/* * Copyright (c) 1994, Sean Eric Fagan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Sean Eric Fagan. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* use the equivalent procfs code */ #if 0 static int pread (struct proc *procp, unsigned int addr, unsigned int *retval) { int rv; vm_map_t map, tmap; vm_object_t object; vm_offset_t kva = 0; int page_offset; /* offset into page */ vm_offset_t pageno; /* page number */ vm_map_entry_t out_entry; vm_prot_t out_prot; boolean_t wired; vm_pindex_t pindex; /* Map page into kernel space */ map = &procp->p_vmspace->vm_map; page_offset = addr - trunc_page(addr); pageno = trunc_page(addr); tmap = map; rv = vm_map_lookup (&tmap, pageno, VM_PROT_READ, &out_entry, &object, &pindex, &out_prot, &wired); if (rv != KERN_SUCCESS) return EINVAL; vm_map_lookup_done (tmap, out_entry); /* Find space in kernel_map for the page we're interested in */ rv = vm_map_find (kernel_map, object, IDX_TO_OFF(pindex), &kva, PAGE_SIZE, 0, VM_PROT_ALL, VM_PROT_ALL, 0); if (!rv) { vm_object_reference (object); rv = vm_map_pageable (kernel_map, kva, kva + PAGE_SIZE, 0); if (!rv) { *retval = 0; bcopy ((caddr_t)kva + page_offset, retval, sizeof *retval); } vm_map_remove (kernel_map, kva, kva + PAGE_SIZE); } return rv; } static int pwrite (struct proc *procp, unsigned int addr, unsigned int datum) { int rv; vm_map_t map, tmap; vm_object_t object; vm_offset_t kva = 0; int page_offset; /* offset into page */ vm_offset_t pageno; /* page number */ vm_map_entry_t out_entry; vm_prot_t out_prot; boolean_t wired; vm_pindex_t pindex; boolean_t fix_prot = 0; /* Map page into kernel space */ map = &procp->p_vmspace->vm_map; page_offset = addr - trunc_page(addr); pageno = trunc_page(addr); /* * Check the permissions for the area we're interested in. */ if (vm_map_check_protection (map, pageno, pageno + PAGE_SIZE, VM_PROT_WRITE) == FALSE) { /* * If the page was not writable, we make it so. * XXX It is possible a page may *not* be read/executable, * if a process changes that! */ fix_prot = 1; /* The page isn't writable, so let's try making it so... */ if ((rv = vm_map_protect (map, pageno, pageno + PAGE_SIZE, VM_PROT_ALL, 0)) != KERN_SUCCESS) return EFAULT; /* I guess... */ } /* * Now we need to get the page. out_entry, out_prot, wired, and * single_use aren't used. One would think the vm code would be * a *bit* nicer... We use tmap because vm_map_lookup() can * change the map argument. */ tmap = map; rv = vm_map_lookup (&tmap, pageno, VM_PROT_WRITE, &out_entry, &object, &pindex, &out_prot, &wired); if (rv != KERN_SUCCESS) { return EINVAL; } /* * Okay, we've got the page. Let's release tmap. */ vm_map_lookup_done (tmap, out_entry); /* * Fault the page in... */ rv = vm_fault(map, pageno, VM_PROT_WRITE|VM_PROT_READ, FALSE); if (rv != KERN_SUCCESS) return EFAULT; /* Find space in kernel_map for the page we're interested in */ rv = vm_map_find (kernel_map, object, IDX_TO_OFF(pindex), &kva, PAGE_SIZE, 0, VM_PROT_ALL, VM_PROT_ALL, 0); if (!rv) { vm_object_reference (object); rv = vm_map_pageable (kernel_map, kva, kva + PAGE_SIZE, 0); if (!rv) { bcopy (&datum, (caddr_t)kva + page_offset, sizeof datum); } vm_map_remove (kernel_map, kva, kva + PAGE_SIZE); } if (fix_prot) vm_map_protect (map, pageno, pageno + PAGE_SIZE, VM_PROT_READ|VM_PROT_EXECUTE, 0); return rv; } #endif /* * Process debugging system call. */ #ifndef _SYS_SYSPROTO_H_ struct ptrace_args { int req; pid_t pid; caddr_t addr; int data; }; #endif int ptrace(curp, uap) struct proc *curp; struct ptrace_args *uap; { struct proc *p; struct iovec iov; struct uio uio; int error = 0; int write; write = 0; if (uap->req == PT_TRACE_ME) { p = curp; PROC_LOCK(p); } else { if ((p = pfind(uap->pid)) == NULL) return ESRCH; } if (p_can(curp, p, P_CAN_SEE, NULL)) { PROC_UNLOCK(p); return (ESRCH); } /* * Permissions check */ switch (uap->req) { case PT_TRACE_ME: /* Always legal. */ break; case PT_ATTACH: /* Self */ if (p->p_pid == curp->p_pid) { PROC_UNLOCK(p); return EINVAL; } /* Already traced */ if (p->p_flag & P_TRACED) { PROC_UNLOCK(p); return EBUSY; } if ((error = p_can(curp, p, P_CAN_DEBUG, NULL))) { PROC_UNLOCK(p); return error; } /* OK */ break; case PT_READ_I: case PT_READ_D: case PT_READ_U: case PT_WRITE_I: case PT_WRITE_D: case PT_WRITE_U: case PT_CONTINUE: case PT_KILL: case PT_STEP: case PT_DETACH: #ifdef PT_GETREGS case PT_GETREGS: #endif #ifdef PT_SETREGS case PT_SETREGS: #endif #ifdef PT_GETFPREGS case PT_GETFPREGS: #endif #ifdef PT_SETFPREGS case PT_SETFPREGS: #endif #ifdef PT_GETDBREGS case PT_GETDBREGS: #endif #ifdef PT_SETDBREGS case PT_SETDBREGS: #endif /* not being traced... */ if ((p->p_flag & P_TRACED) == 0) { PROC_UNLOCK(p); return EPERM; } /* not being traced by YOU */ if (p->p_pptr != curp) { PROC_UNLOCK(p); return EBUSY; } /* not currently stopped */ mtx_lock_spin(&sched_lock); if (p->p_stat != SSTOP || (p->p_flag & P_WAITED) == 0) { mtx_unlock_spin(&sched_lock); PROC_UNLOCK(p); return EBUSY; } mtx_unlock_spin(&sched_lock); /* OK */ break; default: PROC_UNLOCK(p); return EINVAL; } PROC_UNLOCK(p); #ifdef FIX_SSTEP /* * Single step fixup ala procfs */ FIX_SSTEP(p); #endif /* * Actually do the requests */ curp->p_retval[0] = 0; switch (uap->req) { case PT_TRACE_ME: /* set my trace flag and "owner" so it can read/write me */ sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; PROC_UNLOCK(p); sx_xunlock(&proctree_lock); return 0; case PT_ATTACH: /* security check done above */ sx_xlock(&proctree_lock); PROC_LOCK(p); p->p_flag |= P_TRACED; p->p_oppid = p->p_pptr->p_pid; if (p->p_pptr != curp) proc_reparent(p, curp); PROC_UNLOCK(p); sx_xunlock(&proctree_lock); uap->data = SIGSTOP; goto sendsig; /* in PT_CONTINUE below */ case PT_STEP: case PT_CONTINUE: case PT_DETACH: if ((uap->req != PT_STEP) && ((unsigned)uap->data >= NSIG)) return EINVAL; PHOLD(p); if (uap->req == PT_STEP) { if ((error = ptrace_single_step (p))) { PRELE(p); return error; } } if (uap->addr != (caddr_t)1) { fill_kinfo_proc (p, &p->p_addr->u_kproc); if ((error = ptrace_set_pc (p, (u_long)(uintfptr_t)uap->addr))) { PRELE(p); return error; } } PRELE(p); if (uap->req == PT_DETACH) { /* reset process parent */ sx_xlock(&proctree_lock); if (p->p_oppid != p->p_pptr->p_pid) { struct proc *pp; pp = pfind(p->p_oppid); proc_reparent(p, pp ? pp : initproc); } else PROC_LOCK(p); p->p_flag &= ~(P_TRACED | P_WAITED); p->p_oppid = 0; PROC_UNLOCK(p); sx_xunlock(&proctree_lock); /* should we send SIGCHLD? */ } sendsig: /* deliver or queue signal */ PROC_LOCK(p); mtx_lock_spin(&sched_lock); if (p->p_stat == SSTOP) { p->p_xstat = uap->data; setrunnable(p); mtx_unlock_spin(&sched_lock); } else { mtx_unlock_spin(&sched_lock); if (uap->data) psignal(p, uap->data); } PROC_UNLOCK(p); return 0; case PT_WRITE_I: case PT_WRITE_D: write = 1; /* fallthrough */ case PT_READ_I: case PT_READ_D: /* write = 0 set above */ iov.iov_base = write ? (caddr_t)&uap->data : (caddr_t)curp->p_retval; iov.iov_len = sizeof(int); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = (off_t)(uintptr_t)uap->addr; uio.uio_resid = sizeof(int); uio.uio_segflg = UIO_SYSSPACE; /* ie: the uap */ uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_procp = p; error = procfs_domem(curp, p, NULL, &uio); if (uio.uio_resid != 0) { /* * XXX procfs_domem() doesn't currently return ENOSPC, * so I think write() can bogusly return 0. * XXX what happens for short writes? We don't want * to write partial data. * XXX procfs_domem() returns EPERM for other invalid * addresses. Convert this to EINVAL. Does this * clobber returns of EPERM for other reasons? */ if (error == 0 || error == ENOSPC || error == EPERM) error = EINVAL; /* EOF */ } return (error); case PT_READ_U: if ((uintptr_t)uap->addr > UPAGES * PAGE_SIZE - sizeof(int)) { return EFAULT; } if ((uintptr_t)uap->addr & (sizeof(int) - 1)) { return EFAULT; } if (ptrace_read_u_check(p,(vm_offset_t) uap->addr, sizeof(int))) { return EFAULT; } error = 0; PHOLD(p); /* user had damn well better be incore! */ mtx_lock_spin(&sched_lock); if (p->p_sflag & PS_INMEM) { mtx_unlock_spin(&sched_lock); fill_kinfo_proc (p, &p->p_addr->u_kproc); curp->p_retval[0] = *(int *) ((uintptr_t)p->p_addr + (uintptr_t)uap->addr); } else { mtx_unlock_spin(&sched_lock); curp->p_retval[0] = 0; error = EFAULT; } PRELE(p); return error; case PT_WRITE_U: PHOLD(p); /* user had damn well better be incore! */ mtx_lock_spin(&sched_lock); if (p->p_sflag & PS_INMEM) { mtx_unlock_spin(&sched_lock); fill_kinfo_proc (p, &p->p_addr->u_kproc); error = ptrace_write_u(p, (vm_offset_t)uap->addr, uap->data); } else { mtx_unlock_spin(&sched_lock); error = EFAULT; } PRELE(p); return error; case PT_KILL: uap->data = SIGKILL; goto sendsig; /* in PT_CONTINUE above */ #ifdef PT_SETREGS case PT_SETREGS: write = 1; /* fallthrough */ #endif /* PT_SETREGS */ #ifdef PT_GETREGS case PT_GETREGS: /* write = 0 above */ #endif /* PT_SETREGS */ #if defined(PT_SETREGS) || defined(PT_GETREGS) if (!procfs_validregs(p)) /* no P_SYSTEM procs please */ return EINVAL; else { iov.iov_base = uap->addr; iov.iov_len = sizeof(struct reg); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = sizeof(struct reg); uio.uio_segflg = UIO_USERSPACE; uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_procp = curp; return (procfs_doregs(curp, p, NULL, &uio)); } #endif /* defined(PT_SETREGS) || defined(PT_GETREGS) */ #ifdef PT_SETFPREGS case PT_SETFPREGS: write = 1; /* fallthrough */ #endif /* PT_SETFPREGS */ #ifdef PT_GETFPREGS case PT_GETFPREGS: /* write = 0 above */ #endif /* PT_SETFPREGS */ #if defined(PT_SETFPREGS) || defined(PT_GETFPREGS) if (!procfs_validfpregs(p)) /* no P_SYSTEM procs please */ return EINVAL; else { iov.iov_base = uap->addr; iov.iov_len = sizeof(struct fpreg); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = sizeof(struct fpreg); uio.uio_segflg = UIO_USERSPACE; uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_procp = curp; return (procfs_dofpregs(curp, p, NULL, &uio)); } #endif /* defined(PT_SETFPREGS) || defined(PT_GETFPREGS) */ #ifdef PT_SETDBREGS case PT_SETDBREGS: write = 1; /* fallthrough */ #endif /* PT_SETDBREGS */ #ifdef PT_GETDBREGS case PT_GETDBREGS: /* write = 0 above */ #endif /* PT_SETDBREGS */ #if defined(PT_SETDBREGS) || defined(PT_GETDBREGS) if (!procfs_validdbregs(p)) /* no P_SYSTEM procs please */ return EINVAL; else { iov.iov_base = uap->addr; iov.iov_len = sizeof(struct dbreg); uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_offset = 0; uio.uio_resid = sizeof(struct dbreg); uio.uio_segflg = UIO_USERSPACE; uio.uio_rw = write ? UIO_WRITE : UIO_READ; uio.uio_procp = curp; return (procfs_dodbregs(curp, p, NULL, &uio)); } #endif /* defined(PT_SETDBREGS) || defined(PT_GETDBREGS) */ default: break; } return 0; } int trace_req(p) struct proc *p; { return 1; } /* * stopevent() * Stop a process because of a procfs event; * stay stopped until p->p_step is cleared * (cleared by PIOCCONT in procfs). * * Must be called with the proc struct mutex held. */ void stopevent(p, event, val) struct proc *p; unsigned int event; unsigned int val; { PROC_LOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED); p->p_step = 1; do { p->p_xstat = val; p->p_stype = event; /* Which event caused the stop? */ wakeup(&p->p_stype); /* Wake up any PIOCWAIT'ing procs */ msleep(&p->p_step, &p->p_mtx, PWAIT, "stopevent", 0); } while (p->p_step); }