/* * Copyright (c) 1999 Cameron Grant * Portions Copyright by Luigi Rizzo - 1997-99 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #define MIN_CHUNK_SIZE 256 /* for uiomove etc. */ #define DMA_ALIGN_THRESHOLD 4 #define DMA_ALIGN_MASK (~(DMA_ALIGN_THRESHOLD - 1)) #define ISA_DMA(b) (((b)->chan >= 0 && (b)->chan != 4 && (b)->chan < 8)) #define CANCHANGE(c) (!(c)->buffer.dl) static int chn_reinit(pcm_channel *c); static void chn_stintr(pcm_channel *c); /* * SOUND OUTPUT We use a circular buffer to store samples directed to the DAC. The buffer is split into two variable-size regions, each identified by an offset in the buffer (rp,fp) and a length (rl,fl): 0 rp,rl fp,fl bufsize |__________>____________>________| FREE d READY w FREE READY: data written from the process and ready to be sent to the DAC; FREE: free part of the buffer. Both regions can wrap around the end of the buffer. At initialization, READY is empty, FREE takes all the available space, and dma is idle. dl contains the length of the current DMA transfer, dl=0 means that the dma is idle. The two boundaries (rp,fp) in the buffers are advanced by DMA [d] and write() [w] operations. The first portion of the READY region is used for DMA transfers. The transfer is started at rp and with chunks of length dl. During DMA operations, dsp_wr_dmaupdate() updates rp, rl and fl tracking the ISA DMA engine as the transfer makes progress. When a new block is written, fp advances and rl,fl are updated accordingly. The code works as follows: the user write routine dsp_write_body() fills up the READY region with new data (reclaiming space from the FREE region) and starts the write DMA engine if inactive. When a DMA transfer is complete, an interrupt causes dsp_wrintr() to be called which extends the FREE region and possibly starts the next transfer. In some cases, the code tries to track the current status of DMA operations by calling dsp_wr_dmaupdate() which changes rp, rl and fl. The sistem tries to make all DMA transfers use the same size, play_blocksize or rec_blocksize. The size is either selected by the user, or computed by the system to correspond to about .25s of audio. The blocksize must be within a range which is currently: min(5ms, 40 bytes) ... 1/2 buffer size. When there aren't enough data (write) or space (read), a transfer is started with a reduced size. To reduce problems in case of overruns, the routine which fills up the buffer should initialize (e.g. by repeating the last value) a reasonably long area after the last block so that no noise is produced on overruns. * */ /* XXX this is broken: in the event a bounce buffer is used, data never * gets copied in or out of the real buffer. fix requires mods to isa_dma.c * and possibly fixes to other autodma mode clients */ static void chn_isadmabounce(pcm_channel *c) { if (ISA_DMA(&c->buffer)) { /* tell isa_dma to bounce data in/out */ } else panic("chn_isadmabounce called on invalid channel"); } static int chn_polltrigger(pcm_channel *c) { snd_dbuf *b = &c->buffer; unsigned lim = (c->flags & CHN_F_HAS_SIZE)? c->blocksize : 1; int trig = 0; if (c->flags & CHN_F_MAPPED) trig = ((b->int_count > b->prev_int_count) || b->first_poll); else trig = (((c->direction == PCMDIR_PLAY)? b->fl : b->rl) >= lim); return trig; } static int chn_pollreset(pcm_channel *c) { snd_dbuf *b = &c->buffer; if (c->flags & CHN_F_MAPPED) b->prev_int_count = b->int_count; b->first_poll = 0; return 1; } /* * chn_dmadone() updates pointers and wakes up any process sleeping * or waiting on a select(). * Must be called at spltty(). */ static void chn_dmadone(pcm_channel *c) { snd_dbuf *b = &c->buffer; chn_dmaupdate(c); if (ISA_DMA(b)) chn_isadmabounce(c); /* sync bounce buffer */ wakeup(b); b->int_count++; if (b->sel.si_pid && chn_polltrigger(c)) selwakeup(&b->sel); } /* * chn_dmaupdate() tracks the status of a dma transfer, * updating pointers. It must be called at spltty(). * * NOTE: when we are using auto dma in the device, rl might become * negative. */ void chn_dmaupdate(pcm_channel *c) { snd_dbuf *b = &c->buffer; int delta, hwptr = chn_getptr(c); if (c->direction == PCMDIR_PLAY) { delta = (b->bufsize + hwptr - b->rp) % b->bufsize; b->rp = hwptr; b->rl -= delta; b->fl += delta; } else { delta = (b->bufsize + hwptr - b->fp) % b->bufsize; b->fp = hwptr; b->rl += delta; b->fl -= delta; } b->total += delta; } /* * Write interrupt routine. Can be called from other places (e.g. * to start a paused transfer), but with interrupts disabled. */ static void chn_wrintr(pcm_channel *c) { snd_dbuf *b = &c->buffer; int start; if (b->dl) chn_dmadone(c); /* * start another dma operation only if have ready data in the buffer, * there is no pending abort, have a full-duplex device, or have a * half duplex device and there is no pending op on the other side. * * Force transfers to be aligned to a boundary of 4, which is * needed when doing stereo and 16-bit. */ if (c->flags & CHN_F_MAPPED) start = c->flags & CHN_F_TRIGGERED; else start = (b->rl >= DMA_ALIGN_THRESHOLD && !(c->flags & CHN_F_ABORTING)); if (start) { int l; chn_dmaupdate(c); l = min(b->rl, c->blocksize) & DMA_ALIGN_MASK; if (c->flags & CHN_F_MAPPED) l = c->blocksize; /* * check if we need to reprogram the DMA on the sound card. * This happens if the size has changed _and_ the new size * is smaller, or it matches the blocksize. * * 0 <= l <= blocksize * 0 <= dl <= blocksize * reprog if (dl == 0 || l != dl) * was: * l != b->dl && (b->dl == 0 || l < b->dl || l == c->blocksize) */ if (b->dl == 0 || l != b->dl) { /* size has changed. Stop and restart */ DEB(printf("wrintr: bsz %d -> %d, rp %d rl %d\n", b->dl, l, b->rp, b->rl)); if (b->dl) chn_trigger(c, PCMTRIG_STOP); b->dl = l; /* record new transfer size */ chn_trigger(c, PCMTRIG_START); } } else { /* cannot start a new dma transfer */ DEB(printf("cannot start wr-dma flags 0x%08x rp %d rl %d\n", c->flags, b->rp, b->rl)); if (b->dl) { /* was active */ b->dl = 0; chn_trigger(c, PCMTRIG_STOP); #if 0 if (c->flags & CHN_F_WRITING) DEB(printf("got wrint while reloading\n")); else if (b->rl <= 0) /* XXX added 980110 lr */ chn_resetbuf(c); #endif } } } /* * user write routine * * advance the boundary between READY and FREE, fill the space with * uiomove(), and possibly start DMA. Do the above until the transfer * is complete. * * To minimize latency in case a pending DMA transfer is about to end, * we do the transfer in pieces of increasing sizes, extending the * READY area at every checkpoint. In the (necessary) assumption that * memory bandwidth is larger than the rate at which the dma consumes * data, we reduce the latency to something proportional to the length * of the first piece, while keeping the overhead low and being able * to feed the DMA with large blocks. */ int chn_write(pcm_channel *c, struct uio *buf) { int l, w, timeout, ret = 0; long s; snd_dbuf *b = &c->buffer; if (c->flags & CHN_F_WRITING) { /* This shouldn't happen and is actually silly * - will never wake up, just timeout; why not sleep on b? */ tsleep(&s, PZERO, "pcmwrW", hz); return EBUSY; } c->flags |= CHN_F_WRITING; while (buf->uio_resid >= DMA_ALIGN_THRESHOLD) { s = spltty(); chn_dmaupdate(c); splx(s); if (b->fl < DMA_ALIGN_THRESHOLD) { if (c->flags & CHN_F_NBIO) break; timeout = (buf->uio_resid >= b->dl)? hz : 1; ret = tsleep(b, PRIBIO | PCATCH, "pcmwr", timeout); if (ret == EINTR) chn_abort(c); if (ret == EINTR || ret == ERESTART) break; ret = 0; continue; } /* ensure we always have a whole number of samples */ l = min(b->fl, b->bufsize - b->fp) & DMA_ALIGN_MASK; w = c->feeder->feed(c->feeder, b->buf + b->fp, l, buf); s = spltty(); b->rl += w; b->fl -= w; b->fp = (b->fp + w) % b->bufsize; splx(s); if (b->rl && !b->dl) chn_stintr(c); } c->flags &= ~CHN_F_WRITING; return ret; } /* * SOUND INPUT * The input part is similar to the output one, with a circular buffer split in two regions, and boundaries advancing because of read() calls [r] or dma operation [d]. At initialization, as for the write routine, READY is empty, and FREE takes all the space. 0 rp,rl fp,fl bufsize |__________>____________>________| FREE r READY d FREE Operation is as follows: upon user read (dsp_read_body()) a DMA read is started if not already active (marked by b->dl > 0), then as soon as data are available in the READY region they are transferred to the user buffer, thus advancing the boundary between FREE and READY. Upon interrupts, caused by a completion of a DMA transfer, the READY region is extended and possibly a new transfer is started. When necessary, dsp_rd_dmaupdate() is called to advance fp (and update rl,fl accordingly). Upon user reads, rp is advanced and rl,fl are updated accordingly. The rules to choose the size of the new DMA area are similar to the other case, with a preferred constant transfer size equal to rec_blocksize, and fallback to smaller sizes if no space is available. */ /* read interrupt routine. Must be called with interrupts blocked. */ static void chn_rdintr(pcm_channel *c) { snd_dbuf *b = &c->buffer; int start; if (b->dl) chn_dmadone(c); DEB(printf("rdintr: start dl %d, rp:rl %d:%d, fp:fl %d:%d\n", b->dl, b->rp, b->rl, b->fp, b->fl)); /* Restart if have enough free space to absorb overruns */ if (c->flags & CHN_F_MAPPED) start = c->flags & CHN_F_TRIGGERED; else start = (b->fl > 0x200 && !(c->flags & CHN_F_ABORTING)); if (start) { int l = min(b->fl - 0x100, c->blocksize); if (c->flags & CHN_F_MAPPED) l = c->blocksize; l &= DMA_ALIGN_MASK ; /* realign sizes */ DEB(printf("rdintr: dl %d -> %d\n", b->dl, l);) if (l != b->dl) { /* size has changed. Stop and restart */ if (b->dl) { chn_trigger(c, PCMTRIG_STOP); chn_dmaupdate(c); l = min(b->fl - 0x100, c->blocksize); l &= DMA_ALIGN_MASK ; /* realign sizes */ } b->dl = l; chn_trigger(c, PCMTRIG_START); } } else { if (b->dl) { /* was active */ b->dl = 0; chn_dmaupdate(c); chn_trigger(c, PCMTRIG_STOP); } } } /* * body of user-read routine * * Start DMA if not active; wait for READY not empty. * Transfer data from READY region using uiomove(), advance boundary * between FREE and READY. Repeat until transfer is complete. * * To avoid excessive latency in freeing up space for the DMA * engine, transfers are done in blocks of increasing size, so that * the latency is proportional to the size of the smallest block, but * we have a low overhead and are able to feed the dma engine with * large blocks. * * NOTE: in the current version, read will not return more than * blocksize bytes at once (unless more are already available), to * avoid that requests using very large buffers block for too long. */ int chn_read(pcm_channel *c, struct uio *buf) { int w, l, timeout, limit, ret = 0; long s; snd_dbuf *b = &c->buffer; if (c->flags & CHN_F_READING) { /* This shouldn't happen and is actually silly */ tsleep(&s, PZERO, "pcmrdR", hz); return (EBUSY); } if (!b->rl & !b->dl) chn_stintr(c); c->flags |= CHN_F_READING; limit = buf->uio_resid - c->blocksize; if (limit < 0) limit = 0; while (buf->uio_resid > limit) { s = spltty(); chn_dmaupdate(c); splx(s); if (b->rl < DMA_ALIGN_THRESHOLD) { if (c->flags & CHN_F_NBIO) break; timeout = (buf->uio_resid - limit >= b->dl)? hz : 1; ret = tsleep(b, PRIBIO | PCATCH, "pcmrd", timeout); if (ret == EINTR) chn_abort(c); if (ret == EINTR || ret == ERESTART) break; ret = 0; continue; } /* ensure we always have a whole number of samples */ l = min(b->rl, b->bufsize - b->rp) & DMA_ALIGN_MASK; w = c->feeder->feed(c->feeder, b->buf + b->rp, l, buf); s = spltty(); b->rl -= w; b->fl += w; b->rp = (b->rp + w) % b->bufsize; splx(s); } c->flags &= ~CHN_F_READING; return ret; } void chn_intr(pcm_channel *c) { if (!c->buffer.dl) chn_reinit(c); if (c->direction == PCMDIR_PLAY) chn_wrintr(c); else chn_rdintr(c); } static void chn_stintr(pcm_channel *c) { u_long s; s = spltty(); chn_intr(c); splx(s); } static void chn_dma_setmap(void *arg, bus_dma_segment_t *segs, int nseg, int error) { snd_dbuf *b = (snd_dbuf *)arg; if (bootverbose) { printf("pcm: setmap %lx, %lx; ", (unsigned long)segs->ds_addr, (unsigned long)segs->ds_len); printf("%p -> %lx\n", b->buf, (unsigned long)vtophys(b->buf)); } } int chn_allocbuf(snd_dbuf *b, bus_dma_tag_t parent_dmat) { if (bus_dmamem_alloc(parent_dmat, (void **)&b->buf, BUS_DMA_NOWAIT, &b->dmamap)) return -1; if (bus_dmamap_load(parent_dmat, b->dmamap, b->buf, b->bufsize, chn_dma_setmap, b, 0)) return -1; return 0; } void chn_resetbuf(pcm_channel *c) { snd_dbuf *b = &c->buffer; u_int16_t data, *p; u_int32_t i; c->buffer.sample_size = 1; c->buffer.sample_size <<= (c->hwfmt & AFMT_STEREO)? 1 : 0; c->buffer.sample_size <<= (c->hwfmt & AFMT_16BIT)? 1 : 0; /* rely on bufsize & 3 == 0 */ if (c->hwfmt & AFMT_SIGNED) data = 0x00; else data = 0x80; if (c->hwfmt & AFMT_16BIT) data <<= 8; else data |= data << 8; if (c->hwfmt & AFMT_BIGENDIAN) data = ((data >> 8) & 0x00ff) | ((data << 8) & 0xff00); for (i = 0, p = (u_int16_t *)b->buf; i < b->bufsize; i += 2) *p++ = data; b->rp = b->fp = 0; b->dl = b->rl = 0; b->prev_total = b->total = 0; b->prev_int_count = b->int_count = 0; b->first_poll = 1; b->fl = b->bufsize; } void buf_isadma(snd_dbuf *b, int go) { if (ISA_DMA(b)) { if (go == PCMTRIG_START) isa_dmastart(b->dir | B_RAW, b->buf, b->bufsize, b->chan); else { isa_dmastop(b->chan); isa_dmadone(b->dir | B_RAW, b->buf, b->bufsize, b->chan); } } else panic("buf_isadma called on invalid channel"); } int buf_isadmaptr(snd_dbuf *b) { if (ISA_DMA(b)) { int i = b->dl? isa_dmastatus(b->chan) : b->bufsize; if (i < 0) i = 0; return b->bufsize - i; } else panic("buf_isadmaptr called on invalid channel"); return -1; } /* * snd_sync waits until the space in the given channel goes above * a threshold. The threshold is checked against fl or rl respectively. * Assume that the condition can become true, do not check here... */ int chn_sync(pcm_channel *c, int threshold) { u_long s, rdy; int ret; snd_dbuf *b = &c->buffer; for (;;) { s = spltty(); chn_dmaupdate(c); rdy = (c->direction == PCMDIR_PLAY)? b->fl : b->rl; if (rdy <= threshold) { ret = tsleep((caddr_t)b, PRIBIO | PCATCH, "pcmsyn", 1); splx(s); if (ret == ERESTART || ret == EINTR) { printf("tsleep returns %d\n", ret); return -1; } } else break; } splx(s); return 0; } int chn_poll(pcm_channel *c, int ev, struct proc *p) { snd_dbuf *b = &c->buffer; u_long s = spltty(); if (b->dl) chn_dmaupdate(c); splx(s); if (chn_polltrigger(c) && chn_pollreset(c)) return ev; else { selrecord(p, &b->sel); return 0; } } /* * chn_abort is a non-blocking function which aborts a pending * DMA transfer and flushes the buffers. * It returns the number of bytes that have not been transferred. */ int chn_abort(pcm_channel *c) { long s; int missing = 0; snd_dbuf *b = &c->buffer; s = spltty(); if (b->dl) { b->dl = 0; c->flags &= ~((c->direction == PCMDIR_PLAY)? CHN_F_WRITING : CHN_F_READING); chn_trigger(c, PCMTRIG_ABORT); chn_dmadone(c); } missing = b->rl; splx(s); return missing; } /* * this routine tries to flush the dma transfer. It is called * on a close. We immediately abort any read DMA * operation, and then wait for the play buffer to drain. */ int chn_flush(pcm_channel *c) { int ret, count = 10; snd_dbuf *b = &c->buffer; DEB(printf("snd_flush c->flags 0x%08x\n", c->flags)); c->flags |= CHN_F_CLOSING; if (c->direction != PCMDIR_PLAY) chn_abort(c); else while (b->dl) { /* still pending output data. */ ret = tsleep((caddr_t)b, PRIBIO | PCATCH, "pcmflu", hz); chn_dmaupdate(c); DEB(printf("snd_sync: now rl : fl %d : %d\n", b->rl, b->fl)); if (ret == EINTR) { printf("tsleep returns %d\n", ret); return -1; } if (ret && --count == 0) { printf("timeout flushing dbuf_out, cnt 0x%x flags 0x%x\n", b->rl, c->flags); break; } } c->flags &= ~CHN_F_CLOSING; if (c->direction == PCMDIR_PLAY) chn_abort(c); return 0; } int chn_reset(pcm_channel *c) { chn_abort(c); c->flags &= CHN_F_RESET; chn_resetbuf(c); c->flags |= CHN_F_INIT; return 0; } static int chn_reinit(pcm_channel *c) { if ((c->flags & CHN_F_INIT) && CANCHANGE(c)) { chn_setformat(c, c->format); chn_setspeed(c, c->speed); chn_setblocksize(c, c->blocksize); chn_setvolume(c, (c->volume >> 8) & 0xff, c->volume & 0xff); c->flags &= ~CHN_F_INIT; return 1; } return 0; } int chn_init(pcm_channel *c, void *devinfo, int dir) { c->flags = 0; c->feeder = &feeder_root; c->buffer.chan = -1; c->devinfo = c->init(devinfo, &c->buffer, c, dir); chn_setdir(c, dir); return 0; } int chn_setdir(pcm_channel *c, int dir) { c->direction = dir; if (ISA_DMA(&c->buffer)) c->buffer.dir = (dir == PCMDIR_PLAY)? B_WRITE : B_READ; return c->setdir(c->devinfo, c->direction); } int chn_setvolume(pcm_channel *c, int left, int right) { /* could add a feeder for volume changing if channel returns -1 */ if (CANCHANGE(c)) { return -1; } c->volume = (left << 8) | right; c->flags |= CHN_F_INIT; return 0; } int chn_setspeed(pcm_channel *c, int speed) { /* could add a feeder for rate conversion */ if (CANCHANGE(c)) { c->speed = c->setspeed(c->devinfo, speed); return c->speed; } c->speed = speed; c->flags |= CHN_F_INIT; return 0; } int chn_setformat(pcm_channel *c, u_int32_t fmt) { if (CANCHANGE(c)) { c->hwfmt = c->format = fmt; c->hwfmt = chn_feedchain(c); chn_resetbuf(c); c->setformat(c->devinfo, c->hwfmt); return fmt; } c->format = fmt; c->flags |= CHN_F_INIT; return 0; } int chn_setblocksize(pcm_channel *c, int blksz) { if (CANCHANGE(c)) { c->flags &= ~CHN_F_HAS_SIZE; if (blksz >= 2) c->flags |= CHN_F_HAS_SIZE; blksz = abs(blksz); if (blksz < 2) blksz = (c->buffer.sample_size * c->speed) >> 2; RANGE(blksz, 1024, c->buffer.bufsize / 4); blksz &= ~3; c->blocksize = c->setblocksize(c->devinfo, blksz); return c->blocksize; } c->blocksize = blksz; c->flags |= CHN_F_INIT; return 0; } int chn_trigger(pcm_channel *c, int go) { return c->trigger(c->devinfo, go); } int chn_getptr(pcm_channel *c) { return c->getptr(c->devinfo); } pcmchan_caps * chn_getcaps(pcm_channel *c) { return c->getcaps(c->devinfo); }