/* * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 * $Id: vm_page.c,v 1.66 1996/09/28 17:53:18 bde Exp $ */ /* * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Resident memory management module. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void vm_page_queue_init __P((void)); static vm_page_t vm_page_select_free __P((vm_object_t object, vm_pindex_t pindex, int prefqueue)); /* * Associated with page of user-allocatable memory is a * page structure. */ static struct pglist *vm_page_buckets; /* Array of buckets */ static int vm_page_bucket_count; /* How big is array? */ static int vm_page_hash_mask; /* Mask for hash function */ struct pglist vm_page_queue_free[PQ_L2_SIZE]; struct pglist vm_page_queue_zero[PQ_L2_SIZE]; struct pglist vm_page_queue_active; struct pglist vm_page_queue_inactive; struct pglist vm_page_queue_cache[PQ_L2_SIZE]; int no_queue; struct vpgqueues vm_page_queues[PQ_COUNT]; int pqcnt[PQ_COUNT]; static void vm_page_queue_init(void) { int i; vm_page_queues[PQ_NONE].pl = NULL; vm_page_queues[PQ_NONE].cnt = &no_queue; for(i=0;i biggestsize) { biggestone = i; biggestsize = size; } ++nblocks; total += size; } start = phys_avail[biggestone]; /* * Initialize the queue headers for the free queue, the active queue * and the inactive queue. */ vm_page_queue_init(); /* * Allocate (and initialize) the hash table buckets. * * The number of buckets MUST BE a power of 2, and the actual value is * the next power of 2 greater than the number of physical pages in * the system. * * Note: This computation can be tweaked if desired. */ vm_page_buckets = (struct pglist *) vaddr; bucket = vm_page_buckets; if (vm_page_bucket_count == 0) { vm_page_bucket_count = 1; while (vm_page_bucket_count < atop(total)) vm_page_bucket_count <<= 1; } vm_page_hash_mask = vm_page_bucket_count - 1; /* * Validate these addresses. */ new_start = start + vm_page_bucket_count * sizeof(struct pglist); new_start = round_page(new_start); mapped = vaddr; vaddr = pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); start = new_start; bzero((caddr_t) mapped, vaddr - mapped); mapped = vaddr; for (i = 0; i < vm_page_bucket_count; i++) { TAILQ_INIT(bucket); bucket++; } /* * round (or truncate) the addresses to our page size. */ /* * Pre-allocate maps and map entries that cannot be dynamically * allocated via malloc(). The maps include the kernel_map and * kmem_map which must be initialized before malloc() will work * (obviously). Also could include pager maps which would be * allocated before kmeminit. * * Allow some kernel map entries... this should be plenty since people * shouldn't be cluttering up the kernel map (they should use their * own maps). */ kentry_data_size = MAX_KMAP * sizeof(struct vm_map) + MAX_KMAPENT * sizeof(struct vm_map_entry); kentry_data_size = round_page(kentry_data_size); kentry_data = (vm_offset_t) vaddr; vaddr += kentry_data_size; /* * Validate these zone addresses. */ new_start = start + (vaddr - mapped); pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); bzero((caddr_t) mapped, (vaddr - mapped)); start = round_page(new_start); /* * Compute the number of pages of memory that will be available for * use (taking into account the overhead of a page structure per * page). */ first_page = phys_avail[0] / PAGE_SIZE; last_page = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; page_range = last_page - (phys_avail[0] / PAGE_SIZE); npages = (total - (page_range * sizeof(struct vm_page)) - (start - phys_avail[biggestone])) / PAGE_SIZE; /* * Initialize the mem entry structures now, and put them in the free * queue. */ vm_page_array = (vm_page_t) vaddr; mapped = vaddr; /* * Validate these addresses. */ new_start = round_page(start + page_range * sizeof(struct vm_page)); mapped = pmap_map(mapped, start, new_start, VM_PROT_READ | VM_PROT_WRITE); start = new_start; first_managed_page = start / PAGE_SIZE; /* * Clear all of the page structures */ bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); vm_page_array_size = page_range; cnt.v_page_count = 0; cnt.v_free_count = 0; for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { if (i == biggestone) pa = ptoa(first_managed_page); else pa = phys_avail[i]; while (pa < phys_avail[i + 1] && npages-- > 0) { ++cnt.v_page_count; ++cnt.v_free_count; m = PHYS_TO_VM_PAGE(pa); m->phys_addr = pa; m->flags = 0; m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; m->queue = PQ_FREE + m->pc; TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq); ++(*vm_page_queues[m->queue].lcnt); pa += PAGE_SIZE; } } return (mapped); } /* * vm_page_hash: * * Distributes the object/offset key pair among hash buckets. * * NOTE: This macro depends on vm_page_bucket_count being a power of 2. */ static inline int vm_page_hash(object, pindex) vm_object_t object; vm_pindex_t pindex; { return ((((unsigned) object) >> 5) + (pindex >> 1)) & vm_page_hash_mask; } /* * vm_page_insert: [ internal use only ] * * Inserts the given mem entry into the object/object-page * table and object list. * * The object and page must be locked, and must be splhigh. */ void vm_page_insert(m, object, pindex) register vm_page_t m; register vm_object_t object; register vm_pindex_t pindex; { register struct pglist *bucket; if (m->flags & PG_TABLED) panic("vm_page_insert: already inserted"); /* * Record the object/offset pair in this page */ m->object = object; m->pindex = pindex; /* * Insert it into the object_object/offset hash table */ bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; TAILQ_INSERT_TAIL(bucket, m, hashq); /* * Now link into the object's list of backed pages. */ TAILQ_INSERT_TAIL(&object->memq, m, listq); m->flags |= PG_TABLED; m->object->page_hint = m; /* * And show that the object has one more resident page. */ object->resident_page_count++; } /* * vm_page_remove: [ internal use only ] * NOTE: used by device pager as well -wfj * * Removes the given mem entry from the object/offset-page * table and the object page list. * * The object and page must be locked, and at splhigh. */ void vm_page_remove(m) register vm_page_t m; { register struct pglist *bucket; if (!(m->flags & PG_TABLED)) return; if (m->object->page_hint == m) m->object->page_hint = NULL; /* * Remove from the object_object/offset hash table */ bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)]; TAILQ_REMOVE(bucket, m, hashq); /* * Now remove from the object's list of backed pages. */ TAILQ_REMOVE(&m->object->memq, m, listq); /* * And show that the object has one fewer resident page. */ m->object->resident_page_count--; m->flags &= ~PG_TABLED; } /* * vm_page_lookup: * * Returns the page associated with the object/offset * pair specified; if none is found, NULL is returned. * * The object must be locked. No side effects. */ vm_page_t vm_page_lookup(object, pindex) register vm_object_t object; register vm_pindex_t pindex; { register vm_page_t m; register struct pglist *bucket; int s; /* * Search the hash table for this object/offset pair */ bucket = &vm_page_buckets[vm_page_hash(object, pindex)]; s = splvm(); for (m = TAILQ_FIRST(bucket); m != NULL; m = TAILQ_NEXT(m,hashq)) { if ((m->object == object) && (m->pindex == pindex)) { splx(s); m->object->page_hint = m; return (m); } } splx(s); return (NULL); } /* * vm_page_rename: * * Move the given memory entry from its * current object to the specified target object/offset. * * The object must be locked. */ void vm_page_rename(m, new_object, new_pindex) register vm_page_t m; register vm_object_t new_object; vm_pindex_t new_pindex; { int s; s = splvm(); vm_page_remove(m); vm_page_insert(m, new_object, new_pindex); splx(s); } /* * vm_page_unqueue without any wakeup */ void vm_page_unqueue_nowakeup(m) vm_page_t m; { int queue = m->queue; struct vpgqueues *pq; if (queue != PQ_NONE) { pq = &vm_page_queues[queue]; m->queue = PQ_NONE; TAILQ_REMOVE(pq->pl, m, pageq); --(*pq->cnt); --(*pq->lcnt); } } /* * vm_page_unqueue must be called at splhigh(); */ void vm_page_unqueue(m) vm_page_t m; { int queue = m->queue; struct vpgqueues *pq; if (queue != PQ_NONE) { m->queue = PQ_NONE; pq = &vm_page_queues[queue]; TAILQ_REMOVE(pq->pl, m, pageq); --(*pq->cnt); --(*pq->lcnt); if ((m->queue - m->pc) == PQ_CACHE) { if ((cnt.v_cache_count + cnt.v_free_count) < (cnt.v_free_reserved + cnt.v_cache_min)) pagedaemon_wakeup(); } } } /* * Find a page on the specified queue with color optimization. */ vm_page_t vm_page_list_find(basequeue, index) int basequeue, index; { #if PQ_L2_SIZE > 1 int i,j; vm_page_t m; int hindex; for(j = 0; j < PQ_L1_SIZE; j++) { for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1); i >= 0; i -= PQ_L1_SIZE) { hindex = (index + (i+j)) & PQ_L2_MASK; m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl); if (m) return m; hindex = (index - (i+j)) & PQ_L2_MASK; m = TAILQ_FIRST(vm_page_queues[basequeue + hindex].pl); if (m) return m; } } return NULL; #else return TAILQ_FIRST(vm_page_queues[basequeue].pl); #endif } /* * Find a page on the specified queue with color optimization. */ vm_page_t vm_page_select(object, pindex, basequeue) vm_object_t object; vm_pindex_t pindex; int basequeue; { #if PQ_L2_SIZE > 1 int index; index = (pindex + object->pg_color) & PQ_L2_MASK; return vm_page_list_find(basequeue, index); #else return TAILQ_FIRST(vm_page_queues[basequeue].pl); #endif } /* * Find a free or zero page, with specified preference. */ static vm_page_t vm_page_select_free(object, pindex, prefqueue) vm_object_t object; vm_pindex_t pindex; int prefqueue; { #if PQ_L2_SIZE > 1 int i,j; int index, hindex; #endif vm_page_t m; int oqueuediff; if (prefqueue == PQ_ZERO) oqueuediff = PQ_FREE - PQ_ZERO; else oqueuediff = PQ_ZERO - PQ_FREE; if (object->page_hint) { if (object->page_hint->pindex == (pindex - 1)) { vm_offset_t last_phys; if ((object->page_hint->flags & PG_FICTITIOUS) == 0) { if ((object->page_hint < &vm_page_array[cnt.v_page_count-1]) && (object->page_hint >= &vm_page_array[0])) { int queue; last_phys = VM_PAGE_TO_PHYS(object->page_hint); m = PHYS_TO_VM_PAGE(last_phys + PAGE_SIZE); queue = m->queue - m->pc; if (queue == PQ_FREE || queue == PQ_ZERO) { return m; } } } } } #if PQ_L2_SIZE > 1 index = pindex + object->pg_color; /* * These are special cased because of clock-arithemetic */ for(j = 0; j < PQ_L1_SIZE; j++) { for(i = (PQ_L2_SIZE/2) - (PQ_L1_SIZE - 1); (i + j) >= 0; i -= PQ_L1_SIZE) { hindex = prefqueue + ((index + (i+j)) & PQ_L2_MASK); if (m = TAILQ_FIRST(vm_page_queues[hindex].pl)) return m; if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl)) return m; hindex = prefqueue + ((index - (i+j)) & PQ_L2_MASK); if (m = TAILQ_FIRST(vm_page_queues[hindex].pl)) return m; if (m = TAILQ_FIRST(vm_page_queues[hindex + oqueuediff].pl)) return m; } } #else if (m = TAILQ_FIRST(vm_page_queues[prefqueue].pl)) return m; else return TAILQ_FIRST(vm_page_queues[prefqueue + oqueuediff].pl); #endif return NULL; } /* * vm_page_alloc: * * Allocate and return a memory cell associated * with this VM object/offset pair. * * page_req classes: * VM_ALLOC_NORMAL normal process request * VM_ALLOC_SYSTEM system *really* needs a page * VM_ALLOC_INTERRUPT interrupt time request * VM_ALLOC_ZERO zero page * * Object must be locked. */ vm_page_t vm_page_alloc(object, pindex, page_req) vm_object_t object; vm_pindex_t pindex; int page_req; { register vm_page_t m; struct vpgqueues *pq; int queue; int s; #ifdef DIAGNOSTIC m = vm_page_lookup(object, pindex); if (m) panic("vm_page_alloc: page already allocated"); #endif if ((curproc == pageproc) && (page_req != VM_ALLOC_INTERRUPT)) { page_req = VM_ALLOC_SYSTEM; }; s = splvm(); switch (page_req) { case VM_ALLOC_NORMAL: if (cnt.v_free_count >= cnt.v_free_reserved) { m = vm_page_select_free(object, pindex, PQ_FREE); #if defined(DIAGNOSTIC) if (m == NULL) panic("vm_page_alloc(NORMAL): missing page on free queue\n"); #endif } else { m = vm_page_select(object, pindex, PQ_CACHE); if (m == NULL) { splx(s); #if defined(DIAGNOSTIC) if (cnt.v_cache_count > 0) printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", cnt.v_cache_count); #endif pagedaemon_wakeup(); return (NULL); } } break; case VM_ALLOC_ZERO: if (cnt.v_free_count >= cnt.v_free_reserved) { m = vm_page_select_free(object, pindex, PQ_ZERO); #if defined(DIAGNOSTIC) if (m == NULL) panic("vm_page_alloc(ZERO): missing page on free queue\n"); #endif } else { m = vm_page_select(object, pindex, PQ_CACHE); if (m == NULL) { splx(s); #if defined(DIAGNOSTIC) if (cnt.v_cache_count > 0) printf("vm_page_alloc(ZERO): missing pages on cache queue: %d\n", cnt.v_cache_count); #endif pagedaemon_wakeup(); return (NULL); } } break; case VM_ALLOC_SYSTEM: if ((cnt.v_free_count >= cnt.v_free_reserved) || ((cnt.v_cache_count == 0) && (cnt.v_free_count >= cnt.v_interrupt_free_min))) { m = vm_page_select_free(object, pindex, PQ_FREE); #if defined(DIAGNOSTIC) if (m == NULL) panic("vm_page_alloc(SYSTEM): missing page on free queue\n"); #endif } else { m = vm_page_select(object, pindex, PQ_CACHE); if (m == NULL) { splx(s); #if defined(DIAGNOSTIC) if (cnt.v_cache_count > 0) printf("vm_page_alloc(SYSTEM): missing pages on cache queue: %d\n", cnt.v_cache_count); #endif pagedaemon_wakeup(); return (NULL); } } break; case VM_ALLOC_INTERRUPT: if (cnt.v_free_count > 0) { m = vm_page_select_free(object, pindex, PQ_FREE); #if defined(DIAGNOSTIC) if (m == NULL) panic("vm_page_alloc(INTERRUPT): missing page on free queue\n"); #endif } else { splx(s); pagedaemon_wakeup(); return (NULL); } break; default: panic("vm_page_alloc: invalid allocation class"); } queue = m->queue; if (queue == PQ_ZERO) --vm_page_zero_count; pq = &vm_page_queues[queue]; TAILQ_REMOVE(pq->pl, m, pageq); --(*pq->cnt); --(*pq->lcnt); if ((m->queue - m->pc) == PQ_ZERO) { m->flags = PG_ZERO|PG_BUSY; } else if ((m->queue - m->pc) == PQ_CACHE) { vm_page_remove(m); m->flags = PG_BUSY; } else { m->flags = PG_BUSY; } m->wire_count = 0; m->hold_count = 0; m->act_count = 0; m->busy = 0; m->valid = 0; m->dirty = 0; m->queue = PQ_NONE; /* XXX before splx until vm_page_insert is safe */ vm_page_insert(m, object, pindex); splx(s); /* * Don't wakeup too often - wakeup the pageout daemon when * we would be nearly out of memory. */ if (((cnt.v_free_count + cnt.v_cache_count) < (cnt.v_free_reserved + cnt.v_cache_min)) || (cnt.v_free_count < cnt.v_pageout_free_min)) pagedaemon_wakeup(); return (m); } /* * vm_page_activate: * * Put the specified page on the active list (if appropriate). * * The page queues must be locked. */ void vm_page_activate(m) register vm_page_t m; { int s; s = splvm(); if (m->queue == PQ_ACTIVE) panic("vm_page_activate: already active"); if ((m->queue - m->pc) == PQ_CACHE) cnt.v_reactivated++; vm_page_unqueue(m); if (m->wire_count == 0) { m->queue = PQ_ACTIVE; ++(*vm_page_queues[PQ_ACTIVE].lcnt); TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); if (m->act_count < ACT_INIT) m->act_count = ACT_INIT; cnt.v_active_count++; } splx(s); } /* * helper routine for vm_page_free and vm_page_free_zero */ static int vm_page_freechk_and_unqueue(m) vm_page_t m; { if (m->busy || (m->flags & PG_BUSY) || ((m->queue - m->pc) == PQ_FREE) || (m->hold_count != 0)) { printf("vm_page_free: pindex(%ld), busy(%d), PG_BUSY(%d), hold(%d)\n", m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, m->hold_count); if ((m->queue - m->pc) == PQ_FREE) panic("vm_page_free: freeing free page"); else panic("vm_page_free: freeing busy page"); } vm_page_remove(m); vm_page_unqueue_nowakeup(m); if ((m->flags & PG_FICTITIOUS) != 0) { return 0; } if (m->wire_count != 0) { if (m->wire_count > 1) { panic("vm_page_free: invalid wire count (%d), pindex: 0x%x", m->wire_count, m->pindex); } m->wire_count = 0; cnt.v_wire_count--; } return 1; } /* * helper routine for vm_page_free and vm_page_free_zero */ static __inline void vm_page_free_wakeup() { /* * if pageout daemon needs pages, then tell it that there are * some free. */ if (vm_pageout_pages_needed) { wakeup(&vm_pageout_pages_needed); vm_pageout_pages_needed = 0; } /* * wakeup processes that are waiting on memory if we hit a * high water mark. And wakeup scheduler process if we have * lots of memory. this process will swapin processes. */ if (vm_pages_needed && ((cnt.v_free_count + cnt.v_cache_count) >= cnt.v_free_min)) { wakeup(&cnt.v_free_count); vm_pages_needed = 0; } } /* * vm_page_free: * * Returns the given page to the free list, * disassociating it with any VM object. * * Object and page must be locked prior to entry. */ void vm_page_free(m) register vm_page_t m; { int s; struct vpgqueues *pq; s = splvm(); cnt.v_tfree++; if (!vm_page_freechk_and_unqueue(m)) { splx(s); return; } m->queue = PQ_FREE + m->pc; pq = &vm_page_queues[m->queue]; ++(*pq->lcnt); ++(*pq->cnt); /* * If the pageout process is grabbing the page, it is likely * that the page is NOT in the cache. It is more likely that * the page will be partially in the cache if it is being * explicitly freed. */ if (curproc == pageproc) { TAILQ_INSERT_TAIL(pq->pl, m, pageq); } else { TAILQ_INSERT_HEAD(pq->pl, m, pageq); } vm_page_free_wakeup(); splx(s); } void vm_page_free_zero(m) register vm_page_t m; { int s; struct vpgqueues *pq; s = splvm(); cnt.v_tfree++; if (!vm_page_freechk_and_unqueue(m)) { splx(s); return; } m->queue = PQ_ZERO + m->pc; pq = &vm_page_queues[m->queue]; ++(*pq->lcnt); ++(*pq->cnt); TAILQ_INSERT_HEAD(pq->pl, m, pageq); ++vm_page_zero_count; vm_page_free_wakeup(); splx(s); } /* * vm_page_wire: * * Mark this page as wired down by yet * another map, removing it from paging queues * as necessary. * * The page queues must be locked. */ void vm_page_wire(m) register vm_page_t m; { int s; if (m->wire_count == 0) { s = splvm(); vm_page_unqueue(m); splx(s); cnt.v_wire_count++; } ++(*vm_page_queues[PQ_NONE].lcnt); m->wire_count++; m->flags |= PG_MAPPED; } /* * vm_page_unwire: * * Release one wiring of this page, potentially * enabling it to be paged again. * * The page queues must be locked. */ void vm_page_unwire(m) register vm_page_t m; { int s; s = splvm(); if (m->wire_count > 0) m->wire_count--; if (m->wire_count == 0) { cnt.v_wire_count--; TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq); m->queue = PQ_ACTIVE; ++(*vm_page_queues[PQ_ACTIVE].lcnt); cnt.v_active_count++; } splx(s); } /* * vm_page_deactivate: * * Returns the given page to the inactive list, * indicating that no physical maps have access * to this page. [Used by the physical mapping system.] * * The page queues must be locked. */ void vm_page_deactivate(m) register vm_page_t m; { int s; /* * Only move active pages -- ignore locked or already inactive ones. * * XXX: sometimes we get pages which aren't wired down or on any queue - * we need to put them on the inactive queue also, otherwise we lose * track of them. Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93. */ if (m->queue == PQ_INACTIVE) return; s = splvm(); if (m->wire_count == 0 && m->hold_count == 0) { if ((m->queue - m->pc) == PQ_CACHE) cnt.v_reactivated++; vm_page_unqueue(m); TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq); m->queue = PQ_INACTIVE; ++(*vm_page_queues[PQ_INACTIVE].lcnt); cnt.v_inactive_count++; } splx(s); } /* * vm_page_cache * * Put the specified page onto the page cache queue (if appropriate). */ void vm_page_cache(m) register vm_page_t m; { int s; if ((m->flags & PG_BUSY) || m->busy || m->wire_count) { printf("vm_page_cache: attempting to cache busy page\n"); return; } if ((m->queue - m->pc) == PQ_CACHE) return; vm_page_protect(m, VM_PROT_NONE); if (m->dirty != 0) { panic("vm_page_cache: caching a dirty page, pindex: %d", m->pindex); } s = splvm(); vm_page_unqueue_nowakeup(m); m->queue = PQ_CACHE + m->pc; ++(*vm_page_queues[m->queue].lcnt); TAILQ_INSERT_TAIL(vm_page_queues[m->queue].pl, m, pageq); cnt.v_cache_count++; vm_page_free_wakeup(); splx(s); } /* * mapping function for valid bits or for dirty bits in * a page */ inline int vm_page_bits(int base, int size) { u_short chunk; if ((base == 0) && (size >= PAGE_SIZE)) return VM_PAGE_BITS_ALL; size = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); base = (base % PAGE_SIZE) / DEV_BSIZE; chunk = vm_page_dev_bsize_chunks[size / DEV_BSIZE]; return (chunk << base) & VM_PAGE_BITS_ALL; } /* * set a page valid and clean */ void vm_page_set_validclean(m, base, size) vm_page_t m; int base; int size; { int pagebits = vm_page_bits(base, size); m->valid |= pagebits; m->dirty &= ~pagebits; if( base == 0 && size == PAGE_SIZE) pmap_clear_modify(VM_PAGE_TO_PHYS(m)); } /* * set a page (partially) invalid */ void vm_page_set_invalid(m, base, size) vm_page_t m; int base; int size; { int bits; m->valid &= ~(bits = vm_page_bits(base, size)); if (m->valid == 0) m->dirty &= ~bits; } /* * is (partial) page valid? */ int vm_page_is_valid(m, base, size) vm_page_t m; int base; int size; { int bits = vm_page_bits(base, size); if (m->valid && ((m->valid & bits) == bits)) return 1; else return 0; } void vm_page_test_dirty(m) vm_page_t m; { if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(VM_PAGE_TO_PHYS(m))) { m->dirty = VM_PAGE_BITS_ALL; } } /* * This interface is for merging with malloc() someday. * Even if we never implement compaction so that contiguous allocation * works after initialization time, malloc()'s data structures are good * for statistics and for allocations of less than a page. */ void * contigmalloc(size, type, flags, low, high, alignment, boundary) unsigned long size; /* should be size_t here and for malloc() */ int type; int flags; unsigned long low; unsigned long high; unsigned long alignment; unsigned long boundary; { int i, s, start; vm_offset_t addr, phys, tmp_addr; vm_page_t pga = vm_page_array; size = round_page(size); if (size == 0) panic("vm_page_alloc_contig: size must not be 0"); if ((alignment & (alignment - 1)) != 0) panic("vm_page_alloc_contig: alignment must be a power of 2"); if ((boundary & (boundary - 1)) != 0) panic("vm_page_alloc_contig: boundary must be a power of 2"); start = 0; s = splvm(); again: /* * Find first page in array that is free, within range, aligned, and * such that the boundary won't be crossed. */ for (i = start; i < cnt.v_page_count; i++) { phys = VM_PAGE_TO_PHYS(&pga[i]); if (((pga[i].queue - pga[i].pc) == PQ_FREE) && (phys >= low) && (phys < high) && ((phys & (alignment - 1)) == 0) && (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0)) break; } /* * If the above failed or we will exceed the upper bound, fail. */ if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) { splx(s); return (NULL); } start = i; /* * Check successive pages for contiguous and free. */ for (i = start + 1; i < (start + size / PAGE_SIZE); i++) { if ((VM_PAGE_TO_PHYS(&pga[i]) != (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) || ((pga[i].queue - pga[i].pc) != PQ_FREE)) { start++; goto again; } } /* * We've found a contiguous chunk that meets are requirements. * Allocate kernel VM, unfree and assign the physical pages to it and * return kernel VM pointer. */ tmp_addr = addr = kmem_alloc_pageable(kernel_map, size); if (addr == 0) { splx(s); return (NULL); } for (i = start; i < (start + size / PAGE_SIZE); i++) { vm_page_t m = &pga[i]; TAILQ_REMOVE(vm_page_queues[m->queue].pl, m, pageq); --(*vm_page_queues[m->queue].lcnt); cnt.v_free_count--; m->valid = VM_PAGE_BITS_ALL; m->flags = 0; m->dirty = 0; m->wire_count = 0; m->busy = 0; m->queue = PQ_NONE; vm_page_insert(m, kernel_object, OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS)); vm_page_wire(m); pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(m)); tmp_addr += PAGE_SIZE; } splx(s); return ((void *)addr); } vm_offset_t vm_page_alloc_contig(size, low, high, alignment) vm_offset_t size; vm_offset_t low; vm_offset_t high; vm_offset_t alignment; { return ((vm_offset_t)contigmalloc(size, M_DEVBUF, M_NOWAIT, low, high, alignment, 0ul)); } #include "opt_ddb.h" #ifdef DDB #include #include DB_SHOW_COMMAND(page, vm_page_print_page_info) { db_printf("cnt.v_free_count: %d\n", cnt.v_free_count); db_printf("cnt.v_cache_count: %d\n", cnt.v_cache_count); db_printf("cnt.v_inactive_count: %d\n", cnt.v_inactive_count); db_printf("cnt.v_active_count: %d\n", cnt.v_active_count); db_printf("cnt.v_wire_count: %d\n", cnt.v_wire_count); db_printf("cnt.v_free_reserved: %d\n", cnt.v_free_reserved); db_printf("cnt.v_free_min: %d\n", cnt.v_free_min); db_printf("cnt.v_free_target: %d\n", cnt.v_free_target); db_printf("cnt.v_cache_min: %d\n", cnt.v_cache_min); db_printf("cnt.v_inactive_target: %d\n", cnt.v_inactive_target); } DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) { int i; db_printf("PQ_FREE:"); for(i=0;i