/*- * Copyright (c) 2000 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_global.h" #include "opt_ata.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* device structures */ static d_open_t aropen; static d_strategy_t arstrategy; static struct cdevsw ar_cdevsw = { /* open */ aropen, /* close */ nullclose, /* read */ physread, /* write */ physwrite, /* ioctl */ noioctl, /* poll */ nopoll, /* mmap */ nommap, /* strategy */ arstrategy, /* name */ "ar", /* maj */ 157, /* dump */ nodump, /* psize */ nopsize, /* flags */ D_DISK, /* bmaj */ -1 }; static struct cdevsw ardisk_cdevsw; /* prototypes */ static void ar_attach(struct ar_softc *); static void ar_done(struct bio *); static int ar_highpoint_conf(struct ad_softc *, struct ar_config *); static int32_t ar_promise_magic(struct promise_raid_conf *); static int ar_promise_conf(struct ad_softc *, struct ar_config *); static int ar_read(struct ad_softc *, u_int32_t, int, char *); /* internal vars */ static int ar_init = 0; static struct ar_config ar_table; MALLOC_DEFINE(M_AR, "AR driver", "ATA RAID driver"); /* defines */ #define PRINT_AD(adp) \ printf(" ad%d: %luMB <%.40s> [%d/%d/%d] at ata%d-%s %s%s\n", \ adp->lun, adp->total_secs / ((1024L * 1024L) / DEV_BSIZE), \ adp->controller->dev_param[ATA_DEV(adp->unit)]->model, \ adp->total_secs / (adp->heads * adp->sectors), \ adp->heads, adp->sectors, device_get_unit(adp->controller->dev),\ (adp->unit == ATA_MASTER) ? "master" : "slave", \ (adp->flags & AD_F_TAG_ENABLED) ? "tagged " : "", \ ata_mode2str(adp->controller->mode[ATA_DEV(adp->unit)])) int ar_probe(struct ad_softc *adp) { if (!ar_init) { bzero(&ar_table, sizeof(ar_table)); ar_init = 1; } switch(adp->controller->chiptype) { case 0x4d33105a: case 0x4d38105a: case 0x4d30105a: case 0x0d30105a: if (ar_promise_conf(adp, &ar_table)) break; return 0; case 0x00041103: if (ar_highpoint_conf(adp, &ar_table)) break; return 0; } return 1; } static void ar_attach(struct ar_softc *raid) { dev_t dev; int i; printf("ar%d: %luMB lun, raid->total_secs / ((1024L*1024L)/DEV_BSIZE)); switch (raid->flags & (AR_F_RAID_0 | AR_F_RAID_1 | AR_F_SPAN)) { case AR_F_RAID_0: printf("RAID0 "); break; case AR_F_RAID_1: printf("RAID1 "); break; case AR_F_SPAN: printf("SPAN "); break; case (AR_F_RAID_0 | AR_F_RAID_1): printf("RAID0+1 "); break; default: printf("unknown array 0x%x ", raid->flags); return; } printf("array> [%d/%d/%d] subdisks: \n", raid->cylinders, raid->heads, raid->sectors); for (i = 0; i < raid->num_subdisks; i++) PRINT_AD(raid->subdisk[i]); for (i = 0; i < raid->num_mirrordisks; i++) PRINT_AD(raid->mirrordisk[i]); dev = disk_create(raid->lun, &raid->disk, 0, &ar_cdevsw, &ardisk_cdevsw); dev->si_drv1 = raid; dev->si_iosize_max = 256 * DEV_BSIZE; raid->dev = dev; } static int aropen(dev_t dev, int flags, int fmt, struct proc *p) { struct ar_softc *rdp = dev->si_drv1; struct disklabel *dl; dl = &rdp->disk.d_label; bzero(dl, sizeof *dl); dl->d_secsize = DEV_BSIZE; dl->d_nsectors = rdp->sectors; dl->d_ntracks = rdp->heads; dl->d_ncylinders = rdp->cylinders; dl->d_secpercyl = rdp->sectors * rdp->heads; dl->d_secperunit = rdp->total_secs; return 0; } static void arstrategy(struct bio *bp) { struct ar_softc *rdp = bp->bio_dev->si_drv1; int lba, count, chunk; caddr_t data; /* if it's a null transfer, return immediatly. */ if (bp->bio_bcount == 0) { bp->bio_resid = 0; biodone(bp); return; } bp->bio_resid = bp->bio_bcount; lba = bp->bio_pblkno; data = bp->bio_data; for (count = howmany(bp->bio_bcount, DEV_BSIZE); count > 0; count -= chunk, lba += chunk, data += (chunk * DEV_BSIZE)) { struct ar_buf *buf1, *buf2; int plba; buf1 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT); bzero(buf1, sizeof(struct ar_buf)); if (rdp->flags & AR_F_SPAN) { plba = lba; while (plba >= (rdp->subdisk[buf1->drive]->total_secs-rdp->reserved) && buf1->drive < rdp->num_subdisks) plba-=(rdp->subdisk[buf1->drive++]->total_secs-rdp->reserved); buf1->bp.bio_pblkno = plba; chunk = min(rdp->subdisk[buf1->drive]->total_secs - rdp->reserved - plba, count); } else if (rdp->flags & AR_F_RAID_0) { plba = lba / rdp->interleave; chunk = lba % rdp->interleave; buf1->drive = plba % rdp->num_subdisks; buf1->bp.bio_pblkno = ((plba / rdp->num_subdisks) * rdp->interleave) + chunk; chunk = min(rdp->interleave - chunk, count); } else { buf1->bp.bio_pblkno = lba; buf1->drive = 0; chunk = count; } buf1->bp.bio_pblkno += rdp->offset; buf1->bp.bio_caller1 = (void *)rdp; buf1->bp.bio_bcount = chunk * DEV_BSIZE; buf1->bp.bio_data = data; buf1->bp.bio_cmd = bp->bio_cmd; buf1->bp.bio_flags = bp->bio_flags; buf1->bp.bio_done = ar_done; buf1->org = bp; /* simpleminded load balancing on RAID1 arrays */ if (rdp->flags & AR_F_RAID_1 && bp->bio_cmd == BIO_READ) { if (buf1->bp.bio_pblkno < (rdp->last_lba[buf1->drive][rdp->last_disk] - 100) || buf1->bp.bio_pblkno > (rdp->last_lba[buf1->drive][rdp->last_disk] + 100)) { rdp->last_disk = 1 - rdp->last_disk; rdp->last_lba[buf1->drive][rdp->last_disk] = buf1->bp.bio_pblkno; } if (rdp->last_disk) buf1->bp.bio_dev = rdp->mirrordisk[buf1->drive]->dev; else buf1->bp.bio_dev = rdp->subdisk[buf1->drive]->dev; } else buf1->bp.bio_dev = rdp->subdisk[buf1->drive]->dev; if (rdp->flags & AR_F_RAID_1 && bp->bio_cmd == BIO_WRITE) { buf2 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT); bcopy(buf1, buf2, sizeof(struct ar_buf)); buf2->bp.bio_dev = rdp->mirrordisk[buf1->drive]->dev; buf2->mirror = buf1; buf1->mirror = buf2; buf2->bp.bio_dev->si_disk->d_devsw->d_strategy((struct bio *)buf2); } buf1->bp.bio_dev->si_disk->d_devsw->d_strategy((struct bio *)buf1); } } static void ar_done(struct bio *bp) { struct ar_softc *rdp = (struct ar_softc *)bp->bio_caller1; struct ar_buf *buf = (struct ar_buf *)bp; int s; s = splbio(); if (bp->bio_flags & BIO_ERROR) { if (bp->bio_cmd == BIO_WRITE || buf->done || !(rdp->flags&AR_F_RAID_1)){ buf->org->bio_flags |= BIO_ERROR; buf->org->bio_error = bp->bio_error; } printf("ar%d: subdisk error\n", rdp->lun); } if (rdp->flags & AR_F_RAID_1) { if (bp->bio_cmd == BIO_WRITE) { if (!buf->done) { buf->mirror->done = 1; goto done; } } else { if (!buf->done && bp->bio_flags & BIO_ERROR) { /* read error on this disk, try mirror */ buf->done = 1; buf->bp.bio_dev = rdp->mirrordisk[buf->drive]->dev; buf->bp.bio_dev->si_disk->d_devsw->d_strategy((struct bio*)buf); return; } } } buf->org->bio_resid -= bp->bio_bcount; if (buf->org->bio_resid == 0) biodone(buf->org); done: free(buf, M_AR); splx(s); } /* read the RAID info from a disk on a HighPoint controller */ static int ar_highpoint_conf(struct ad_softc *adp, struct ar_config *raidp) { struct highpoint_raid_conf info; struct ar_softc *raid; int array_done = 0, r; if (ar_read(adp, 0x09, DEV_BSIZE, (char *)&info)) { if (bootverbose) printf("HighPoint read conf failed\n"); return 1; } /* check if this is a HighPoint RAID struct */ if (info.magic != HPT_MAGIC_OK) { if (bootverbose) printf("HighPoint check1 failed\n"); return 1; } /* now convert HighPoint config info into our generic form */ for (r = 0; r < 8; r++) { if (!raidp->raid[r]) { raidp->raid[r] = (struct ar_softc*)malloc(sizeof(struct ar_softc),M_AR,M_NOWAIT); if (!raidp->raid[r]) { printf("ar: failed to allocate raid config storage\n"); return 1; } bzero(raidp->raid[r], sizeof(struct ar_softc)); } raid = raidp->raid[r]; switch (info.type) { case HPT_T_RAID_0: /* check the order byte to determine what this really is */ switch (info.order & (HPT_O_MIRROR | HPT_O_STRIPE)) { case HPT_O_MIRROR: goto hpt_mirror; case HPT_O_STRIPE: if (raid->magic_0 && raid->magic_0 != info.magic_0) continue; raid->magic_0 = info.magic_0; raid->flags |= (AR_F_RAID_0 | AR_F_RAID_1); raid->interleave = 1 << info.raid0_shift; raid->subdisk[info.disk_number] = adp; raid->num_subdisks++; if ((raid->num_subdisks + raid->num_mirrordisks) == (info.raid_disks * 2)) array_done = 1; break; case (HPT_O_MIRROR | HPT_O_STRIPE): if (raid->magic_1 && raid->magic_1 != info.magic_1) continue; raid->magic_1 = info.magic_1; raid->flags |= (AR_F_RAID_0 | AR_F_RAID_1); raid->mirrordisk[info.disk_number] = adp; raid->num_mirrordisks++; if ((raid->num_subdisks + raid->num_mirrordisks) == (info.raid_disks * 2)) array_done = 1; break; default: if (raid->magic_0 && raid->magic_0 != info.magic_0) continue; raid->magic_0 = info.magic_0; raid->magic_1 = 0xffffffff; raid->flags |= AR_F_RAID_0; raid->interleave = 1 << info.raid0_shift; raid->subdisk[info.disk_number] = adp; raid->num_subdisks++; if (raid->num_subdisks == info.raid_disks) array_done = 1; } break; case HPT_T_RAID_1: hpt_mirror: if (raid->magic_1 && raid->magic_1 != info.magic_1) continue; raid->magic_1 = info.magic_1; raid->magic_0 = 0xffffffff; raid->flags |= AR_F_RAID_1; if (info.disk_number == 0 && raid->num_subdisks == 0) { raid->subdisk[raid->num_subdisks] = adp; raid->num_subdisks = 1; } if (info.disk_number == 1 && raid->num_mirrordisks == 0) { raid->mirrordisk[raid->num_mirrordisks] = adp; raid->num_mirrordisks = 1; } if ((raid->num_subdisks + raid->num_mirrordisks) == (info.raid_disks * 2)) array_done = 1; break; case HPT_T_SPAN: if (raid->magic_0 && raid->magic_0 != info.magic_0) continue; raid->magic_0 = info.magic_0; raid->flags |= AR_F_SPAN; raid->subdisk[raid->num_subdisks] = adp; raid->num_subdisks++; if (raid->num_subdisks == info.raid_disks) array_done = 1; break; default: printf("HighPoint unknown RAID type 0x%02x\n", info.type); } if (array_done) { raid->lun = r; raid->heads = 255; raid->sectors = 63; raid->cylinders = (info.total_secs - 9) / (63 * 255); raid->total_secs = info.total_secs - (9 * raid->num_subdisks); raid->offset = 10; raid->reserved = 10; ar_attach(raid); return 0; } break; } return 0; } static int32_t ar_promise_magic(struct promise_raid_conf *info) { int i, j; int32_t magic = 0; for (i = 0; i < 4; i++) { if ((info->raid[i].flags != PR_F_CONFED) || (((info->raid[i].status & (PR_S_DEFINED|PR_S_ONLINE)) != (PR_S_DEFINED|PR_S_ONLINE)))) continue; for (j = 0; j < info->raid[i].total_disks; j++) { magic <<= 8; magic |= ((info->raid[i].disk[j].magic_0 & 0x00ff0000)>>16); } } return magic; } /* read the RAID info from a disk on a Promise Fasttrak controller */ static int ar_promise_conf(struct ad_softc *adp, struct ar_config *raidp) { struct promise_raid_conf info; struct ar_softc *raid; u_int32_t lba; u_int32_t cksum, *ckptr; int count, i, j, r; lba = adp->total_secs - adp->sectors; if (ar_read(adp, lba, 4 * DEV_BSIZE, (char *)&info)) { if (bootverbose) printf("Promise read conf failed\n"); return 1; } /* check if this is a Promise RAID struct */ if (strncmp(info.promise_id, PR_MAGIC, sizeof(PR_MAGIC))) { if (bootverbose) printf("Promise check1 failed\n"); return 1; } /* check if the checksum is OK */ for (cksum = 0, ckptr = (int32_t *)&info, count = 0; count < 511; count++) cksum += *ckptr++; if (cksum != *ckptr) { if (bootverbose) printf("Promise check2 failed\n"); return 1; } /* now convert Promise config info into our generic form */ for (i = 0, r = 0; i < 4; i++) { if ((info.raid[i].flags != PR_F_CONFED) || (((info.raid[i].status & (PR_S_DEFINED|PR_S_ONLINE)) != (PR_S_DEFINED|PR_S_ONLINE)))) { continue; } if (raidp->raid[r]) { if (ar_promise_magic(&info) != raidp->raid[r]->magic_0) { r++; i--; continue; } } else { if (!(raidp->raid[r] = (struct ar_softc *) malloc(sizeof(struct ar_softc), M_AR, M_NOWAIT))) { printf("ar: failed to allocate raid config storage\n"); return 1; } else bzero(raidp->raid[r], sizeof(struct ar_softc)); } raid = raidp->raid[r]; raid->magic_0 = ar_promise_magic(&info); switch (info.raid[i].type) { case PR_T_STRIPE: raid->flags |= AR_F_RAID_0; raid->interleave = 1 << info.raid[i].raid0_shift; break; case PR_T_MIRROR: raid->flags |= AR_F_RAID_1; break; case PR_T_SPAN: raid->flags |= AR_F_SPAN; break; default: printf("Promise unknown RAID type 0x%02x\n", info.raid[i].type); } /* find out where this disk is in the defined array */ /* first RAID0 / SPAN disks */ for (j = 0; j < info.raid[i].raid0_disks; j++) { if (info.channel == info.raid[i].disk[j].channel && info.device == info.raid[i].disk[j].device) { raid->subdisk[raid->num_subdisks] = adp; raid->num_subdisks++; if (raid->num_subdisks > 1 && !(raid->flags & AR_F_SPAN)) { raid->flags |= AR_F_RAID_0; raid->interleave = 1 << info.raid[i].raid0_shift; } } } /* if any left they are RAID1 disks eventually in a RADI0+1 config */ for (; j < info.raid[i].total_disks; j++) { if (info.channel == info.raid[i].disk[j].channel && info.device == info.raid[i].disk[j].device) { raid-> mirrordisk[raid->num_mirrordisks] = adp; raid->num_mirrordisks++; } } /* do we have a complete array to attach to ? */ if (raid->num_subdisks + raid->num_mirrordisks == info.raid[i].total_disks) { raid->lun = r; raid->heads = info.raid[i].heads + 1; raid->sectors = info.raid[i].sectors; raid->cylinders = info.raid[i].cylinders + 1; raid->total_secs = info.raid[i].total_secs; raid->offset = 0; raid->reserved = 63; ar_attach(raid); } r++; } return 0; } int ar_read(struct ad_softc *adp, u_int32_t lba, int count, char *data) { if (ata_command(adp->controller, adp->unit | ATA_D_LBA, (count > DEV_BSIZE) ? ATA_C_READ_MUL : ATA_C_READ, (lba >> 8) & 0xffff, (lba >> 24) & 0xff, lba & 0xff, count / DEV_BSIZE, 0, ATA_WAIT_INTR)) { ata_printf(adp->controller, adp->unit, "RAID read config failed\n"); return 1; } if (ata_wait(adp->controller, adp->unit, ATA_S_READY|ATA_S_DSC|ATA_S_DRQ)) { ata_printf(adp->controller, adp->unit, "RAID read config timeout\n"); return 1; } insw(adp->controller->ioaddr + ATA_DATA, data, count/sizeof(int16_t)); inb(adp->controller->ioaddr + ATA_STATUS); return 0; }