISP_NVRAM_TGT_SYNC_OFFSET(nvram_data, i); sdp->isp_devparam[i].sync_period = ISP_NVRAM_TGT_SYNC_PERIOD(nvram_data, i); if (isp->isp_type < ISP_HA_SCSI_1040) { /* * If we're not ultra, we can't possibly * be a shorter period than this. */ if (sdp->isp_devparam[i].sync_period < 0x19) { sdp->isp_devparam[i].sync_period = 0x19; } if (sdp->isp_devparam[i].sync_offset > 0xc) { sdp->isp_devparam[i].sync_offset = 0x0c; } } else { if (sdp->isp_devparam[i].sync_offset > 0x8) { sdp->isp_devparam[i].sync_offset = 0x8; } } sdp->isp_devparam[i].dev_flags = 0; if (ISP_NVRAM_TGT_RENEG(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_RENEG; if (ISP_NVRAM_TGT_QFRZ(nvram_data, i)) { PRINTF("%s: not supporting QFRZ option for " "target %d\n", isp->isp_name, i); } sdp->isp_devparam[i].dev_flags |= DPARM_ARQ; if (ISP_NVRAM_TGT_ARQ(nvram_data, i) == 0) { PRINTF("%s: not disabling ARQ option for " "target %d\n", isp->isp_name, i); } if (ISP_NVRAM_TGT_TQING(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_TQING; if (ISP_NVRAM_TGT_SYNC(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_SYNC; if (ISP_NVRAM_TGT_WIDE(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_WIDE; if (ISP_NVRAM_TGT_PARITY(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_PARITY; if (ISP_NVRAM_TGT_DISC(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_DISC; } } else { fcparam *fcp = (fcparam *) isp->isp_param; union { struct { #if BYTE_ORDER == BIG_ENDIAN u_int32_t hi32; u_int32_t lo32; #else u_int32_t lo32; u_int32_t hi32; #endif } wds; u_int64_t full64; } wwnstore; wwnstore.full64 = ISP2100_NVRAM_NODE_NAME(nvram_data); PRINTF("%s: Adapter WWN 0x%08x%08x\n", isp->isp_name, wwnstore.wds.hi32, wwnstore.wds.lo32); fcp->isp_wwn = wwnstore.full64; wwnstore.full64 = ISP2100_NVRAM_BOOT_NODE_NAME(nvram_data); if (wwnstore.full64 != 0) { PRINTF("%s: BOOT DEVICE WWN 0x%08x%08x\n", isp->isp_name, wwnstore.wds.hi32, wwnstore.wds.lo32); } fcp->isp_maxalloc = ISP2100_NVRAM_MAXIOCBALLOCATION(nvram_data); fcp->isp_maxfrmlen = ISP2100_NVRAM_MAXFRAMELENGTH(nvram_data); fcp->isp_retry_delay = ISP2100_NVRAM_RETRY_DELAY(nvram_data); fcp->isp_retry_count = ISP2100_NVRAM_RETRY_COUNT(nvram_data); fcp->isp_loopid = ISP2100_NVRAM_HARDLOOPID(nvram_data); fcp->isp_execthrottle = ISP2100_NVRAM_EXECUTION_THROTTLE(nvram_data); } return (0); } static void isp_rdnvram_word(isp, wo, rp) struct ispsoftc *isp; int wo; u_int16_t *rp; { int i, cbits; u_int16_t bit, rqst; ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK); SYS_DELAY(2); if (isp->isp_type & ISP_HA_FC) { wo &= ((ISP2100_NVRAM_SIZE >> 1) - 1); rqst = (ISP_NVRAM_READ << 8) | wo; cbits = 10; } else { wo &= ((ISP_NVRAM_SIZE >> 1) - 1); rqst = (ISP_NVRAM_READ << 6) | wo; cbits = 8; } /* * Clock the word select request out... */ for (i = cbits; i >= 0; i--) { if ((rqst >> i) & 1) { bit = BIU_NVRAM_SELECT | BIU_NVRAM_DATAOUT; } else { bit = BIU_NVRAM_SELECT; } ISP_WRITE(isp, BIU_NVRAM, bit); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, bit | BIU_NVRAM_CLOCK); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, bit); SYS_DELAY(2); } /* * Now read the result back in (bits come back in MSB format). */ *rp = 0; for (i = 0; i < 16; i++) { u_int16_t rv; *rp <<= 1; ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK); SYS_DELAY(2); rv = ISP_READ(isp, BIU_NVRAM); if (rv & BIU_NVRAM_DATAIN) { *rp |= 1; } SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT); SYS_DELAY(2); } ISP_WRITE(isp, BIU_NVRAM, 0); SYS_DELAY(2); #if BYTE_ORDER == BIG_ENDIAN *rp = ((*rp >> 8) | ((*rp & 0xff) << 8)); #endif }