/* $Id: ccd.c,v 1.5 1996/01/30 22:34:53 asami Exp $ */ /* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $ */ /* * Copyright (c) 1995 Jason R. Thorpe. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project * by Jason R. Thorpe. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1988 University of Utah. * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: Utah $Hdr: cd.c 1.6 90/11/28$ * * @(#)cd.c 8.2 (Berkeley) 11/16/93 */ /* * "Concatenated" disk driver. * * Dynamic configuration and disklabel support by: * Jason R. Thorpe * Numerical Aerodynamic Simulation Facility * Mail Stop 258-6 * NASA Ames Research Center * Moffett Field, CA 94035 */ #include "ccd.h" #if NCCD > 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CCDDEBUG) && !defined(DEBUG) #define DEBUG #endif #ifdef DEBUG #define CCDB_FOLLOW 0x01 #define CCDB_INIT 0x02 #define CCDB_IO 0x04 #define CCDB_LABEL 0x08 #define CCDB_VNODE 0x10 int ccddebug = CCDB_FOLLOW | CCDB_INIT | CCDB_IO | CCDB_LABEL | CCDB_VNODE; #undef DEBUG #endif #define ccdunit(x) dkunit(x) #define ccdpart(x) dkpart(x) struct ccdbuf { struct buf cb_buf; /* new I/O buf */ struct buf *cb_obp; /* ptr. to original I/O buf */ int cb_unit; /* target unit */ int cb_comp; /* target component */ }; #define getccdbuf() \ ((struct ccdbuf *)malloc(sizeof(struct ccdbuf), M_DEVBUF, M_WAITOK)) #define putccdbuf(cbp) \ free((caddr_t)(cbp), M_DEVBUF) #define CCDLABELDEV(dev) \ (makedev(major((dev)), dkmakeminor(ccdunit((dev)), 0, RAW_PART))) /* {b,c}devsw[] function prototypes */ d_open_t ccdopen ; d_close_t ccdclose ; d_strategy_t ccdstrategy ; d_ioctl_t ccdioctl ; d_read_t ccdread ; d_write_t ccdwrite ; /* called by main() at boot time */ int ccdattach __P((struct isa_device *dp)); int ccdprobe __P((struct isa_device *dp)); /* called by biodone() at interrupt time */ void ccdiodone __P((struct ccdbuf *cbp)); static void ccdstart __P((struct ccd_softc *, struct buf *)); static void ccdinterleave __P((struct ccd_softc *, int)); static void ccdintr __P((struct ccd_softc *, struct buf *)); static int ccdinit __P((struct ccddevice *, char **, struct proc *)); static int ccdlookup __P((char *, struct proc *p, struct vnode **)); static void ccdbuffer __P((struct ccdbuf **ret, struct ccd_softc *, struct buf *, daddr_t, caddr_t, long)); static void ccdgetdisklabel __P((dev_t)); static void ccdmakedisklabel __P((struct ccd_softc *)); static int ccdlock __P((struct ccd_softc *)); static void ccdunlock __P((struct ccd_softc *)); static void loopdelay __P((void)); #ifdef DEBUG static void printiinfo __P((struct ccdiinfo *)); #endif /* Non-private for the benefit of libkvm. */ struct ccd_softc *ccd_softc; struct ccddevice *ccddevs; int numccd = 0; static struct kern_devconf kdc_ccd[NCCD] = { { 0, 0, 0, /* filled in by dev_attach */ "ccd", 0, { MDDT_DISK, 0, "tty" }, 0, 0, 0, DISK_EXTERNALLEN, 0, /* parent */ 0, /* parentdata */ DC_UNKNOWN, /* not supported */ "Concatenated disk driver" } }; struct isa_driver ccddriver = { ccdprobe, ccdattach, "ccd", }; int ccdprobe(dp) struct isa_device *dp; { return -1; } /* * Called by main() during pseudo-device attachment. All we need * to do is allocate enough space for devices to be configured later. */ int ccdattach(dp) struct isa_device *dp; { int i; int num = dp->id_unit; if (num < 0) { #ifdef DIAGNOSTIC panic("ccdattach: count <= 0"); #endif return 0; } if (num == NCCD-1) { if (num) printf("ccd0-%d: Concatenated disk drivers\n", num); else printf("ccd0: Concatenated disk driver\n", num); } if (num > 0) { /* only do initialization first time around */ return 0; } num = NCCD; ccd_softc = (struct ccd_softc *)malloc(num * sizeof(struct ccd_softc), M_DEVBUF, M_NOWAIT); ccddevs = (struct ccddevice *)malloc(num * sizeof(struct ccddevice), M_DEVBUF, M_NOWAIT); if ((ccd_softc == NULL) || (ccddevs == NULL)) { printf("WARNING: no memory for concatenated disks\n"); if (ccd_softc != NULL) free(ccd_softc, M_DEVBUF); if (ccddevs != NULL) free(ccddevs, M_DEVBUF); return 0; } numccd = num; bzero(ccd_softc, num * sizeof(struct ccd_softc)); bzero(ccddevs, num * sizeof(struct ccddevice)); /* XXX: is this necessary? */ for (i = 0; i < numccd; ++i) ccddevs[i].ccd_dk = -1; dev_attach(&kdc_ccd[dp->id_unit]); return 1; } static int ccdinit(ccd, cpaths, p) struct ccddevice *ccd; char **cpaths; struct proc *p; { register struct ccd_softc *cs = &ccd_softc[ccd->ccd_unit]; register struct ccdcinfo *ci; register size_t size; register int ix; struct vnode *vp; struct vattr va; size_t minsize; int maxsecsize; struct partinfo dpart; struct ccdgeom *ccg = &cs->sc_geom; char tmppath[MAXPATHLEN]; int error; #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccdinit: unit %d\n", ccd->ccd_unit); #endif #ifdef WORKING_DISK_STATISTICS /* XXX !! */ cs->sc_dk = ccd->ccd_dk; #endif cs->sc_size = 0; cs->sc_ileave = ccd->ccd_interleave; cs->sc_nccdisks = ccd->ccd_ndev; /* Allocate space for the component info. */ cs->sc_cinfo = malloc(cs->sc_nccdisks * sizeof(struct ccdcinfo), M_DEVBUF, M_WAITOK); /* * Verify that each component piece exists and record * relevant information about it. */ maxsecsize = 0; minsize = 0; for (ix = 0; ix < cs->sc_nccdisks; ix++) { vp = ccd->ccd_vpp[ix]; ci = &cs->sc_cinfo[ix]; ci->ci_vp = vp; /* * Copy in the pathname of the component. */ bzero(tmppath, sizeof(tmppath)); /* sanity */ if (error = copyinstr(cpaths[ix], tmppath, MAXPATHLEN, &ci->ci_pathlen)) { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: can't copy path, error = %d\n", ccd->ccd_unit, error); #endif free(cs->sc_cinfo, M_DEVBUF); return (error); } ci->ci_path = malloc(ci->ci_pathlen, M_DEVBUF, M_WAITOK); bcopy(tmppath, ci->ci_path, ci->ci_pathlen); /* * XXX: Cache the component's dev_t. */ if (error = VOP_GETATTR(vp, &va, p->p_ucred, p)) { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: %s: getattr failed %s = %d\n", ccd->ccd_unit, ci->ci_path, "error", error); #endif free(ci->ci_path, M_DEVBUF); free(cs->sc_cinfo, M_DEVBUF); return (error); } ci->ci_dev = va.va_rdev; /* * Get partition information for the component. */ if (error = VOP_IOCTL(vp, DIOCGPART, (caddr_t)&dpart, FREAD, p->p_ucred, p)) { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: %s: ioctl failed, error = %d\n", ccd->ccd_unit, ci->ci_path, error); #endif free(ci->ci_path, M_DEVBUF); free(cs->sc_cinfo, M_DEVBUF); return (error); } if (dpart.part->p_fstype == FS_BSDFFS) { maxsecsize = ((dpart.disklab->d_secsize > maxsecsize) ? dpart.disklab->d_secsize : maxsecsize); size = dpart.part->p_size; } else { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: %s: incorrect partition type\n", ccd->ccd_unit, ci->ci_path); #endif free(ci->ci_path, M_DEVBUF); free(cs->sc_cinfo, M_DEVBUF); return (EFTYPE); } /* * Calculate the size, truncating to an interleave * boundary if necessary. */ if (size < 0) size = 0; if (cs->sc_ileave > 1) size -= size % cs->sc_ileave; if (size == 0) { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: %s: size == 0\n", ccd->ccd_unit, ci->ci_path); #endif free(ci->ci_path, M_DEVBUF); free(cs->sc_cinfo, M_DEVBUF); return (ENODEV); } if (minsize == 0 || size < minsize) minsize = size; ci->ci_size = size; cs->sc_size += size; } /* * Don't allow the interleave to be smaller than * the biggest component sector. */ if ((cs->sc_ileave > 0) && (cs->sc_ileave < (maxsecsize / DEV_BSIZE))) { #ifdef DEBUG if (ccddebug & (CCDB_FOLLOW|CCDB_INIT)) printf("ccd%d: interleave must be at least %d\n", ccd->ccd_unit, (maxsecsize / DEV_BSIZE)); #endif free(ci->ci_path, M_DEVBUF); free(cs->sc_cinfo, M_DEVBUF); return (EINVAL); } /* * If uniform interleave is desired set all sizes to that of * the smallest component. */ if (ccd->ccd_flags & CCDF_UNIFORM) { for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) ci->ci_size = minsize; if (ccd->ccd_flags & CCDF_MIRROR) { if (cs->sc_nccdisks % 2) { cs->sc_nccdisks--; printf("ccd%d: mirroring requires even number of disks; using %d\n", ccd->ccd_unit, cs->sc_nccdisks); } cs->sc_size = (cs->sc_nccdisks/2) * minsize; } else if (ccd->ccd_flags & CCDF_PARITY) cs->sc_size = (cs->sc_nccdisks-1) * minsize; else cs->sc_size = cs->sc_nccdisks * minsize; } /* * Construct the interleave table. */ ccdinterleave(cs, ccd->ccd_unit); /* * Create pseudo-geometry based on 1MB cylinders. It's * pretty close. */ ccg->ccg_secsize = DEV_BSIZE; ccg->ccg_ntracks = 1; ccg->ccg_nsectors = 1024 * (1024 / ccg->ccg_secsize); ccg->ccg_ncylinders = cs->sc_size / ccg->ccg_nsectors; #ifdef WORKING_DISK_STATISTICS /* XXX !! */ if (ccd->ccd_dk >= 0) dk_wpms[ccd->ccd_dk] = 32 * (60 * DEV_BSIZE / 2); /* XXX */ #endif cs->sc_flags |= CCDF_INITED; cs->sc_cflags = ccd->ccd_flags; /* So we can find out later... */ cs->sc_unit = ccd->ccd_unit; return (0); } static void ccdinterleave(cs, unit) register struct ccd_softc *cs; int unit; { register struct ccdcinfo *ci, *smallci; register struct ccdiinfo *ii; register daddr_t bn, lbn; register int ix; u_long size; #ifdef DEBUG if (ccddebug & CCDB_INIT) printf("ccdinterleave(%x): ileave %d\n", cs, cs->sc_ileave); #endif /* * Allocate an interleave table. * Chances are this is too big, but we don't care. */ size = (cs->sc_nccdisks + 1) * sizeof(struct ccdiinfo); cs->sc_itable = (struct ccdiinfo *)malloc(size, M_DEVBUF, M_WAITOK); bzero((caddr_t)cs->sc_itable, size); /* * Trivial case: no interleave (actually interleave of disk size). * Each table entry represents a single component in its entirety. */ if (cs->sc_ileave == 0) { bn = 0; ii = cs->sc_itable; for (ix = 0; ix < cs->sc_nccdisks; ix++) { /* Allocate space for ii_index. */ ii->ii_index = malloc(sizeof(int), M_DEVBUF, M_WAITOK); ii->ii_ndisk = 1; ii->ii_startblk = bn; ii->ii_startoff = 0; ii->ii_index[0] = ix; bn += cs->sc_cinfo[ix].ci_size; ii++; } ii->ii_ndisk = 0; #ifdef DEBUG if (ccddebug & CCDB_INIT) printiinfo(cs->sc_itable); #endif return; } /* * The following isn't fast or pretty; it doesn't have to be. */ size = 0; bn = lbn = 0; for (ii = cs->sc_itable; ; ii++) { /* Allocate space for ii_index. */ ii->ii_index = malloc((sizeof(int) * cs->sc_nccdisks), M_DEVBUF, M_WAITOK); /* * Locate the smallest of the remaining components */ smallci = NULL; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) if (ci->ci_size > size && (smallci == NULL || ci->ci_size < smallci->ci_size)) smallci = ci; /* * Nobody left, all done */ if (smallci == NULL) { ii->ii_ndisk = 0; break; } /* * Record starting logical block and component offset */ ii->ii_startblk = bn / cs->sc_ileave; ii->ii_startoff = lbn; /* * Determine how many disks take part in this interleave * and record their indices. */ ix = 0; for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_nccdisks]; ci++) if (ci->ci_size >= smallci->ci_size) ii->ii_index[ix++] = ci - cs->sc_cinfo; ii->ii_ndisk = ix; bn += ix * (smallci->ci_size - size); lbn = smallci->ci_size / cs->sc_ileave; size = smallci->ci_size; } #ifdef DEBUG if (ccddebug & CCDB_INIT) printiinfo(cs->sc_itable); #endif } /* ARGSUSED */ int ccdopen(dev, flags, fmt, p) dev_t dev; int flags, fmt; struct proc *p; { int unit = ccdunit(dev); struct ccd_softc *cs; struct disklabel *lp; int error = 0, part, pmask; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdopen(%x, %x)\n", dev, flags); #endif if (unit >= numccd) return (ENXIO); cs = &ccd_softc[unit]; if (error = ccdlock(cs)) return (error); lp = &cs->sc_dkdev.dk_label; part = ccdpart(dev); pmask = (1 << part); /* * If we're initialized, check to see if there are any other * open partitions. If not, then it's safe to update * the in-core disklabel. */ if ((cs->sc_flags & CCDF_INITED) && (cs->sc_dkdev.dk_openmask == 0)) ccdgetdisklabel(dev); /* Check that the partition exists. */ if (part != RAW_PART && ((part > lp->d_npartitions) || (lp->d_partitions[part].p_fstype == FS_UNUSED))) { error = ENXIO; goto done; } /* Prevent our unit from being unconfigured while open. */ switch (fmt) { case S_IFCHR: cs->sc_dkdev.dk_copenmask |= pmask; break; case S_IFBLK: cs->sc_dkdev.dk_bopenmask |= pmask; break; } cs->sc_dkdev.dk_openmask = cs->sc_dkdev.dk_copenmask | cs->sc_dkdev.dk_bopenmask; done: ccdunlock(cs); return (0); } /* ARGSUSED */ int ccdclose(dev, flags, fmt, p) dev_t dev; int flags, fmt; struct proc *p; { int unit = ccdunit(dev); struct ccd_softc *cs; int error = 0, part; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdclose(%x, %x)\n", dev, flags); #endif if (unit >= numccd) return (ENXIO); cs = &ccd_softc[unit]; if (error = ccdlock(cs)) return (error); part = ccdpart(dev); /* ...that much closer to allowing unconfiguration... */ switch (fmt) { case S_IFCHR: cs->sc_dkdev.dk_copenmask &= ~(1 << part); break; case S_IFBLK: cs->sc_dkdev.dk_bopenmask &= ~(1 << part); break; } cs->sc_dkdev.dk_openmask = cs->sc_dkdev.dk_copenmask | cs->sc_dkdev.dk_bopenmask; ccdunlock(cs); return (0); } void ccdstrategy(bp) register struct buf *bp; { register int unit = ccdunit(bp->b_dev); register struct ccd_softc *cs = &ccd_softc[unit]; register daddr_t bn; register int sz, s; int wlabel; struct disklabel *lp; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdstrategy(%x): unit %d\n", bp, unit); #endif if ((cs->sc_flags & CCDF_INITED) == 0) { bp->b_error = ENXIO; bp->b_flags |= B_ERROR; goto done; } /* If it's a nil transfer, wake up the top half now. */ if (bp->b_bcount == 0) goto done; lp = &cs->sc_dkdev.dk_label; /* * Do bounds checking and adjust transfer. If there's an * error, the bounds check will flag that for us. */ wlabel = cs->sc_flags & (CCDF_WLABEL|CCDF_LABELLING); if (ccdpart(bp->b_dev) != RAW_PART) if (bounds_check_with_label(bp, lp, wlabel) <= 0) goto done; if (cs->sc_cflags & CCDF_MIRROR && (bp->b_flags & B_READ) == 0) bp->b_resid = bp->b_bcount*2; else bp->b_resid = bp->b_bcount; /* * "Start" the unit. */ s = splbio(); ccdstart(cs, bp); splx(s); return; done: biodone(bp); } static void ccdstart(cs, bp) register struct ccd_softc *cs; register struct buf *bp; { register long bcount, rcount; struct ccdbuf *cbp[4]; /* XXX! : 2 reads and 2 writes for RAID 4/5 */ caddr_t addr; daddr_t bn; struct partition *pp; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdstart(%x, %x)\n", cs, bp); #endif #ifdef WORKING_DISK_STATISTICS /* XXX !! */ /* * Instrumentation (not very meaningful) */ cs->sc_nactive++; if (cs->sc_dk >= 0) { dk_busy |= 1 << cs->sc_dk; dk_xfer[cs->sc_dk]++; dk_wds[cs->sc_dk] += bp->b_bcount >> 6; } #endif /* * Translate the partition-relative block number to an absolute. */ bn = bp->b_blkno; if (ccdpart(bp->b_dev) != RAW_PART) { pp = &cs->sc_dkdev.dk_label.d_partitions[ccdpart(bp->b_dev)]; bn += pp->p_offset; } /* * Allocate component buffers and fire off the requests */ addr = bp->b_data; for (bcount = bp->b_bcount; bcount > 0; bcount -= rcount) { ccdbuffer(cbp, cs, bp, bn, addr, bcount); rcount = cbp[0]->cb_buf.b_bcount; if ((cbp[0]->cb_buf.b_flags & B_READ) == 0) cbp[0]->cb_buf.b_vp->v_numoutput++; VOP_STRATEGY(&cbp[0]->cb_buf); if (cs->sc_cflags & CCDF_MIRROR && (cbp[0]->cb_buf.b_flags & B_READ) == 0) { /* mirror, start another write */ cbp[1]->cb_buf.b_vp->v_numoutput++; VOP_STRATEGY(&cbp[1]->cb_buf); } bn += btodb(rcount); addr += rcount; } } /* * Build a component buffer header. */ void ccdbuffer(cb, cs, bp, bn, addr, bcount) register struct ccdbuf **cb; register struct ccd_softc *cs; struct buf *bp; daddr_t bn; caddr_t addr; long bcount; { register struct ccdcinfo *ci, *ci2; register struct ccdbuf *cbp; register daddr_t cbn, cboff; #ifdef DEBUG if (ccddebug & CCDB_IO) printf("ccdbuffer(%x, %x, %d, %x, %d)\n", cs, bp, bn, addr, bcount); #endif /* * Determine which component bn falls in. */ cbn = bn; cboff = 0; /* * Serially concatenated */ if (cs->sc_ileave == 0) { register daddr_t sblk; sblk = 0; for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++) sblk += ci->ci_size; cbn -= sblk; } /* * Interleaved */ else { register struct ccdiinfo *ii; int ccdisk, off; cboff = cbn % cs->sc_ileave; cbn /= cs->sc_ileave; for (ii = cs->sc_itable; ii->ii_ndisk; ii++) if (ii->ii_startblk > cbn) break; ii--; off = cbn - ii->ii_startblk; if (ii->ii_ndisk == 1) { ccdisk = ii->ii_index[0]; cbn = ii->ii_startoff + off; } else { if (cs->sc_cflags & CCDF_MIRROR) { ccdisk = ii->ii_index[off % (ii->ii_ndisk/2)]; cbn = ii->ii_startoff + off / (ii->ii_ndisk/2); /* mirrored data */ ci2 = &cs->sc_cinfo[ccdisk + ii->ii_ndisk/2]; } else if (cs->sc_cflags & CCDF_PARITY) { ccdisk = ii->ii_index[off % (ii->ii_ndisk-1)]; cbn = ii->ii_startoff + off / (ii->ii_ndisk-1); if (cbn % ii->ii_ndisk <= ccdisk) ccdisk++; } else { ccdisk = ii->ii_index[off % ii->ii_ndisk]; cbn = ii->ii_startoff + off / ii->ii_ndisk; } } cbn *= cs->sc_ileave; ci = &cs->sc_cinfo[ccdisk]; } /* * Fill in the component buf structure. */ cbp = getccdbuf(); cbp->cb_buf.b_flags = bp->b_flags | B_CALL; cbp->cb_buf.b_iodone = (void (*)())ccdiodone; cbp->cb_buf.b_proc = bp->b_proc; cbp->cb_buf.b_dev = ci->ci_dev; /* XXX */ cbp->cb_buf.b_blkno = cbn + cboff; cbp->cb_buf.b_data = addr; cbp->cb_buf.b_vp = ci->ci_vp; if (cs->sc_ileave == 0) cbp->cb_buf.b_bcount = dbtob(ci->ci_size - cbn); else cbp->cb_buf.b_bcount = dbtob(cs->sc_ileave - cboff); if (cbp->cb_buf.b_bcount > bcount) cbp->cb_buf.b_bcount = bcount; /* * context for ccdiodone */ cbp->cb_obp = bp; cbp->cb_unit = cs - ccd_softc; cbp->cb_comp = ci - cs->sc_cinfo; #ifdef DEBUG if (ccddebug & CCDB_IO) printf(" dev %x(u%d): cbp %x bn %d addr %x bcnt %d\n", ci->ci_dev, ci-cs->sc_cinfo, cbp, cbp->cb_buf.b_blkno, cbp->cb_buf.b_data, cbp->cb_buf.b_bcount); #endif cb[0] = cbp; if (cs->sc_cflags & CCDF_MIRROR && (cbp->cb_buf.b_flags & B_READ) == 0) { /* mirror, start one more write */ cbp = getccdbuf(); *cbp = *cb[0]; cbp->cb_buf.b_dev = ci2->ci_dev; cbp->cb_buf.b_vp = ci2->ci_vp; cbp->cb_comp = ci2 - cs->sc_cinfo; cb[1] = cbp; } } static void ccdintr(cs, bp) register struct ccd_softc *cs; register struct buf *bp; { #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdintr(%x, %x)\n", cs, bp); #endif /* * Request is done for better or worse, wakeup the top half. */ #ifdef WORKING_DISK_STATISTICS /* XXX !! */ --cs->sc_nactive; #ifdef DIAGNOSTIC if (cs->sc_nactive < 0) panic("ccdintr: ccd%d: sc_nactive < 0", cs->sc_unit); #endif if (cs->sc_nactive == 0 && cs->sc_dk >= 0) dk_busy &= ~(1 << cs->sc_dk); #endif if (bp->b_flags & B_ERROR) if (cs->sc_cflags & CCDF_MIRROR && (bp->b_flags & B_READ) == 0) bp->b_resid = bp->b_bcount*2; else bp->b_resid = bp->b_bcount; biodone(bp); } /* * Called at interrupt time. * Mark the component as done and if all components are done, * take a ccd interrupt. */ void ccdiodone(cbp) struct ccdbuf *cbp; { register struct buf *bp = cbp->cb_obp; register int unit = cbp->cb_unit; int count, s; s = splbio(); #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdiodone(%x)\n", cbp); if (ccddebug & CCDB_IO) { printf("ccdiodone: bp %x bcount %d resid %d\n", bp, bp->b_bcount, bp->b_resid); printf(" dev %x(u%d), cbp %x bn %d addr %x bcnt %d\n", cbp->cb_buf.b_dev, cbp->cb_comp, cbp, cbp->cb_buf.b_blkno, cbp->cb_buf.b_data, cbp->cb_buf.b_bcount); } #endif if (cbp->cb_buf.b_flags & B_ERROR) { bp->b_flags |= B_ERROR; bp->b_error = cbp->cb_buf.b_error ? cbp->cb_buf.b_error : EIO; #ifdef DEBUG printf("ccd%d: error %d on component %d\n", unit, bp->b_error, cbp->cb_comp); #endif } count = cbp->cb_buf.b_bcount; putccdbuf(cbp); /* * If all done, "interrupt". */ bp->b_resid -= count; if (bp->b_resid < 0) panic("ccdiodone: count"); if (bp->b_resid == 0) ccdintr(&ccd_softc[unit], bp); splx(s); } /* ARGSUSED */ int ccdread(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { int unit = ccdunit(dev); struct ccd_softc *cs; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdread(%x, %x)\n", dev, uio); #endif if (unit >= numccd) return (ENXIO); cs = &ccd_softc[unit]; if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); /* * XXX: It's not clear that using minphys() is completely safe, * in particular, for raw I/O. Underlying devices might have some * non-obvious limits, because of the copy to user-space. */ return (physio(ccdstrategy, NULL, dev, B_READ, minphys, uio)); } /* ARGSUSED */ int ccdwrite(dev, uio, flags) dev_t dev; struct uio *uio; int flags; { int unit = ccdunit(dev); struct ccd_softc *cs; #ifdef DEBUG if (ccddebug & CCDB_FOLLOW) printf("ccdwrite(%x, %x)\n", dev, uio); #endif if (unit >= numccd) return (ENXIO); cs = &ccd_softc[unit]; if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); /* * XXX: It's not clear that using minphys() is completely safe, * in particular, for raw I/O. Underlying devices might have some * non-obvious limits, because of the copy to user-space. */ return (physio(ccdstrategy, NULL, dev, B_WRITE, minphys, uio)); } static void loopdelay() { int i, j, k, l; printf("I'm now gonna wait for fifteen seconds\n"); printf("Press Ctl-Alt-Esc NOW!\n"); for (i = 0; i < 1000; i++) for (j = 0; j < 1000; j++) for (k = 0; k < 100; k++) l = i * j * k; } int ccdioctl(dev, cmd, data, flag, p) dev_t dev; int cmd; caddr_t data; int flag; struct proc *p; { int unit = ccdunit(dev); int i, j, lookedup = 0, error = 0; int part, pmask, s; struct ccd_softc *cs; struct ccd_ioctl *ccio = (struct ccd_ioctl *)data; struct ccddevice ccd; char **cpp; struct vnode **vpp; #ifdef WORKING_DISK_STATISTICS /* XXX !! */ extern int dkn; #endif if (unit >= numccd) return (ENXIO); cs = &ccd_softc[unit]; bzero(&ccd, sizeof(ccd)); switch (cmd) { case CCDIOCSET: if (cs->sc_flags & CCDF_INITED) return (EBUSY); if ((flag & FWRITE) == 0) return (EBADF); if (error = ccdlock(cs)) return (error); /* Fill in some important bits. */ ccd.ccd_unit = unit; ccd.ccd_interleave = ccio->ccio_ileave; if ((ccio->ccio_flags & CCDF_MIRROR) && (ccio->ccio_flags & CCDF_PARITY)) { printf("ccd%d: can't specify both mirror and parity, using mirror\n", unit); ccio->ccio_flags &= ~CCDF_PARITY; } if ((ccio->ccio_flags & (CCDF_MIRROR | CCDF_PARITY)) && !(ccio->ccio_flags & CCDF_UNIFORM)) { printf("ccd%d: mirror/parity forces uniform flag\n", unit); ccio->ccio_flags |= CCDF_UNIFORM; } ccd.ccd_flags = ccio->ccio_flags & CCDF_USERMASK; /* * Allocate space for and copy in the array of * componet pathnames and device numbers. */ cpp = malloc(ccio->ccio_ndisks * sizeof(char *), M_DEVBUF, M_WAITOK); vpp = malloc(ccio->ccio_ndisks * sizeof(struct vnode *), M_DEVBUF, M_WAITOK); error = copyin((caddr_t)ccio->ccio_disks, (caddr_t)cpp, ccio->ccio_ndisks * sizeof(char **)); if (error) { free(vpp, M_DEVBUF); free(cpp, M_DEVBUF); ccdunlock(cs); return (error); } #ifdef DEBUG if (ccddebug & CCDB_INIT) for (i = 0; i < ccio->ccio_ndisks; ++i) printf("ccdioctl: component %d: 0x%x\n", i, cpp[i]); #endif for (i = 0; i < ccio->ccio_ndisks; ++i) { #ifdef DEBUG if (ccddebug & CCDB_INIT) printf("ccdioctl: lookedup = %d\n", lookedup); #endif if (error = ccdlookup(cpp[i], p, &vpp[i])) { for (j = 0; j < lookedup; ++j) (void)vn_close(vpp[j], FREAD|FWRITE, p->p_ucred, p); free(vpp, M_DEVBUF); free(cpp, M_DEVBUF); ccdunlock(cs); return (error); } ++lookedup; } ccd.ccd_cpp = cpp; ccd.ccd_vpp = vpp; ccd.ccd_ndev = ccio->ccio_ndisks; #ifdef WORKING_DISK_STATISTICS /* XXX !! */ /* * Assign disk index first so that init routine * can use it (saves having the driver drag around * the ccddevice pointer just to set up the dk_* * info in the open routine). */ if (dkn < DK_NDRIVE) ccd.ccd_dk = dkn++; else ccd.ccd_dk = -1; #endif /* * Initialize the ccd. Fills in the softc for us. */ if (error = ccdinit(&ccd, cpp, p)) { #ifdef WORKING_DISK_STATISTICS /* XXX !! */ if (ccd.ccd_dk >= 0) --dkn; #endif for (j = 0; j < lookedup; ++j) (void)vn_close(vpp[j], FREAD|FWRITE, p->p_ucred, p); bzero(&ccd_softc[unit], sizeof(struct ccd_softc)); free(vpp, M_DEVBUF); free(cpp, M_DEVBUF); ccdunlock(cs); return (error); } /* * The ccd has been successfully initialized, so * we can place it into the array and read the disklabel. */ bcopy(&ccd, &ccddevs[unit], sizeof(ccd)); ccio->ccio_unit = unit; ccio->ccio_size = cs->sc_size; ccdgetdisklabel(dev); ccdunlock(cs); break; case CCDIOCCLR: if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); if ((flag & FWRITE) == 0) return (EBADF); if (error = ccdlock(cs)) return (error); /* * Don't unconfigure if any other partitions are open * or if both the character and block flavors of this * partition are open. */ part = ccdpart(dev); pmask = (1 << part); if ((cs->sc_dkdev.dk_openmask & ~pmask) || ((cs->sc_dkdev.dk_bopenmask & pmask) && (cs->sc_dkdev.dk_copenmask & pmask))) { ccdunlock(cs); return (EBUSY); } /* * Free ccd_softc information and clear entry. */ /* Close the components and free their pathnames. */ for (i = 0; i < cs->sc_nccdisks; ++i) { /* * XXX: this close could potentially fail and * cause Bad Things. Maybe we need to force * the close to happen? */ #ifdef DEBUG if (ccddebug & CCDB_VNODE) vprint("CCDIOCCLR: vnode info", cs->sc_cinfo[i].ci_vp); #endif (void)vn_close(cs->sc_cinfo[i].ci_vp, FREAD|FWRITE, p->p_ucred, p); free(cs->sc_cinfo[i].ci_path, M_DEVBUF); } /* Free interleave index. */ for (i = 0; cs->sc_itable[i].ii_ndisk; ++i) free(cs->sc_itable[i].ii_index, M_DEVBUF); /* Free component info and interleave table. */ free(cs->sc_cinfo, M_DEVBUF); free(cs->sc_itable, M_DEVBUF); cs->sc_flags &= ~CCDF_INITED; /* * Free ccddevice information and clear entry. */ free(ccddevs[unit].ccd_cpp, M_DEVBUF); free(ccddevs[unit].ccd_vpp, M_DEVBUF); ccd.ccd_dk = -1; bcopy(&ccd, &ccddevs[unit], sizeof(ccd)); /* This must be atomic. */ s = splhigh(); ccdunlock(cs); bzero(cs, sizeof(struct ccd_softc)); splx(s); break; case DIOCGDINFO: if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); *(struct disklabel *)data = cs->sc_dkdev.dk_label; break; case DIOCGPART: if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); ((struct partinfo *)data)->disklab = &cs->sc_dkdev.dk_label; ((struct partinfo *)data)->part = &cs->sc_dkdev.dk_label.d_partitions[ccdpart(dev)]; break; case DIOCWDINFO: case DIOCSDINFO: if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); if ((flag & FWRITE) == 0) return (EBADF); if (error = ccdlock(cs)) return (error); cs->sc_flags |= CCDF_LABELLING; error = setdisklabel(&cs->sc_dkdev.dk_label, (struct disklabel *)data, 0); /*, &cs->sc_dkdev.dk_cpulabel); */ if (error == 0) { if (cmd == DIOCWDINFO) error = correct_writedisklabel(CCDLABELDEV(dev), ccdstrategy, &cs->sc_dkdev.dk_label); /* &cs->sc_dkdev.dk_cpulabel); */ } cs->sc_flags &= ~CCDF_LABELLING; ccdunlock(cs); if (error) return (error); break; case DIOCWLABEL: if ((cs->sc_flags & CCDF_INITED) == 0) return (ENXIO); if ((flag & FWRITE) == 0) return (EBADF); if (*(int *)data != 0) cs->sc_flags |= CCDF_WLABEL; else cs->sc_flags &= ~CCDF_WLABEL; break; default: return (ENOTTY); } return (0); } int ccdsize(dev) dev_t dev; { struct ccd_softc *cs; int part, size; if (ccdopen(dev, 0, S_IFBLK, curproc)) return (-1); cs = &ccd_softc[ccdunit(dev)]; part = ccdpart(dev); if ((cs->sc_flags & CCDF_INITED) == 0) return (-1); if (cs->sc_dkdev.dk_label.d_partitions[part].p_fstype != FS_SWAP) size = -1; else size = cs->sc_dkdev.dk_label.d_partitions[part].p_size; if (ccdclose(dev, 0, S_IFBLK, curproc)) return (-1); return (size); } int ccddump(dev, blkno, va, size) dev_t dev; daddr_t blkno; caddr_t va; size_t size; { /* Not implemented. */ return ENXIO; } /* * Lookup the provided name in the filesystem. If the file exists, * is a valid block device, and isn't being used by anyone else, * set *vpp to the file's vnode. */ static int ccdlookup(path, p, vpp) char *path; struct proc *p; struct vnode **vpp; /* result */ { struct nameidata nd; struct vnode *vp; struct vattr va; int error; NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, path, p); if (error = vn_open(&nd, FREAD|FWRITE, 0)) { #ifdef DEBUG if (ccddebug & CCDB_FOLLOW|CCDB_INIT) printf("ccdlookup: vn_open error = %d\n", error); #endif return (error); } vp = nd.ni_vp; if (vp->v_usecount > 1) { VOP_UNLOCK(vp); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (EBUSY); } if (error = VOP_GETATTR(vp, &va, p->p_ucred, p)) { #ifdef DEBUG if (ccddebug & CCDB_FOLLOW|CCDB_INIT) printf("ccdlookup: getattr error = %d\n", error); #endif VOP_UNLOCK(vp); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (error); } /* XXX: eventually we should handle VREG, too. */ if (va.va_type != VBLK) { VOP_UNLOCK(vp); (void)vn_close(vp, FREAD|FWRITE, p->p_ucred, p); return (ENOTBLK); } #ifdef DEBUG if (ccddebug & CCDB_VNODE) vprint("ccdlookup: vnode info", vp); #endif VOP_UNLOCK(vp); *vpp = vp; return (0); } /* * Read the disklabel from the ccd. If one is not present, fake one * up. */ static void ccdgetdisklabel(dev) dev_t dev; { int unit = ccdunit(dev); struct ccd_softc *cs = &ccd_softc[unit]; char *errstring; struct disklabel *lp = &cs->sc_dkdev.dk_label; /* struct cpu_disklabel *clp = &cs->sc_dkdev.dk_cpulabel; */ struct ccdgeom *ccg = &cs->sc_geom; struct dos_partition dos_partdummy; struct dkbad dkbaddummy; bzero(lp, sizeof(*lp)); /* bzero(clp, sizeof(*clp)); */ lp->d_secperunit = cs->sc_size; lp->d_secsize = ccg->ccg_secsize; lp->d_nsectors = ccg->ccg_nsectors; lp->d_ntracks = ccg->ccg_ntracks; lp->d_ncylinders = ccg->ccg_ncylinders; lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors; strncpy(lp->d_typename, "ccd", sizeof(lp->d_typename)); lp->d_type = DTYPE_CCD; strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname)); lp->d_rpm = 3600; lp->d_interleave = 1; lp->d_flags = 0; lp->d_partitions[RAW_PART].p_offset = 0; lp->d_partitions[RAW_PART].p_size = cs->sc_size; lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED; lp->d_npartitions = RAW_PART + 1; lp->d_bbsize = BBSIZE; /* XXX */ lp->d_sbsize = SBSIZE; /* XXX */ lp->d_magic = DISKMAGIC; lp->d_magic2 = DISKMAGIC; lp->d_checksum = dkcksum(&cs->sc_dkdev.dk_label); /* * Call the generic disklabel extraction routine. */ if (errstring = correct_readdisklabel(CCDLABELDEV(dev), ccdstrategy, &cs->sc_dkdev.dk_label/*, &dos_partdummy, &dkbaddummy*/)) /*, &cs->sc_dkdev.dk_cpulabel)) */ ccdmakedisklabel(cs); #ifdef DEBUG /* It's actually extremely common to have unlabeled ccds. */ if (ccddebug & CCDB_LABEL) if (errstring != NULL) printf("ccd%d: %s\n", unit, errstring); #endif } /* * Take care of things one might want to take care of in the event * that a disklabel isn't present. */ static void ccdmakedisklabel(cs) struct ccd_softc *cs; { struct disklabel *lp = &cs->sc_dkdev.dk_label; /* * For historical reasons, if there's no disklabel present * the raw partition must be marked FS_BSDFFS. */ lp->d_partitions[RAW_PART].p_fstype = FS_BSDFFS; strncpy(lp->d_packname, "default label", sizeof(lp->d_packname)); } /* * Wait interruptibly for an exclusive lock. * * XXX * Several drivers do this; it should be abstracted and made MP-safe. */ static int ccdlock(cs) struct ccd_softc *cs; { int error; while ((cs->sc_flags & CCDF_LOCKED) != 0) { cs->sc_flags |= CCDF_WANTED; if ((error = tsleep(cs, PRIBIO | PCATCH, "ccdlck", 0)) != 0) return (error); } cs->sc_flags |= CCDF_LOCKED; return (0); } /* * Unlock and wake up any waiters. */ static void ccdunlock(cs) struct ccd_softc *cs; { cs->sc_flags &= ~CCDF_LOCKED; if ((cs->sc_flags & CCDF_WANTED) != 0) { cs->sc_flags &= ~CCDF_WANTED; wakeup(cs); } } #ifdef DEBUG static void printiinfo(ii) struct ccdiinfo *ii; { register int ix, i; for (ix = 0; ii->ii_ndisk; ix++, ii++) { printf(" itab[%d]: #dk %d sblk %d soff %d", ix, ii->ii_ndisk, ii->ii_startblk, ii->ii_startoff); for (i = 0; i < ii->ii_ndisk; i++) printf(" %d", ii->ii_index[i]); printf("\n"); } } #endif #endif /* NCCD > 0 */ /* Local Variables: */ /* c-argdecl-indent: 8 */ /* c-continued-statement-offset: 8 */ /* c-indent-level: 8 */ /* End: */