/*- * Copyright (c) 1982, 1986, 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_hwpmc_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif /* * INVERSE_ESTCPU_WEIGHT is only suitable for statclock() frequencies in * the range 100-256 Hz (approximately). */ #define ESTCPULIM(e) \ min((e), INVERSE_ESTCPU_WEIGHT * (NICE_WEIGHT * (PRIO_MAX - PRIO_MIN) - \ RQ_PPQ) + INVERSE_ESTCPU_WEIGHT - 1) #ifdef SMP #define INVERSE_ESTCPU_WEIGHT (8 * smp_cpus) #else #define INVERSE_ESTCPU_WEIGHT 8 /* 1 / (priorities per estcpu level). */ #endif #define NICE_WEIGHT 1 /* Priorities per nice level. */ /* * The schedulable entity that runs a context. * This is an extension to the thread structure and is tailored to * the requirements of this scheduler */ struct td_sched { TAILQ_ENTRY(td_sched) ts_procq; /* (j/z) Run queue. */ struct thread *ts_thread; /* (*) Active associated thread. */ fixpt_t ts_pctcpu; /* (j) %cpu during p_swtime. */ u_char ts_rqindex; /* (j) Run queue index. */ int ts_cpticks; /* (j) Ticks of cpu time. */ int ts_slptime; /* (j) Seconds !RUNNING. */ struct runq *ts_runq; /* runq the thread is currently on */ }; /* flags kept in td_flags */ #define TDF_DIDRUN TDF_SCHED0 /* thread actually ran. */ #define TDF_EXIT TDF_SCHED1 /* thread is being killed. */ #define TDF_BOUND TDF_SCHED2 #define ts_flags ts_thread->td_flags #define TSF_DIDRUN TDF_DIDRUN /* thread actually ran. */ #define TSF_EXIT TDF_EXIT /* thread is being killed. */ #define TSF_BOUND TDF_BOUND /* stuck to one CPU */ #define SKE_RUNQ_PCPU(ts) \ ((ts)->ts_runq != 0 && (ts)->ts_runq != &runq) static struct td_sched td_sched0; struct mtx sched_lock; static int sched_tdcnt; /* Total runnable threads in the system. */ static int sched_quantum; /* Roundrobin scheduling quantum in ticks. */ #define SCHED_QUANTUM (hz / 10) /* Default sched quantum */ static void setup_runqs(void); static void schedcpu(void); static void schedcpu_thread(void); static void sched_priority(struct thread *td, u_char prio); static void sched_setup(void *dummy); static void maybe_resched(struct thread *td); static void updatepri(struct thread *td); static void resetpriority(struct thread *td); static void resetpriority_thread(struct thread *td); #ifdef SMP static int forward_wakeup(int cpunum); #endif static struct kproc_desc sched_kp = { "schedcpu", schedcpu_thread, NULL }; SYSINIT(schedcpu, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, kproc_start, &sched_kp) SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) /* * Global run queue. */ static struct runq runq; #ifdef SMP /* * Per-CPU run queues */ static struct runq runq_pcpu[MAXCPU]; #endif static void setup_runqs(void) { #ifdef SMP int i; for (i = 0; i < MAXCPU; ++i) runq_init(&runq_pcpu[i]); #endif runq_init(&runq); } static int sysctl_kern_quantum(SYSCTL_HANDLER_ARGS) { int error, new_val; new_val = sched_quantum * tick; error = sysctl_handle_int(oidp, &new_val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (new_val < tick) return (EINVAL); sched_quantum = new_val / tick; hogticks = 2 * sched_quantum; return (0); } SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RD, 0, "Scheduler"); SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "4BSD", 0, "Scheduler name"); SYSCTL_PROC(_kern_sched, OID_AUTO, quantum, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof sched_quantum, sysctl_kern_quantum, "I", "Roundrobin scheduling quantum in microseconds"); #ifdef SMP /* Enable forwarding of wakeups to all other cpus */ SYSCTL_NODE(_kern_sched, OID_AUTO, ipiwakeup, CTLFLAG_RD, NULL, "Kernel SMP"); static int forward_wakeup_enabled = 1; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, enabled, CTLFLAG_RW, &forward_wakeup_enabled, 0, "Forwarding of wakeup to idle CPUs"); static int forward_wakeups_requested = 0; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, requested, CTLFLAG_RD, &forward_wakeups_requested, 0, "Requests for Forwarding of wakeup to idle CPUs"); static int forward_wakeups_delivered = 0; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, delivered, CTLFLAG_RD, &forward_wakeups_delivered, 0, "Completed Forwarding of wakeup to idle CPUs"); static int forward_wakeup_use_mask = 1; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, usemask, CTLFLAG_RW, &forward_wakeup_use_mask, 0, "Use the mask of idle cpus"); static int forward_wakeup_use_loop = 0; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, useloop, CTLFLAG_RW, &forward_wakeup_use_loop, 0, "Use a loop to find idle cpus"); static int forward_wakeup_use_single = 0; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, onecpu, CTLFLAG_RW, &forward_wakeup_use_single, 0, "Only signal one idle cpu"); static int forward_wakeup_use_htt = 0; SYSCTL_INT(_kern_sched_ipiwakeup, OID_AUTO, htt2, CTLFLAG_RW, &forward_wakeup_use_htt, 0, "account for htt"); #endif #if 0 static int sched_followon = 0; SYSCTL_INT(_kern_sched, OID_AUTO, followon, CTLFLAG_RW, &sched_followon, 0, "allow threads to share a quantum"); #endif static __inline void sched_load_add(void) { sched_tdcnt++; CTR1(KTR_SCHED, "global load: %d", sched_tdcnt); } static __inline void sched_load_rem(void) { sched_tdcnt--; CTR1(KTR_SCHED, "global load: %d", sched_tdcnt); } /* * Arrange to reschedule if necessary, taking the priorities and * schedulers into account. */ static void maybe_resched(struct thread *td) { THREAD_LOCK_ASSERT(td, MA_OWNED); if (td->td_priority < curthread->td_priority) curthread->td_flags |= TDF_NEEDRESCHED; } /* * Constants for digital decay and forget: * 90% of (td_estcpu) usage in 5 * loadav time * 95% of (ts_pctcpu) usage in 60 seconds (load insensitive) * Note that, as ps(1) mentions, this can let percentages * total over 100% (I've seen 137.9% for 3 processes). * * Note that schedclock() updates td_estcpu and p_cpticks asynchronously. * * We wish to decay away 90% of td_estcpu in (5 * loadavg) seconds. * That is, the system wants to compute a value of decay such * that the following for loop: * for (i = 0; i < (5 * loadavg); i++) * td_estcpu *= decay; * will compute * td_estcpu *= 0.1; * for all values of loadavg: * * Mathematically this loop can be expressed by saying: * decay ** (5 * loadavg) ~= .1 * * The system computes decay as: * decay = (2 * loadavg) / (2 * loadavg + 1) * * We wish to prove that the system's computation of decay * will always fulfill the equation: * decay ** (5 * loadavg) ~= .1 * * If we compute b as: * b = 2 * loadavg * then * decay = b / (b + 1) * * We now need to prove two things: * 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1) * 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg) * * Facts: * For x close to zero, exp(x) =~ 1 + x, since * exp(x) = 0! + x**1/1! + x**2/2! + ... . * therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b. * For x close to zero, ln(1+x) =~ x, since * ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1 * therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1). * ln(.1) =~ -2.30 * * Proof of (1): * Solve (factor)**(power) =~ .1 given power (5*loadav): * solving for factor, * ln(factor) =~ (-2.30/5*loadav), or * factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) = * exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED * * Proof of (2): * Solve (factor)**(power) =~ .1 given factor == (b/(b+1)): * solving for power, * power*ln(b/(b+1)) =~ -2.30, or * power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED * * Actual power values for the implemented algorithm are as follows: * loadav: 1 2 3 4 * power: 5.68 10.32 14.94 19.55 */ /* calculations for digital decay to forget 90% of usage in 5*loadav sec */ #define loadfactor(loadav) (2 * (loadav)) #define decay_cpu(loadfac, cpu) (((loadfac) * (cpu)) / ((loadfac) + FSCALE)) /* decay 95% of `ts_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */ static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); /* * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT). * * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used: * 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits). * * If you don't want to bother with the faster/more-accurate formula, you * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate * (more general) method of calculating the %age of CPU used by a process. */ #define CCPU_SHIFT 11 /* * Recompute process priorities, every hz ticks. * MP-safe, called without the Giant mutex. */ /* ARGSUSED */ static void schedcpu(void) { register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]); struct thread *td; struct proc *p; struct td_sched *ts; int awake, realstathz; realstathz = stathz ? stathz : hz; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_SLOCK(p); FOREACH_THREAD_IN_PROC(p, td) { awake = 0; thread_lock(td); ts = td->td_sched; /* * Increment sleep time (if sleeping). We * ignore overflow, as above. */ /* * The td_sched slptimes are not touched in wakeup * because the thread may not HAVE everything in * memory? XXX I think this is out of date. */ if (TD_ON_RUNQ(td)) { awake = 1; ts->ts_flags &= ~TSF_DIDRUN; } else if (TD_IS_RUNNING(td)) { awake = 1; /* Do not clear TSF_DIDRUN */ } else if (ts->ts_flags & TSF_DIDRUN) { awake = 1; ts->ts_flags &= ~TSF_DIDRUN; } /* * ts_pctcpu is only for ps and ttyinfo(). * Do it per td_sched, and add them up at the end? * XXXKSE */ ts->ts_pctcpu = (ts->ts_pctcpu * ccpu) >> FSHIFT; /* * If the td_sched has been idle the entire second, * stop recalculating its priority until * it wakes up. */ if (ts->ts_cpticks != 0) { #if (FSHIFT >= CCPU_SHIFT) ts->ts_pctcpu += (realstathz == 100) ? ((fixpt_t) ts->ts_cpticks) << (FSHIFT - CCPU_SHIFT) : 100 * (((fixpt_t) ts->ts_cpticks) << (FSHIFT - CCPU_SHIFT)) / realstathz; #else ts->ts_pctcpu += ((FSCALE - ccpu) * (ts->ts_cpticks * FSCALE / realstathz)) >> FSHIFT; #endif ts->ts_cpticks = 0; } /* * If there are ANY running threads in this process, * then don't count it as sleeping. XXX this is broken */ if (awake) { if (ts->ts_slptime > 1) { /* * In an ideal world, this should not * happen, because whoever woke us * up from the long sleep should have * unwound the slptime and reset our * priority before we run at the stale * priority. Should KASSERT at some * point when all the cases are fixed. */ updatepri(td); } ts->ts_slptime = 0; } else ts->ts_slptime++; if (ts->ts_slptime > 1) { thread_unlock(td); continue; } td->td_estcpu = decay_cpu(loadfac, td->td_estcpu); resetpriority(td); resetpriority_thread(td); thread_unlock(td); } /* end of thread loop */ PROC_SUNLOCK(p); } /* end of process loop */ sx_sunlock(&allproc_lock); } /* * Main loop for a kthread that executes schedcpu once a second. */ static void schedcpu_thread(void) { for (;;) { schedcpu(); pause("-", hz); } } /* * Recalculate the priority of a process after it has slept for a while. * For all load averages >= 1 and max td_estcpu of 255, sleeping for at * least six times the loadfactor will decay td_estcpu to zero. */ static void updatepri(struct thread *td) { struct td_sched *ts; fixpt_t loadfac; unsigned int newcpu; ts = td->td_sched; loadfac = loadfactor(averunnable.ldavg[0]); if (ts->ts_slptime > 5 * loadfac) td->td_estcpu = 0; else { newcpu = td->td_estcpu; ts->ts_slptime--; /* was incremented in schedcpu() */ while (newcpu && --ts->ts_slptime) newcpu = decay_cpu(loadfac, newcpu); td->td_estcpu = newcpu; } } /* * Compute the priority of a process when running in user mode. * Arrange to reschedule if the resulting priority is better * than that of the current process. */ static void resetpriority(struct thread *td) { register unsigned int newpriority; if (td->td_pri_class == PRI_TIMESHARE) { newpriority = PUSER + td->td_estcpu / INVERSE_ESTCPU_WEIGHT + NICE_WEIGHT * (td->td_proc->p_nice - PRIO_MIN); newpriority = min(max(newpriority, PRI_MIN_TIMESHARE), PRI_MAX_TIMESHARE); sched_user_prio(td, newpriority); } } /* * Update the thread's priority when the associated process's user * priority changes. */ static void resetpriority_thread(struct thread *td) { /* Only change threads with a time sharing user priority. */ if (td->td_priority < PRI_MIN_TIMESHARE || td->td_priority > PRI_MAX_TIMESHARE) return; /* XXX the whole needresched thing is broken, but not silly. */ maybe_resched(td); sched_prio(td, td->td_user_pri); } /* ARGSUSED */ static void sched_setup(void *dummy) { setup_runqs(); if (sched_quantum == 0) sched_quantum = SCHED_QUANTUM; hogticks = 2 * sched_quantum; /* Account for thread0. */ sched_load_add(); } /* External interfaces start here */ /* * Very early in the boot some setup of scheduler-specific * parts of proc0 and of some scheduler resources needs to be done. * Called from: * proc0_init() */ void schedinit(void) { /* * Set up the scheduler specific parts of proc0. */ proc0.p_sched = NULL; /* XXX */ thread0.td_sched = &td_sched0; thread0.td_lock = &sched_lock; td_sched0.ts_thread = &thread0; mtx_init(&sched_lock, "sched lock", NULL, MTX_SPIN | MTX_RECURSE); } int sched_runnable(void) { #ifdef SMP return runq_check(&runq) + runq_check(&runq_pcpu[PCPU_GET(cpuid)]); #else return runq_check(&runq); #endif } int sched_rr_interval(void) { if (sched_quantum == 0) sched_quantum = SCHED_QUANTUM; return (sched_quantum); } /* * We adjust the priority of the current process. The priority of * a process gets worse as it accumulates CPU time. The cpu usage * estimator (td_estcpu) is increased here. resetpriority() will * compute a different priority each time td_estcpu increases by * INVERSE_ESTCPU_WEIGHT * (until MAXPRI is reached). The cpu usage estimator ramps up * quite quickly when the process is running (linearly), and decays * away exponentially, at a rate which is proportionally slower when * the system is busy. The basic principle is that the system will * 90% forget that the process used a lot of CPU time in 5 * loadav * seconds. This causes the system to favor processes which haven't * run much recently, and to round-robin among other processes. */ void sched_clock(struct thread *td) { struct td_sched *ts; THREAD_LOCK_ASSERT(td, MA_OWNED); ts = td->td_sched; ts->ts_cpticks++; td->td_estcpu = ESTCPULIM(td->td_estcpu + 1); if ((td->td_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) { resetpriority(td); resetpriority_thread(td); } /* * Force a context switch if the current thread has used up a full * quantum (default quantum is 100ms). */ if (!TD_IS_IDLETHREAD(td) && ticks - PCPU_GET(switchticks) >= sched_quantum) td->td_flags |= TDF_NEEDRESCHED; } /* * charge childs scheduling cpu usage to parent. */ void sched_exit(struct proc *p, struct thread *td) { CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d", td, td->td_name, td->td_priority); PROC_SLOCK_ASSERT(p, MA_OWNED); sched_exit_thread(FIRST_THREAD_IN_PROC(p), td); } void sched_exit_thread(struct thread *td, struct thread *child) { CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d", child, child->td_name, child->td_priority); thread_lock(td); td->td_estcpu = ESTCPULIM(td->td_estcpu + child->td_estcpu); thread_unlock(td); mtx_lock_spin(&sched_lock); if ((child->td_proc->p_flag & P_NOLOAD) == 0) sched_load_rem(); mtx_unlock_spin(&sched_lock); } void sched_fork(struct thread *td, struct thread *childtd) { sched_fork_thread(td, childtd); } void sched_fork_thread(struct thread *td, struct thread *childtd) { childtd->td_estcpu = td->td_estcpu; childtd->td_lock = &sched_lock; childtd->td_cpuset = cpuset_ref(td->td_cpuset); sched_newthread(childtd); } void sched_nice(struct proc *p, int nice) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); PROC_SLOCK_ASSERT(p, MA_OWNED); p->p_nice = nice; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); resetpriority(td); resetpriority_thread(td); thread_unlock(td); } } void sched_class(struct thread *td, int class) { THREAD_LOCK_ASSERT(td, MA_OWNED); td->td_pri_class = class; } /* * Adjust the priority of a thread. */ static void sched_priority(struct thread *td, u_char prio) { CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)", td, td->td_name, td->td_priority, prio, curthread, curthread->td_name); THREAD_LOCK_ASSERT(td, MA_OWNED); if (td->td_priority == prio) return; td->td_priority = prio; if (TD_ON_RUNQ(td) && td->td_sched->ts_rqindex != (prio / RQ_PPQ)) { sched_rem(td); sched_add(td, SRQ_BORING); } } /* * Update a thread's priority when it is lent another thread's * priority. */ void sched_lend_prio(struct thread *td, u_char prio) { td->td_flags |= TDF_BORROWING; sched_priority(td, prio); } /* * Restore a thread's priority when priority propagation is * over. The prio argument is the minimum priority the thread * needs to have to satisfy other possible priority lending * requests. If the thread's regulary priority is less * important than prio the thread will keep a priority boost * of prio. */ void sched_unlend_prio(struct thread *td, u_char prio) { u_char base_pri; if (td->td_base_pri >= PRI_MIN_TIMESHARE && td->td_base_pri <= PRI_MAX_TIMESHARE) base_pri = td->td_user_pri; else base_pri = td->td_base_pri; if (prio >= base_pri) { td->td_flags &= ~TDF_BORROWING; sched_prio(td, base_pri); } else sched_lend_prio(td, prio); } void sched_prio(struct thread *td, u_char prio) { u_char oldprio; /* First, update the base priority. */ td->td_base_pri = prio; /* * If the thread is borrowing another thread's priority, don't ever * lower the priority. */ if (td->td_flags & TDF_BORROWING && td->td_priority < prio) return; /* Change the real priority. */ oldprio = td->td_priority; sched_priority(td, prio); /* * If the thread is on a turnstile, then let the turnstile update * its state. */ if (TD_ON_LOCK(td) && oldprio != prio) turnstile_adjust(td, oldprio); } void sched_user_prio(struct thread *td, u_char prio) { u_char oldprio; THREAD_LOCK_ASSERT(td, MA_OWNED); td->td_base_user_pri = prio; if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio) return; oldprio = td->td_user_pri; td->td_user_pri = prio; } void sched_lend_user_prio(struct thread *td, u_char prio) { u_char oldprio; THREAD_LOCK_ASSERT(td, MA_OWNED); td->td_flags |= TDF_UBORROWING; oldprio = td->td_user_pri; td->td_user_pri = prio; } void sched_unlend_user_prio(struct thread *td, u_char prio) { u_char base_pri; THREAD_LOCK_ASSERT(td, MA_OWNED); base_pri = td->td_base_user_pri; if (prio >= base_pri) { td->td_flags &= ~TDF_UBORROWING; sched_user_prio(td, base_pri); } else { sched_lend_user_prio(td, prio); } } void sched_sleep(struct thread *td) { THREAD_LOCK_ASSERT(td, MA_OWNED); td->td_slptick = ticks; td->td_sched->ts_slptime = 0; } void sched_switch(struct thread *td, struct thread *newtd, int flags) { struct td_sched *ts; struct proc *p; ts = td->td_sched; p = td->td_proc; THREAD_LOCK_ASSERT(td, MA_OWNED); /* * Switch to the sched lock to fix things up and pick * a new thread. */ if (td->td_lock != &sched_lock) { mtx_lock_spin(&sched_lock); thread_unlock(td); } if ((p->p_flag & P_NOLOAD) == 0) sched_load_rem(); if (newtd) newtd->td_flags |= (td->td_flags & TDF_NEEDRESCHED); td->td_lastcpu = td->td_oncpu; td->td_flags &= ~TDF_NEEDRESCHED; td->td_owepreempt = 0; td->td_oncpu = NOCPU; /* * At the last moment, if this thread is still marked RUNNING, * then put it back on the run queue as it has not been suspended * or stopped or any thing else similar. We never put the idle * threads on the run queue, however. */ if (td->td_flags & TDF_IDLETD) { TD_SET_CAN_RUN(td); #ifdef SMP idle_cpus_mask &= ~PCPU_GET(cpumask); #endif } else { if (TD_IS_RUNNING(td)) { /* Put us back on the run queue. */ sched_add(td, (flags & SW_PREEMPT) ? SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : SRQ_OURSELF|SRQ_YIELDING); } } if (newtd) { /* * The thread we are about to run needs to be counted * as if it had been added to the run queue and selected. * It came from: * * A preemption * * An upcall * * A followon */ KASSERT((newtd->td_inhibitors == 0), ("trying to run inhibited thread")); newtd->td_sched->ts_flags |= TSF_DIDRUN; TD_SET_RUNNING(newtd); if ((newtd->td_proc->p_flag & P_NOLOAD) == 0) sched_load_add(); } else { newtd = choosethread(); } MPASS(newtd->td_lock == &sched_lock); if (td != newtd) { #ifdef HWPMC_HOOKS if (PMC_PROC_IS_USING_PMCS(td->td_proc)) PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); #endif /* I feel sleepy */ lock_profile_release_lock(&sched_lock.lock_object); cpu_switch(td, newtd, td->td_lock); lock_profile_obtain_lock_success(&sched_lock.lock_object, 0, 0, __FILE__, __LINE__); /* * Where am I? What year is it? * We are in the same thread that went to sleep above, * but any amount of time may have passed. All out context * will still be available as will local variables. * PCPU values however may have changed as we may have * changed CPU so don't trust cached values of them. * New threads will go to fork_exit() instead of here * so if you change things here you may need to change * things there too. * If the thread above was exiting it will never wake * up again here, so either it has saved everything it * needed to, or the thread_wait() or wait() will * need to reap it. */ #ifdef HWPMC_HOOKS if (PMC_PROC_IS_USING_PMCS(td->td_proc)) PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); #endif } #ifdef SMP if (td->td_flags & TDF_IDLETD) idle_cpus_mask |= PCPU_GET(cpumask); #endif sched_lock.mtx_lock = (uintptr_t)td; td->td_oncpu = PCPU_GET(cpuid); MPASS(td->td_lock == &sched_lock); } void sched_wakeup(struct thread *td) { struct td_sched *ts; THREAD_LOCK_ASSERT(td, MA_OWNED); ts = td->td_sched; if (ts->ts_slptime > 1) { updatepri(td); resetpriority(td); } td->td_slptick = ticks; ts->ts_slptime = 0; sched_add(td, SRQ_BORING); } #ifdef SMP /* enable HTT_2 if you have a 2-way HTT cpu.*/ static int forward_wakeup(int cpunum) { cpumask_t map, me, dontuse; cpumask_t map2; struct pcpu *pc; cpumask_t id, map3; mtx_assert(&sched_lock, MA_OWNED); CTR0(KTR_RUNQ, "forward_wakeup()"); if ((!forward_wakeup_enabled) || (forward_wakeup_use_mask == 0 && forward_wakeup_use_loop == 0)) return (0); if (!smp_started || cold || panicstr) return (0); forward_wakeups_requested++; /* * check the idle mask we received against what we calculated before * in the old version. */ me = PCPU_GET(cpumask); /* * don't bother if we should be doing it ourself.. */ if ((me & idle_cpus_mask) && (cpunum == NOCPU || me == (1 << cpunum))) return (0); dontuse = me | stopped_cpus | hlt_cpus_mask; map3 = 0; if (forward_wakeup_use_loop) { SLIST_FOREACH(pc, &cpuhead, pc_allcpu) { id = pc->pc_cpumask; if ( (id & dontuse) == 0 && pc->pc_curthread == pc->pc_idlethread) { map3 |= id; } } } if (forward_wakeup_use_mask) { map = 0; map = idle_cpus_mask & ~dontuse; /* If they are both on, compare and use loop if different */ if (forward_wakeup_use_loop) { if (map != map3) { printf("map (%02X) != map3 (%02X)\n", map, map3); map = map3; } } } else { map = map3; } /* If we only allow a specific CPU, then mask off all the others */ if (cpunum != NOCPU) { KASSERT((cpunum <= mp_maxcpus),("forward_wakeup: bad cpunum.")); map &= (1 << cpunum); } else { /* Try choose an idle die. */ if (forward_wakeup_use_htt) { map2 = (map & (map >> 1)) & 0x5555; if (map2) { map = map2; } } /* set only one bit */ if (forward_wakeup_use_single) { map = map & ((~map) + 1); } } if (map) { forward_wakeups_delivered++; ipi_selected(map, IPI_AST); return (1); } if (cpunum == NOCPU) printf("forward_wakeup: Idle processor not found\n"); return (0); } #endif #ifdef SMP static void kick_other_cpu(int pri,int cpuid); static void kick_other_cpu(int pri,int cpuid) { struct pcpu * pcpu = pcpu_find(cpuid); int cpri = pcpu->pc_curthread->td_priority; if (idle_cpus_mask & pcpu->pc_cpumask) { forward_wakeups_delivered++; ipi_selected(pcpu->pc_cpumask, IPI_AST); return; } if (pri >= cpri) return; #if defined(IPI_PREEMPTION) && defined(PREEMPTION) #if !defined(FULL_PREEMPTION) if (pri <= PRI_MAX_ITHD) #endif /* ! FULL_PREEMPTION */ { ipi_selected(pcpu->pc_cpumask, IPI_PREEMPT); return; } #endif /* defined(IPI_PREEMPTION) && defined(PREEMPTION) */ pcpu->pc_curthread->td_flags |= TDF_NEEDRESCHED; ipi_selected( pcpu->pc_cpumask , IPI_AST); return; } #endif /* SMP */ void sched_add(struct thread *td, int flags) #ifdef SMP { struct td_sched *ts; int forwarded = 0; int cpu; int single_cpu = 0; ts = td->td_sched; THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT((td->td_inhibitors == 0), ("sched_add: trying to run inhibited thread")); KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), ("sched_add: bad thread state")); KASSERT(td->td_flags & TDF_INMEM, ("sched_add: thread swapped out")); CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)", td, td->td_name, td->td_priority, curthread, curthread->td_name); /* * Now that the thread is moving to the run-queue, set the lock * to the scheduler's lock. */ if (td->td_lock != &sched_lock) { mtx_lock_spin(&sched_lock); thread_lock_set(td, &sched_lock); } TD_SET_RUNQ(td); if (td->td_pinned != 0) { cpu = td->td_lastcpu; ts->ts_runq = &runq_pcpu[cpu]; single_cpu = 1; CTR3(KTR_RUNQ, "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu); } else if ((ts)->ts_flags & TSF_BOUND) { /* Find CPU from bound runq */ KASSERT(SKE_RUNQ_PCPU(ts),("sched_add: bound td_sched not on cpu runq")); cpu = ts->ts_runq - &runq_pcpu[0]; single_cpu = 1; CTR3(KTR_RUNQ, "sched_add: Put td_sched:%p(td:%p) on cpu%d runq", ts, td, cpu); } else { CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to gbl runq", ts, td); cpu = NOCPU; ts->ts_runq = &runq; } if (single_cpu && (cpu != PCPU_GET(cpuid))) { kick_other_cpu(td->td_priority,cpu); } else { if (!single_cpu) { cpumask_t me = PCPU_GET(cpumask); int idle = idle_cpus_mask & me; if (!idle && ((flags & SRQ_INTR) == 0) && (idle_cpus_mask & ~(hlt_cpus_mask | me))) forwarded = forward_wakeup(cpu); } if (!forwarded) { if ((flags & SRQ_YIELDING) == 0 && maybe_preempt(td)) return; else maybe_resched(td); } } if ((td->td_proc->p_flag & P_NOLOAD) == 0) sched_load_add(); runq_add(ts->ts_runq, ts, flags); } #else /* SMP */ { struct td_sched *ts; ts = td->td_sched; THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT((td->td_inhibitors == 0), ("sched_add: trying to run inhibited thread")); KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)), ("sched_add: bad thread state")); KASSERT(td->td_flags & TDF_INMEM, ("sched_add: thread swapped out")); CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)", td, td->td_name, td->td_priority, curthread, curthread->td_name); /* * Now that the thread is moving to the run-queue, set the lock * to the scheduler's lock. */ if (td->td_lock != &sched_lock) { mtx_lock_spin(&sched_lock); thread_lock_set(td, &sched_lock); } TD_SET_RUNQ(td); CTR2(KTR_RUNQ, "sched_add: adding td_sched:%p (td:%p) to runq", ts, td); ts->ts_runq = &runq; /* * If we are yielding (on the way out anyhow) * or the thread being saved is US, * then don't try be smart about preemption * or kicking off another CPU * as it won't help and may hinder. * In the YIEDLING case, we are about to run whoever is * being put in the queue anyhow, and in the * OURSELF case, we are puting ourself on the run queue * which also only happens when we are about to yield. */ if((flags & SRQ_YIELDING) == 0) { if (maybe_preempt(td)) return; } if ((td->td_proc->p_flag & P_NOLOAD) == 0) sched_load_add(); runq_add(ts->ts_runq, ts, flags); maybe_resched(td); } #endif /* SMP */ void sched_rem(struct thread *td) { struct td_sched *ts; ts = td->td_sched; KASSERT(td->td_flags & TDF_INMEM, ("sched_rem: thread swapped out")); KASSERT(TD_ON_RUNQ(td), ("sched_rem: thread not on run queue")); mtx_assert(&sched_lock, MA_OWNED); CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)", td, td->td_name, td->td_priority, curthread, curthread->td_name); if ((td->td_proc->p_flag & P_NOLOAD) == 0) sched_load_rem(); runq_remove(ts->ts_runq, ts); TD_SET_CAN_RUN(td); } /* * Select threads to run. * Notice that the running threads still consume a slot. */ struct thread * sched_choose(void) { struct td_sched *ts; struct runq *rq; mtx_assert(&sched_lock, MA_OWNED); #ifdef SMP struct td_sched *kecpu; rq = &runq; ts = runq_choose(&runq); kecpu = runq_choose(&runq_pcpu[PCPU_GET(cpuid)]); if (ts == NULL || (kecpu != NULL && kecpu->ts_thread->td_priority < ts->ts_thread->td_priority)) { CTR2(KTR_RUNQ, "choosing td_sched %p from pcpu runq %d", kecpu, PCPU_GET(cpuid)); ts = kecpu; rq = &runq_pcpu[PCPU_GET(cpuid)]; } else { CTR1(KTR_RUNQ, "choosing td_sched %p from main runq", ts); } #else rq = &runq; ts = runq_choose(&runq); #endif if (ts) { runq_remove(rq, ts); ts->ts_flags |= TSF_DIDRUN; KASSERT(ts->ts_thread->td_flags & TDF_INMEM, ("sched_choose: thread swapped out")); return (ts->ts_thread); } return (PCPU_GET(idlethread)); } void sched_preempt(struct thread *td) { thread_lock(td); if (td->td_critnest > 1) td->td_owepreempt = 1; else mi_switch(SW_INVOL | SW_PREEMPT, NULL); thread_unlock(td); } void sched_userret(struct thread *td) { /* * XXX we cheat slightly on the locking here to avoid locking in * the usual case. Setting td_priority here is essentially an * incomplete workaround for not setting it properly elsewhere. * Now that some interrupt handlers are threads, not setting it * properly elsewhere can clobber it in the window between setting * it here and returning to user mode, so don't waste time setting * it perfectly here. */ KASSERT((td->td_flags & TDF_BORROWING) == 0, ("thread with borrowed priority returning to userland")); if (td->td_priority != td->td_user_pri) { thread_lock(td); td->td_priority = td->td_user_pri; td->td_base_pri = td->td_user_pri; thread_unlock(td); } } void sched_bind(struct thread *td, int cpu) { struct td_sched *ts; THREAD_LOCK_ASSERT(td, MA_OWNED); KASSERT(TD_IS_RUNNING(td), ("sched_bind: cannot bind non-running thread")); ts = td->td_sched; ts->ts_flags |= TSF_BOUND; #ifdef SMP ts->ts_runq = &runq_pcpu[cpu]; if (PCPU_GET(cpuid) == cpu) return; mi_switch(SW_VOL, NULL); #endif } void sched_unbind(struct thread* td) { THREAD_LOCK_ASSERT(td, MA_OWNED); td->td_sched->ts_flags &= ~TSF_BOUND; } int sched_is_bound(struct thread *td) { THREAD_LOCK_ASSERT(td, MA_OWNED); return (td->td_sched->ts_flags & TSF_BOUND); } void sched_relinquish(struct thread *td) { thread_lock(td); SCHED_STAT_INC(switch_relinquish); mi_switch(SW_VOL, NULL); thread_unlock(td); } int sched_load(void) { return (sched_tdcnt); } int sched_sizeof_proc(void) { return (sizeof(struct proc)); } int sched_sizeof_thread(void) { return (sizeof(struct thread) + sizeof(struct td_sched)); } fixpt_t sched_pctcpu(struct thread *td) { struct td_sched *ts; ts = td->td_sched; return (ts->ts_pctcpu); } void sched_tick(void) { } /* * The actual idle process. */ void sched_idletd(void *dummy) { for (;;) { mtx_assert(&Giant, MA_NOTOWNED); while (sched_runnable() == 0) cpu_idle(); mtx_lock_spin(&sched_lock); mi_switch(SW_VOL, NULL); mtx_unlock_spin(&sched_lock); } } /* * A CPU is entering for the first time or a thread is exiting. */ void sched_throw(struct thread *td) { /* * Correct spinlock nesting. The idle thread context that we are * borrowing was created so that it would start out with a single * spin lock (sched_lock) held in fork_trampoline(). Since we've * explicitly acquired locks in this function, the nesting count * is now 2 rather than 1. Since we are nested, calling * spinlock_exit() will simply adjust the counts without allowing * spin lock using code to interrupt us. */ if (td == NULL) { mtx_lock_spin(&sched_lock); spinlock_exit(); } else { lock_profile_release_lock(&sched_lock.lock_object); MPASS(td->td_lock == &sched_lock); } mtx_assert(&sched_lock, MA_OWNED); KASSERT(curthread->td_md.md_spinlock_count == 1, ("invalid count")); PCPU_SET(switchtime, cpu_ticks()); PCPU_SET(switchticks, ticks); cpu_throw(td, choosethread()); /* doesn't return */ } void sched_fork_exit(struct thread *td) { /* * Finish setting up thread glue so that it begins execution in a * non-nested critical section with sched_lock held but not recursed. */ td->td_oncpu = PCPU_GET(cpuid); sched_lock.mtx_lock = (uintptr_t)td; lock_profile_obtain_lock_success(&sched_lock.lock_object, 0, 0, __FILE__, __LINE__); THREAD_LOCK_ASSERT(td, MA_OWNED | MA_NOTRECURSED); } void sched_affinity(struct thread *td) { } #define KERN_SWITCH_INCLUDE 1 #include "kern/kern_switch.c"