/*- * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); /* NB: these are not modified */ static struct sockaddr route_dst = { 2, PF_ROUTE, }; static struct sockaddr route_src = { 2, PF_ROUTE, }; static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; static struct { int ip_count; /* attached w/ AF_INET */ int ip6_count; /* attached w/ AF_INET6 */ int ipx_count; /* attached w/ AF_IPX */ int any_count; /* total attached */ } route_cb; struct mtx rtsock_mtx; MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) static struct ifqueue rtsintrq; SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, ""); SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW, &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length"); struct walkarg { int w_tmemsize; int w_op, w_arg; caddr_t w_tmem; struct sysctl_req *w_req; }; static void rts_input(struct mbuf *m); static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo); static int rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w); static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo); static int sysctl_dumpentry(struct radix_node *rn, void *vw); static int sysctl_iflist(int af, struct walkarg *w); static int sysctl_ifmalist(int af, struct walkarg *w); static int route_output(struct mbuf *m, struct socket *so); static void rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics_lite *out); static void rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out); static void rt_dispatch(struct mbuf *, const struct sockaddr *); static void rts_init(void) { int tmp; rtsintrq.ifq_maxlen = 256; if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) rtsintrq.ifq_maxlen = tmp; mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF); netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE); } SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0) static void rts_input(struct mbuf *m) { struct sockproto route_proto; unsigned short *family; struct m_tag *tag; route_proto.sp_family = PF_ROUTE; tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL); if (tag != NULL) { family = (unsigned short *)(tag + 1); route_proto.sp_protocol = *family; m_tag_delete(m, tag); } else route_proto.sp_protocol = 0; raw_input(m, &route_proto, &route_src, &route_dst); } /* * It really doesn't make any sense at all for this code to share much * with raw_usrreq.c, since its functionality is so restricted. XXX */ static int rts_abort(struct socket *so) { return (raw_usrreqs.pru_abort(so)); } /* pru_accept is EOPNOTSUPP */ static int rts_attach(struct socket *so, int proto, struct thread *td) { struct rawcb *rp; int s, error; if (sotorawcb(so) != NULL) return EISCONN; /* XXX panic? */ /* XXX */ MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO); if (rp == NULL) return ENOBUFS; /* * The splnet() is necessary to block protocols from sending * error notifications (like RTM_REDIRECT or RTM_LOSING) while * this PCB is extant but incompletely initialized. * Probably we should try to do more of this work beforehand and * eliminate the spl. */ s = splnet(); so->so_pcb = (caddr_t)rp; error = raw_attach(so, proto); rp = sotorawcb(so); if (error) { splx(s); so->so_pcb = NULL; free(rp, M_PCB); return error; } RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count++; break; case AF_INET6: route_cb.ip6_count++; break; case AF_IPX: route_cb.ipx_count++; break; } rp->rcb_faddr = &route_src; route_cb.any_count++; RTSOCK_UNLOCK(); soisconnected(so); so->so_options |= SO_USELOOPBACK; splx(s); return 0; } static int rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */ } static int rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */ } /* pru_connect2 is EOPNOTSUPP */ /* pru_control is EOPNOTSUPP */ static int rts_detach(struct socket *so) { struct rawcb *rp = sotorawcb(so); int s, error; s = splnet(); if (rp != NULL) { RTSOCK_LOCK(); switch(rp->rcb_proto.sp_protocol) { case AF_INET: route_cb.ip_count--; break; case AF_INET6: route_cb.ip6_count--; break; case AF_IPX: route_cb.ipx_count--; break; } route_cb.any_count--; RTSOCK_UNLOCK(); } error = raw_usrreqs.pru_detach(so); splx(s); return error; } static int rts_disconnect(struct socket *so) { return (raw_usrreqs.pru_disconnect(so)); } /* pru_listen is EOPNOTSUPP */ static int rts_peeraddr(struct socket *so, struct sockaddr **nam) { return (raw_usrreqs.pru_peeraddr(so, nam)); } /* pru_rcvd is EOPNOTSUPP */ /* pru_rcvoob is EOPNOTSUPP */ static int rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { return (raw_usrreqs.pru_send(so, flags, m, nam, control, td)); } /* pru_sense is null */ static int rts_shutdown(struct socket *so) { return (raw_usrreqs.pru_shutdown(so)); } static int rts_sockaddr(struct socket *so, struct sockaddr **nam) { return (raw_usrreqs.pru_sockaddr(so, nam)); } static struct pr_usrreqs route_usrreqs = { .pru_abort = rts_abort, .pru_attach = rts_attach, .pru_bind = rts_bind, .pru_connect = rts_connect, .pru_detach = rts_detach, .pru_disconnect = rts_disconnect, .pru_peeraddr = rts_peeraddr, .pru_send = rts_send, .pru_shutdown = rts_shutdown, .pru_sockaddr = rts_sockaddr, }; /*ARGSUSED*/ static int route_output(struct mbuf *m, struct socket *so) { #define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0) struct rt_msghdr *rtm = NULL; struct rtentry *rt = NULL; struct radix_node_head *rnh; struct rt_addrinfo info; int len, error = 0; struct ifnet *ifp = NULL; struct ifaddr *ifa = NULL; struct sockaddr_in jail; #define senderr(e) { error = e; goto flush;} if (m == NULL || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == NULL)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) { info.rti_info[RTAX_DST] = NULL; senderr(EINVAL); } R_Malloc(rtm, struct rt_msghdr *, len); if (rtm == NULL) { info.rti_info[RTAX_DST] = NULL; senderr(ENOBUFS); } m_copydata(m, 0, len, (caddr_t)rtm); if (rtm->rtm_version != RTM_VERSION) { info.rti_info[RTAX_DST] = NULL; senderr(EPROTONOSUPPORT); } rtm->rtm_pid = curproc->p_pid; bzero(&info, sizeof(info)); info.rti_addrs = rtm->rtm_addrs; if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) { info.rti_info[RTAX_DST] = NULL; senderr(EINVAL); } info.rti_flags = rtm->rtm_flags; if (info.rti_info[RTAX_DST] == NULL || info.rti_info[RTAX_DST]->sa_family >= AF_MAX || (info.rti_info[RTAX_GATEWAY] != NULL && info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) senderr(EINVAL); if (info.rti_info[RTAX_GENMASK]) { struct radix_node *t; t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1); if (t != NULL && bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1, (char *)(void *)t->rn_key + 1, ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0) info.rti_info[RTAX_GENMASK] = (struct sockaddr *)t->rn_key; else senderr(ENOBUFS); } /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET && (error = suser(curthread)) != 0) senderr(error); switch (rtm->rtm_type) { struct rtentry *saved_nrt; case RTM_ADD: if (info.rti_info[RTAX_GATEWAY] == NULL) senderr(EINVAL); saved_nrt = NULL; error = rtrequest1(RTM_ADD, &info, &saved_nrt); if (error == 0 && saved_nrt) { RT_LOCK(saved_nrt); rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &saved_nrt->rt_rmx); rtm->rtm_index = saved_nrt->rt_ifp->if_index; RT_REMREF(saved_nrt); saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK]; RT_UNLOCK(saved_nrt); } break; case RTM_DELETE: saved_nrt = NULL; error = rtrequest1(RTM_DELETE, &info, &saved_nrt); if (error == 0) { RT_LOCK(saved_nrt); rt = saved_nrt; goto report; } break; case RTM_GET: case RTM_CHANGE: case RTM_LOCK: rnh = rt_tables[info.rti_info[RTAX_DST]->sa_family]; if (rnh == NULL) senderr(EAFNOSUPPORT); RADIX_NODE_HEAD_LOCK(rnh); rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST], info.rti_info[RTAX_NETMASK], rnh); if (rt == NULL) { /* XXX looks bogus */ RADIX_NODE_HEAD_UNLOCK(rnh); senderr(ESRCH); } RT_LOCK(rt); RT_ADDREF(rt); RADIX_NODE_HEAD_UNLOCK(rnh); /* * Fix for PR: 82974 * * RTM_CHANGE/LOCK need a perfect match, rn_lookup() * returns a perfect match in case a netmask is * specified. For host routes only a longest prefix * match is returned so it is necessary to compare the * existence of the netmask. If both have a netmask * rnh_lookup() did a perfect match and if none of them * have a netmask both are host routes which is also a * perfect match. */ if (rtm->rtm_type != RTM_GET && (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) { RT_UNLOCK(rt); senderr(ESRCH); } switch(rtm->rtm_type) { case RTM_GET: report: RT_LOCK_ASSERT(rt); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_GENMASK] = rt->rt_genmask; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { ifp = rt->rt_ifp; if (ifp) { info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; if (jailed(so->so_cred)) { bzero(&jail, sizeof(jail)); jail.sin_family = PF_INET; jail.sin_len = sizeof(jail); jail.sin_addr.s_addr = htonl(prison_getip(so->so_cred)); info.rti_info[RTAX_IFA] = (struct sockaddr *)&jail; } else info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; rtm->rtm_index = ifp->if_index; } else { info.rti_info[RTAX_IFP] = NULL; info.rti_info[RTAX_IFA] = NULL; } } else if ((ifp = rt->rt_ifp) != NULL) { rtm->rtm_index = ifp->if_index; } len = rt_msg2(rtm->rtm_type, &info, NULL, NULL); if (len > rtm->rtm_msglen) { struct rt_msghdr *new_rtm; R_Malloc(new_rtm, struct rt_msghdr *, len); if (new_rtm == NULL) { RT_UNLOCK(rt); senderr(ENOBUFS); } bcopy(rtm, new_rtm, rtm->rtm_msglen); Free(rtm); rtm = new_rtm; } (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL); rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = 0; rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); rtm->rtm_addrs = info.rti_addrs; break; case RTM_CHANGE: /* * New gateway could require new ifaddr, ifp; * flags may also be different; ifp may be specified * by ll sockaddr when protocol address is ambiguous */ if (((rt->rt_flags & RTF_GATEWAY) && info.rti_info[RTAX_GATEWAY] != NULL) || info.rti_info[RTAX_IFP] != NULL || (info.rti_info[RTAX_IFA] != NULL && !sa_equal(info.rti_info[RTAX_IFA], rt->rt_ifa->ifa_addr))) { RT_UNLOCK(rt); if ((error = rt_getifa(&info)) != 0) senderr(error); RT_LOCK(rt); } if (info.rti_info[RTAX_GATEWAY] != NULL && (error = rt_setgate(rt, rt_key(rt), info.rti_info[RTAX_GATEWAY])) != 0) { RT_UNLOCK(rt); senderr(error); } if ((ifa = info.rti_ifa) != NULL) { struct ifaddr *oifa = rt->rt_ifa; if (oifa != ifa) { if (oifa) { if (oifa->ifa_rtrequest) oifa->ifa_rtrequest( RTM_DELETE, rt, &info); IFAFREE(oifa); } IFAREF(ifa); rt->rt_ifa = ifa; rt->rt_ifp = info.rti_ifp; } } /* Allow some flags to be toggled on change. */ if (rtm->rtm_fmask & RTF_FMASK) rt->rt_flags = (rt->rt_flags & ~rtm->rtm_fmask) | (rtm->rtm_flags & rtm->rtm_fmask); rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); rtm->rtm_index = rt->rt_ifp->if_index; if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); if (info.rti_info[RTAX_GENMASK]) rt->rt_genmask = info.rti_info[RTAX_GENMASK]; /* FALLTHROUGH */ case RTM_LOCK: /* We don't support locks anymore */ break; } RT_UNLOCK(rt); break; default: senderr(EOPNOTSUPP); } flush: if (rtm) { if (error) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; } if (rt) /* XXX can this be true? */ RTFREE(rt); { struct rawcb *rp = NULL; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (route_cb.any_count <= 1) { if (rtm) Free(rtm); m_freem(m); return (error); } /* There is another listener, so construct message */ rp = sotorawcb(so); } if (rtm) { m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); Free(rtm); } if (m) { if (rp) { /* * XXX insure we don't get a copy by * invalidating our protocol */ unsigned short family = rp->rcb_proto.sp_family; rp->rcb_proto.sp_family = 0; rt_dispatch(m, info.rti_info[RTAX_DST]); rp->rcb_proto.sp_family = family; } else rt_dispatch(m, info.rti_info[RTAX_DST]); } } return (error); #undef sa_equal } static void rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics_lite *out) { #define metric(f, e) if (which & (f)) out->e = in->e; /* * Only these are stored in the routing entry since introduction * of tcp hostcache. The rest is ignored. */ metric(RTV_MTU, rmx_mtu); metric(RTV_EXPIRE, rmx_expire); #undef metric } static void rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out) { #define metric(e) out->e = in->e; bzero(out, sizeof(*out)); metric(rmx_mtu); metric(rmx_expire); #undef metric } /* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */ static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) { struct sockaddr *sa; int i; for (i = 0; i < RTAX_MAX && cp < cplim; i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if (cp + sa->sa_len > cplim) return (EINVAL); /* * there are no more.. quit now * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * for compatibility, If we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* accept it */ rtinfo->rti_info[i] = sa; cp += SA_SIZE(sa); } return (0); } static struct mbuf * rt_msg1(int type, struct rt_addrinfo *rtinfo) { struct rt_msghdr *rtm; struct mbuf *m; int i; struct sockaddr *sa; int len, dlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_DELMADDR: case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: case RTM_IEEE80211: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } if (len > MCLBYTES) panic("rt_msg1"); m = m_gethdr(M_DONTWAIT, MT_DATA); if (m && len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); m = NULL; } } if (m == NULL) return (m); m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = NULL; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = SA_SIZE(sa); m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } static int rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w) { int i; int len, dlen, second_time = 0; caddr_t cp0; rtinfo->rti_addrs = 0; again: switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; default: len = sizeof(struct rt_msghdr); } cp0 = cp; if (cp0) cp += len; for (i = 0; i < RTAX_MAX; i++) { struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = SA_SIZE(sa); if (cp) { bcopy((caddr_t)sa, cp, (unsigned)dlen); cp += dlen; } len += dlen; } len = ALIGN(len); if (cp == NULL && w != NULL && !second_time) { struct walkarg *rw = w; if (rw->w_req) { if (rw->w_tmemsize < len) { if (rw->w_tmem) free(rw->w_tmem, M_RTABLE); rw->w_tmem = (caddr_t) malloc(len, M_RTABLE, M_NOWAIT); if (rw->w_tmem) rw->w_tmemsize = len; } if (rw->w_tmem) { cp = rw->w_tmem; second_time = 1; goto again; } } } if (cp) { struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } return (len); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occured, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { struct rt_msghdr *rtm; struct mbuf *m; struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (route_cb.any_count == 0) return; m = rt_msg1(type, rtinfo); if (m == NULL) return; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_addrs = rtinfo->rti_addrs; rt_dispatch(m, sa); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr *ifm; struct mbuf *m; struct rt_addrinfo info; if (route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); m = rt_msg1(RTM_IFINFO, &info); if (m == NULL) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = 0; rt_dispatch(m, NULL); } /* * This is called to generate messages from the routing socket * indicating a network interface has had addresses associated with it. * if we ever reverse the logic and replace messages TO the routing * socket indicate a request to configure interfaces, then it will * be unnecessary as the routing socket will automatically generate * copies of it. */ void rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) { struct rt_addrinfo info; struct sockaddr *sa = NULL; int pass; struct mbuf *m = NULL; struct ifnet *ifp = ifa->ifa_ifp; KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE, ("unexpected cmd %u", cmd)); if (route_cb.any_count == 0) return; for (pass = 1; pass < 3; pass++) { bzero((caddr_t)&info, sizeof(info)); if ((cmd == RTM_ADD && pass == 1) || (cmd == RTM_DELETE && pass == 2)) { struct ifa_msghdr *ifam; int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; if ((m = rt_msg1(ncmd, &info)) == NULL) continue; ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; } if ((cmd == RTM_ADD && pass == 2) || (cmd == RTM_DELETE && pass == 1)) { struct rt_msghdr *rtm; if (rt == NULL) continue; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_DST] = sa = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; if ((m = rt_msg1(cmd, &info)) == NULL) continue; rtm = mtod(m, struct rt_msghdr *); rtm->rtm_index = ifp->if_index; rtm->rtm_flags |= rt->rt_flags; rtm->rtm_errno = error; rtm->rtm_addrs = info.rti_addrs; } rt_dispatch(m, sa); } } /* * This is the analogue to the rt_newaddrmsg which performs the same * function but for multicast group memberhips. This is easier since * there is no route state to worry about. */ void rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) { struct rt_addrinfo info; struct mbuf *m = NULL; struct ifnet *ifp = ifma->ifma_ifp; struct ifma_msghdr *ifmam; if (route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = ifma->ifma_addr; info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL; /* * If a link-layer address is present, present it as a ``gateway'' * (similarly to how ARP entries, e.g., are presented). */ info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; m = rt_msg1(cmd, &info); if (m == NULL) return; ifmam = mtod(m, struct ifma_msghdr *); ifmam->ifmam_index = ifp->if_index; ifmam->ifmam_addrs = info.rti_addrs; rt_dispatch(m, ifma->ifma_addr); } static struct mbuf * rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, struct rt_addrinfo *info) { struct if_announcemsghdr *ifan; struct mbuf *m; if (route_cb.any_count == 0) return NULL; bzero((caddr_t)info, sizeof(*info)); m = rt_msg1(type, info); if (m != NULL) { ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; } return m; } /* * This is called to generate routing socket messages indicating * IEEE80211 wireless events. * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. */ void rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); if (m != NULL) { /* * Append the ieee80211 data. Try to stick it in the * mbuf containing the ifannounce msg; otherwise allocate * a new mbuf and append. * * NB: we assume m is a single mbuf. */ if (data_len > M_TRAILINGSPACE(m)) { struct mbuf *n = m_get(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } bcopy(data, mtod(n, void *), data_len); n->m_len = data_len; m->m_next = n; } else if (data_len > 0) { bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); m->m_len += data_len; } if (m->m_flags & M_PKTHDR) m->m_pkthdr.len += data_len; mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; rt_dispatch(m, NULL); } } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); if (m != NULL) rt_dispatch(m, NULL); } static void rt_dispatch(struct mbuf *m, const struct sockaddr *sa) { struct m_tag *tag; /* * Preserve the family from the sockaddr, if any, in an m_tag for * use when injecting the mbuf into the routing socket buffer from * the netisr. */ if (sa != NULL) { tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short), M_NOWAIT); if (tag == NULL) { m_freem(m); return; } *(unsigned short *)(tag + 1) = sa->sa_family; m_tag_prepend(m, tag); } netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ } /* * This is used in dumping the kernel table via sysctl(). */ static int sysctl_dumpentry(struct radix_node *rn, void *vw) { struct walkarg *w = vw; struct rtentry *rt = (struct rtentry *)rn; int error = 0, size; struct rt_addrinfo info; if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) return 0; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); info.rti_info[RTAX_GENMASK] = rt->rt_genmask; if (rt->rt_ifp) { info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr; info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; } size = rt_msg2(RTM_GET, &info, NULL, w); if (w->w_req && w->w_tmem) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; rtm->rtm_flags = rt->rt_flags; rtm->rtm_use = rt->rt_rmx.rmx_pksent; rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); rtm->rtm_index = rt->rt_ifp->if_index; rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; rtm->rtm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); return (error); } return (error); } static int sysctl_iflist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifaddr *ifa; struct rt_addrinfo info; int len, error = 0; bzero((caddr_t)&info, sizeof(info)); IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa->ifa_addr; len = rt_msg2(RTM_IFINFO, &info, NULL, w); info.rti_info[RTAX_IFP] = NULL; if (w->w_req && w->w_tmem) { struct if_msghdr *ifm; ifm = (struct if_msghdr *)w->w_tmem; ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_data = ifp->if_data; ifm->ifm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len); if (error) goto done; } while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) { if (af && af != ifa->ifa_addr->sa_family) continue; if (jailed(curthread->td_ucred) && prison_if(curthread->td_ucred, ifa->ifa_addr)) continue; info.rti_info[RTAX_IFA] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; len = rt_msg2(RTM_NEWADDR, &info, NULL, w); if (w->w_req && w->w_tmem) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_metric = ifa->ifa_metric; ifam->ifam_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error) goto done; } } info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = info.rti_info[RTAX_BRD] = NULL; } done: IFNET_RUNLOCK(); return (error); } int sysctl_ifmalist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifmultiaddr *ifma; struct rt_addrinfo info; int len, error = 0; struct ifaddr *ifa; bzero((caddr_t)&info, sizeof(info)); IFNET_RLOCK(); TAILQ_FOREACH(ifp, &ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (af && af != ifma->ifma_addr->sa_family) continue; if (jailed(curproc->p_ucred) && prison_if(curproc->p_ucred, ifma->ifma_addr)) continue; info.rti_info[RTAX_IFA] = ifma->ifma_addr; info.rti_info[RTAX_GATEWAY] = (ifma->ifma_addr->sa_family != AF_LINK) ? ifma->ifma_lladdr : NULL; len = rt_msg2(RTM_NEWMADDR, &info, NULL, w); if (w->w_req && w->w_tmem) { struct ifma_msghdr *ifmam; ifmam = (struct ifma_msghdr *)w->w_tmem; ifmam->ifmam_index = ifma->ifma_ifp->if_index; ifmam->ifmam_flags = 0; ifmam->ifmam_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error) { IF_ADDR_UNLOCK(ifp); goto done; } } } IF_ADDR_UNLOCK(ifp); } done: IFNET_RUNLOCK(); return (error); } static int sysctl_rtsock(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; u_int namelen = arg2; struct radix_node_head *rnh; int i, lim, error = EINVAL; u_char af; struct walkarg w; name ++; namelen--; if (req->newptr) return (EPERM); if (namelen != 3) return ((namelen < 3) ? EISDIR : ENOTDIR); af = name[0]; if (af > AF_MAX) return (EINVAL); bzero(&w, sizeof(w)); w.w_op = name[1]; w.w_arg = name[2]; w.w_req = req; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: if (af == 0) { /* dump all tables */ i = 1; lim = AF_MAX; } else /* dump only one table */ i = lim = af; for (error = 0; error == 0 && i <= lim; i++) if ((rnh = rt_tables[i]) != NULL) { RADIX_NODE_HEAD_LOCK(rnh); error = rnh->rnh_walktree(rnh, sysctl_dumpentry, &w); RADIX_NODE_HEAD_UNLOCK(rnh); } else if (af != 0) error = EAFNOSUPPORT; break; case NET_RT_IFLIST: error = sysctl_iflist(af, &w); break; case NET_RT_IFMALIST: error = sysctl_ifmalist(af, &w); break; } if (w.w_tmem) free(w.w_tmem, M_RTABLE); return (error); } SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, ""); /* * Definitions of protocols supported in the ROUTE domain. */ static struct domain routedomain; /* or at least forward */ static struct protosw routesw[] = { { .pr_type = SOCK_RAW, .pr_domain = &routedomain, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_output = route_output, .pr_ctlinput = raw_ctlinput, .pr_init = raw_init, .pr_usrreqs = &route_usrreqs } }; static struct domain routedomain = { .dom_family = PF_ROUTE, .dom_name = "route", .dom_protosw = routesw, .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])] }; DOMAIN_SET(route);