/* * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_IPMADDR, "in_multi", "internet multicast address"); static int in_mask2len __P((struct in_addr *)); static void in_len2mask __P((struct in_addr *, int)); static int in_lifaddr_ioctl __P((struct socket *, u_long, caddr_t, struct ifnet *, struct proc *)); static void in_socktrim __P((struct sockaddr_in *)); static int in_ifinit __P((struct ifnet *, struct in_ifaddr *, struct sockaddr_in *, int)); static int subnetsarelocal = 0; SYSCTL_INT(_net_inet_ip, OID_AUTO, subnets_are_local, CTLFLAG_RW, &subnetsarelocal, 0, ""); struct in_multihead in_multihead; /* XXX BSS initialization */ extern struct inpcbinfo ripcbinfo; extern struct inpcbinfo udbinfo; /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). If subnetsarelocal * is true, this includes other subnets of the local net. * Otherwise, it includes only the directly-connected (sub)nets. */ int in_localaddr(in) struct in_addr in; { register u_long i = ntohl(in.s_addr); register struct in_ifaddr *ia; if (subnetsarelocal) { TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) if ((i & ia->ia_netmask) == ia->ia_net) return (1); } else { TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) if ((i & ia->ia_subnetmask) == ia->ia_subnet) return (1); } return (0); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(in) struct in_addr in; { register u_long i = ntohl(in.s_addr); register u_long net; if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i)) return (0); if (IN_CLASSA(i)) { net = i & IN_CLASSA_NET; if (net == 0 || net == (IN_LOOPBACKNET << IN_CLASSA_NSHIFT)) return (0); } return (1); } /* * Trim a mask in a sockaddr */ static void in_socktrim(ap) struct sockaddr_in *ap; { register char *cplim = (char *) &ap->sin_addr; register char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } static int in_mask2len(mask) struct in_addr *mask; { int x, y; u_char *p; p = (u_char *)mask; for (x = 0; x < sizeof(*mask); x++) { if (p[x] != 0xff) break; } y = 0; if (x < sizeof(*mask)) { for (y = 0; y < 8; y++) { if ((p[x] & (0x80 >> y)) == 0) break; } } return x * 8 + y; } static void in_len2mask(mask, len) struct in_addr *mask; int len; { int i; u_char *p; p = (u_char *)mask; bzero(mask, sizeof(*mask)); for (i = 0; i < len / 8; i++) p[i] = 0xff; if (len % 8) p[i] = (0xff00 >> (len % 8)) & 0xff; } static int in_interfaces; /* number of external internet interfaces */ /* * Generic internet control operations (ioctl's). * Ifp is 0 if not an interface-specific ioctl. */ /* ARGSUSED */ int in_control(so, cmd, data, ifp, p) struct socket *so; u_long cmd; caddr_t data; register struct ifnet *ifp; struct proc *p; { register struct ifreq *ifr = (struct ifreq *)data; register struct in_ifaddr *ia = 0, *iap; register struct ifaddr *ifa; struct in_ifaddr *oia; struct in_aliasreq *ifra = (struct in_aliasreq *)data; struct sockaddr_in oldaddr; int error, hostIsNew, maskIsNew, s; u_long i; switch (cmd) { case SIOCALIFADDR: case SIOCDLIFADDR: if (p && (error = suser(p)) != 0) return error; /*fall through*/ case SIOCGLIFADDR: if (!ifp) return EINVAL; return in_lifaddr_ioctl(so, cmd, data, ifp, p); } /* * Find address for this interface, if it exists. * * If an alias address was specified, find that one instead of * the first one on the interface. */ if (ifp) TAILQ_FOREACH(iap, &in_ifaddrhead, ia_link) if (iap->ia_ifp == ifp) { if (((struct sockaddr_in *)&ifr->ifr_addr)->sin_addr.s_addr == iap->ia_addr.sin_addr.s_addr) { ia = iap; break; } else if (ia == NULL) { ia = iap; if (ifr->ifr_addr.sa_family != AF_INET) break; } } switch (cmd) { case SIOCAIFADDR: case SIOCDIFADDR: if (ifp == 0) return (EADDRNOTAVAIL); if (ifra->ifra_addr.sin_family == AF_INET) { for (oia = ia; ia; ia = TAILQ_NEXT(ia, ia_link)) { if (ia->ia_ifp == ifp && ia->ia_addr.sin_addr.s_addr == ifra->ifra_addr.sin_addr.s_addr) break; } if ((ifp->if_flags & IFF_POINTOPOINT) && (cmd == SIOCAIFADDR) && (ifra->ifra_dstaddr.sin_addr.s_addr == INADDR_ANY)) { return EDESTADDRREQ; } } if (cmd == SIOCDIFADDR && ia == 0) return (EADDRNOTAVAIL); /* FALLTHROUGH */ case SIOCSIFADDR: case SIOCSIFNETMASK: case SIOCSIFDSTADDR: if (p && (error = suser(p)) != 0) return error; if (ifp == 0) return (EADDRNOTAVAIL); if (ia == (struct in_ifaddr *)0) { ia = (struct in_ifaddr *) malloc(sizeof *ia, M_IFADDR, M_WAITOK | M_ZERO); if (ia == (struct in_ifaddr *)NULL) return (ENOBUFS); /* * Protect from ipintr() traversing address list * while we're modifying it. */ s = splnet(); TAILQ_INSERT_TAIL(&in_ifaddrhead, ia, ia_link); ifa = &ia->ia_ifa; TAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; ia->ia_sockmask.sin_len = 8; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_len = sizeof(ia->ia_addr); ia->ia_broadaddr.sin_family = AF_INET; } ia->ia_ifp = ifp; if (!(ifp->if_flags & IFF_LOOPBACK)) in_interfaces++; splx(s); } break; case SIOCSIFBRDADDR: if (p && (error = suser(p)) != 0) return error; /* FALLTHROUGH */ case SIOCGIFADDR: case SIOCGIFNETMASK: case SIOCGIFDSTADDR: case SIOCGIFBRDADDR: if (ia == (struct in_ifaddr *)0) return (EADDRNOTAVAIL); break; } switch (cmd) { case SIOCGIFADDR: *((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) return (EINVAL); *((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) return (EINVAL); *((struct sockaddr_in *)&ifr->ifr_dstaddr) = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *((struct sockaddr_in *)&ifr->ifr_addr) = ia->ia_sockmask; break; case SIOCSIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) return (EINVAL); oldaddr = ia->ia_dstaddr; ia->ia_dstaddr = *(struct sockaddr_in *)&ifr->ifr_dstaddr; if (ifp->if_ioctl && (error = (*ifp->if_ioctl) (ifp, SIOCSIFDSTADDR, (caddr_t)ia))) { ia->ia_dstaddr = oldaddr; return (error); } if (ia->ia_flags & IFA_ROUTE) { ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr; rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST); ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP); } break; case SIOCSIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) return (EINVAL); ia->ia_broadaddr = *(struct sockaddr_in *)&ifr->ifr_broadaddr; break; case SIOCSIFADDR: return (in_ifinit(ifp, ia, (struct sockaddr_in *) &ifr->ifr_addr, 1)); case SIOCSIFNETMASK: i = ifra->ifra_addr.sin_addr.s_addr; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr = i); break; case SIOCAIFADDR: maskIsNew = 0; hostIsNew = 1; error = 0; if (ia->ia_addr.sin_family == AF_INET) { if (ifra->ifra_addr.sin_len == 0) { ifra->ifra_addr = ia->ia_addr; hostIsNew = 0; } else if (ifra->ifra_addr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) hostIsNew = 0; } if (ifra->ifra_mask.sin_len) { in_ifscrub(ifp, ia); ia->ia_sockmask = ifra->ifra_mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); maskIsNew = 1; } if ((ifp->if_flags & IFF_POINTOPOINT) && (ifra->ifra_dstaddr.sin_family == AF_INET)) { in_ifscrub(ifp, ia); ia->ia_dstaddr = ifra->ifra_dstaddr; maskIsNew = 1; /* We lie; but the effect's the same */ } if (ifra->ifra_addr.sin_family == AF_INET && (hostIsNew || maskIsNew)) error = in_ifinit(ifp, ia, &ifra->ifra_addr, 0); if ((ifp->if_flags & IFF_BROADCAST) && (ifra->ifra_broadaddr.sin_family == AF_INET)) ia->ia_broadaddr = ifra->ifra_broadaddr; return (error); case SIOCDIFADDR: /* * in_ifscrub kills the interface route. */ in_ifscrub(ifp, ia); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); /* * XXX horrible hack to detect that we are being called * from if_detach() */ if (ifaddr_byindex(ifp->if_index) != NULL) { in_pcbpurgeif0(LIST_FIRST(ripcbinfo.listhead), ifp); in_pcbpurgeif0(LIST_FIRST(udbinfo.listhead), ifp); } /* * Protect from ipintr() traversing address list * while we're modifying it. */ s = splnet(); ifa = &ia->ia_ifa; TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link); oia = ia; TAILQ_REMOVE(&in_ifaddrhead, oia, ia_link); IFAFREE(&oia->ia_ifa); splx(s); break; default: if (ifp == 0 || ifp->if_ioctl == 0) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } return (0); } /* * SIOC[GAD]LIFADDR. * SIOCGLIFADDR: get first address. (?!?) * SIOCGLIFADDR with IFLR_PREFIX: * get first address that matches the specified prefix. * SIOCALIFADDR: add the specified address. * SIOCALIFADDR with IFLR_PREFIX: * EINVAL since we can't deduce hostid part of the address. * SIOCDLIFADDR: delete the specified address. * SIOCDLIFADDR with IFLR_PREFIX: * delete the first address that matches the specified prefix. * return values: * EINVAL on invalid parameters * EADDRNOTAVAIL on prefix match failed/specified address not found * other values may be returned from in_ioctl() */ static int in_lifaddr_ioctl(so, cmd, data, ifp, p) struct socket *so; u_long cmd; caddr_t data; struct ifnet *ifp; struct proc *p; { struct if_laddrreq *iflr = (struct if_laddrreq *)data; struct ifaddr *ifa; /* sanity checks */ if (!data || !ifp) { panic("invalid argument to in_lifaddr_ioctl"); /*NOTRECHED*/ } switch (cmd) { case SIOCGLIFADDR: /* address must be specified on GET with IFLR_PREFIX */ if ((iflr->flags & IFLR_PREFIX) == 0) break; /*FALLTHROUGH*/ case SIOCALIFADDR: case SIOCDLIFADDR: /* address must be specified on ADD and DELETE */ if (iflr->addr.ss_family != AF_INET) return EINVAL; if (iflr->addr.ss_len != sizeof(struct sockaddr_in)) return EINVAL; /* XXX need improvement */ if (iflr->dstaddr.ss_family && iflr->dstaddr.ss_family != AF_INET) return EINVAL; if (iflr->dstaddr.ss_family && iflr->dstaddr.ss_len != sizeof(struct sockaddr_in)) return EINVAL; break; default: /*shouldn't happen*/ return EOPNOTSUPP; } if (sizeof(struct in_addr) * 8 < iflr->prefixlen) return EINVAL; switch (cmd) { case SIOCALIFADDR: { struct in_aliasreq ifra; if (iflr->flags & IFLR_PREFIX) return EINVAL; /* copy args to in_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); bcopy(&iflr->addr, &ifra.ifra_addr, iflr->addr.ss_len); if (iflr->dstaddr.ss_family) { /*XXX*/ bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr, iflr->dstaddr.ss_len); } ifra.ifra_mask.sin_family = AF_INET; ifra.ifra_mask.sin_len = sizeof(struct sockaddr_in); in_len2mask(&ifra.ifra_mask.sin_addr, iflr->prefixlen); return in_control(so, SIOCAIFADDR, (caddr_t)&ifra, ifp, p); } case SIOCGLIFADDR: case SIOCDLIFADDR: { struct in_ifaddr *ia; struct in_addr mask, candidate, match; struct sockaddr_in *sin; int cmp; bzero(&mask, sizeof(mask)); if (iflr->flags & IFLR_PREFIX) { /* lookup a prefix rather than address. */ in_len2mask(&mask, iflr->prefixlen); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; match.s_addr &= mask.s_addr; /* if you set extra bits, that's wrong */ if (match.s_addr != sin->sin_addr.s_addr) return EINVAL; cmp = 1; } else { if (cmd == SIOCGLIFADDR) { /* on getting an address, take the 1st match */ cmp = 0; /*XXX*/ } else { /* on deleting an address, do exact match */ in_len2mask(&mask, 32); sin = (struct sockaddr_in *)&iflr->addr; match.s_addr = sin->sin_addr.s_addr; cmp = 1; } } TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET6) continue; if (!cmp) break; candidate.s_addr = ((struct sockaddr_in *)&ifa->ifa_addr)->sin_addr.s_addr; candidate.s_addr &= mask.s_addr; if (candidate.s_addr == match.s_addr) break; } if (!ifa) return EADDRNOTAVAIL; ia = (struct in_ifaddr *)ifa; if (cmd == SIOCGLIFADDR) { /* fill in the if_laddrreq structure */ bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &iflr->dstaddr, ia->ia_dstaddr.sin_len); } else bzero(&iflr->dstaddr, sizeof(iflr->dstaddr)); iflr->prefixlen = in_mask2len(&ia->ia_sockmask.sin_addr); iflr->flags = 0; /*XXX*/ return 0; } else { struct in_aliasreq ifra; /* fill in_aliasreq and do ioctl(SIOCDIFADDR_IN6) */ bzero(&ifra, sizeof(ifra)); bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name)); bcopy(&ia->ia_addr, &ifra.ifra_addr, ia->ia_addr.sin_len); if ((ifp->if_flags & IFF_POINTOPOINT) != 0) { bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr, ia->ia_dstaddr.sin_len); } bcopy(&ia->ia_sockmask, &ifra.ifra_dstaddr, ia->ia_sockmask.sin_len); return in_control(so, SIOCDIFADDR, (caddr_t)&ifra, ifp, p); } } } return EOPNOTSUPP; /*just for safety*/ } /* * Delete any existing route for an interface. */ void in_ifscrub(ifp, ia) register struct ifnet *ifp; register struct in_ifaddr *ia; { if ((ia->ia_flags & IFA_ROUTE) == 0) return; if (ifp->if_flags & (IFF_LOOPBACK|IFF_POINTOPOINT)) rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST); else rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0); ia->ia_flags &= ~IFA_ROUTE; } /* * Initialize an interface's internet address * and routing table entry. */ static int in_ifinit(ifp, ia, sin, scrub) register struct ifnet *ifp; register struct in_ifaddr *ia; struct sockaddr_in *sin; int scrub; { register u_long i = ntohl(sin->sin_addr.s_addr); struct sockaddr_in oldaddr; int s = splimp(), flags = RTF_UP, error; oldaddr = ia->ia_addr; ia->ia_addr = *sin; /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl && (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) { splx(s); ia->ia_addr = oldaddr; return (error); } splx(s); if (scrub) { ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr; in_ifscrub(ifp, ia); ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr; } if (IN_CLASSA(i)) ia->ia_netmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_netmask = IN_CLASSB_NET; else ia->ia_netmask = IN_CLASSC_NET; /* * The subnet mask usually includes at least the standard network part, * but may may be smaller in the case of supernetting. * If it is set, we believe it. */ if (ia->ia_subnetmask == 0) { ia->ia_subnetmask = ia->ia_netmask; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } else ia->ia_netmask &= ia->ia_subnetmask; ia->ia_net = i & ia->ia_netmask; ia->ia_subnet = i & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); /* * Add route for the network. */ ia->ia_ifa.ifa_metric = ifp->if_metric; if (ifp->if_flags & IFF_BROADCAST) { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_netbroadcast.s_addr = htonl(ia->ia_net | ~ ia->ia_netmask); } else if (ifp->if_flags & IFF_LOOPBACK) { ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr; flags |= RTF_HOST; } else if (ifp->if_flags & IFF_POINTOPOINT) { if (ia->ia_dstaddr.sin_family != AF_INET) return (0); flags |= RTF_HOST; } if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, flags)) == 0) ia->ia_flags |= IFA_ROUTE; /* XXX check if the subnet route points to the same interface */ if (error == EEXIST) error = 0; /* * If the interface supports multicast, join the "all hosts" * multicast group on that interface. */ if (ifp->if_flags & IFF_MULTICAST) { struct in_addr addr; addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); in_addmulti(&addr, ifp); } return (error); } /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(in, ifp) struct in_addr in; struct ifnet *ifp; { register struct ifaddr *ifa; u_long t; if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return 1; if ((ifp->if_flags & IFF_BROADCAST) == 0) return 0; t = ntohl(in.s_addr); /* * Look through the list of addresses for a match * with a broadcast address. */ #define ia ((struct in_ifaddr *)ifa) TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && (in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || in.s_addr == ia->ia_netbroadcast.s_addr || /* * Check for old-style (host 0) broadcast. */ t == ia->ia_subnet || t == ia->ia_net) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff) return 1; return (0); #undef ia } /* * Add an address to the list of IP multicast addresses for a given interface. */ struct in_multi * in_addmulti(ap, ifp) register struct in_addr *ap; register struct ifnet *ifp; { register struct in_multi *inm; int error; struct sockaddr_in sin; struct ifmultiaddr *ifma; int s = splnet(); /* * Call generic routine to add membership or increment * refcount. It wants addresses in the form of a sockaddr, * so we build one here (being careful to zero the unused bytes). */ bzero(&sin, sizeof sin); sin.sin_family = AF_INET; sin.sin_len = sizeof sin; sin.sin_addr = *ap; error = if_addmulti(ifp, (struct sockaddr *)&sin, &ifma); if (error) { splx(s); return 0; } /* * If ifma->ifma_protospec is null, then if_addmulti() created * a new record. Otherwise, we are done. */ if (ifma->ifma_protospec != 0) { splx(s); return ifma->ifma_protospec; } /* XXX - if_addmulti uses M_WAITOK. Can this really be called at interrupt time? If so, need to fix if_addmulti. XXX */ inm = (struct in_multi *)malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { splx(s); return (NULL); } inm->inm_addr = *ap; inm->inm_ifp = ifp; inm->inm_ifma = ifma; ifma->ifma_protospec = inm; LIST_INSERT_HEAD(&in_multihead, inm, inm_link); /* * Let IGMP know that we have joined a new IP multicast group. */ igmp_joingroup(inm); splx(s); return (inm); } /* * Delete a multicast address record. */ void in_delmulti(inm) register struct in_multi *inm; { struct ifmultiaddr *ifma = inm->inm_ifma; struct in_multi my_inm; int s = splnet(); my_inm.inm_ifp = NULL ; /* don't send the leave msg */ if (ifma->ifma_refcount == 1) { /* * No remaining claims to this record; let IGMP know that * we are leaving the multicast group. * But do it after the if_delmulti() which might reset * the interface and nuke the packet. */ my_inm = *inm ; ifma->ifma_protospec = 0; LIST_REMOVE(inm, inm_link); free(inm, M_IPMADDR); } /* XXX - should be separate API for when we have an ifma? */ if_delmulti(ifma->ifma_ifp, ifma->ifma_addr); if (my_inm.inm_ifp != NULL) igmp_leavegroup(&my_inm); splx(s); }