/* * Copyright (C) 2011 Matteo Landi, Luigi Rizzo. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD$ * $Id: netmap.c 9795 2011-12-02 11:39:08Z luigi $ * * This module supports memory mapped access to network devices, * see netmap(4). * * The module uses a large, memory pool allocated by the kernel * and accessible as mmapped memory by multiple userspace threads/processes. * The memory pool contains packet buffers and "netmap rings", * i.e. user-accessible copies of the interface's queues. * * Access to the network card works like this: * 1. a process/thread issues one or more open() on /dev/netmap, to create * select()able file descriptor on which events are reported. * 2. on each descriptor, the process issues an ioctl() to identify * the interface that should report events to the file descriptor. * 3. on each descriptor, the process issues an mmap() request to * map the shared memory region within the process' address space. * The list of interesting queues is indicated by a location in * the shared memory region. * 4. using the functions in the netmap(4) userspace API, a process * can look up the occupation state of a queue, access memory buffers, * and retrieve received packets or enqueue packets to transmit. * 5. using some ioctl()s the process can synchronize the userspace view * of the queue with the actual status in the kernel. This includes both * receiving the notification of new packets, and transmitting new * packets on the output interface. * 6. select() or poll() can be used to wait for events on individual * transmit or receive queues (or all queues for a given interface). */ #include /* prerequisite */ __FBSDID("$FreeBSD$"); #include #include #include #include /* defines used in kernel.h */ #include #include /* types used in module initialization */ #include /* cdevsw struct */ #include /* uio struct */ #include #include /* struct socket */ #include #include /* PROT_EXEC */ #include #include #include /* vtophys */ #include /* vtophys */ #include /* sockaddrs */ #include #include #include #include #include /* BIOCIMMEDIATE */ #include #include #include #include /* bus_dmamap_* */ MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); /* * lock and unlock for the netmap memory allocator */ #define NMA_LOCK() mtx_lock(&netmap_mem_d->nm_mtx); #define NMA_UNLOCK() mtx_unlock(&netmap_mem_d->nm_mtx); /* * Default amount of memory pre-allocated by the module. * We start with a large size and then shrink our demand * according to what is avalable when the module is loaded. * At the moment the block is contiguous, but we can easily * restrict our demand to smaller units (16..64k) */ #define NETMAP_MEMORY_SIZE (64 * 1024 * PAGE_SIZE) static void * netmap_malloc(size_t size, const char *msg); static void netmap_free(void *addr, const char *msg); #define netmap_if_malloc(len) netmap_malloc(len, "nifp") #define netmap_if_free(v) netmap_free((v), "nifp") #define netmap_ring_malloc(len) netmap_malloc(len, "ring") #define netmap_free_rings(na) \ netmap_free((na)->tx_rings[0].ring, "shadow rings"); /* * Allocator for a pool of packet buffers. For each buffer we have * one entry in the bitmap to signal the state. Allocation scans * the bitmap, but since this is done only on attach, we are not * too worried about performance * XXX if we need to allocate small blocks, a translation * table is used both for kernel virtual address and physical * addresses. */ struct netmap_buf_pool { u_int total_buffers; /* total buffers. */ u_int free; u_int bufsize; char *base; /* buffer base address */ uint32_t *bitmap; /* one bit per buffer, 1 means free */ }; struct netmap_buf_pool nm_buf_pool; /* XXX move these two vars back into netmap_buf_pool */ u_int netmap_total_buffers; char *netmap_buffer_base; /* address of an invalid buffer */ /* user-controlled variables */ int netmap_verbose; static int no_timestamp; /* don't timestamp on rxsync */ SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, CTLFLAG_RW, &no_timestamp, 0, "no_timestamp"); SYSCTL_INT(_dev_netmap, OID_AUTO, total_buffers, CTLFLAG_RD, &nm_buf_pool.total_buffers, 0, "total_buffers"); SYSCTL_INT(_dev_netmap, OID_AUTO, free_buffers, CTLFLAG_RD, &nm_buf_pool.free, 0, "free_buffers"); /* * Allocate n buffers from the ring, and fill the slot. * Buffer 0 is the 'junk' buffer. */ static void netmap_new_bufs(struct netmap_if *nifp __unused, struct netmap_slot *slot, u_int n) { struct netmap_buf_pool *p = &nm_buf_pool; uint32_t bi = 0; /* index in the bitmap */ uint32_t mask, j, i = 0; /* slot counter */ if (n > p->free) { D("only %d out of %d buffers available", i, n); return; } /* termination is guaranteed by p->free */ while (i < n && p->free > 0) { uint32_t cur = p->bitmap[bi]; if (cur == 0) { /* bitmask is fully used */ bi++; continue; } /* locate a slot */ for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) ; p->bitmap[bi] &= ~mask; /* slot in use */ p->free--; slot[i].buf_idx = bi*32+j; slot[i].len = p->bufsize; slot[i].flags = NS_BUF_CHANGED; i++; } ND("allocated %d buffers, %d available", n, p->free); } static void netmap_free_buf(struct netmap_if *nifp __unused, uint32_t i) { struct netmap_buf_pool *p = &nm_buf_pool; uint32_t pos, mask; if (i >= p->total_buffers) { D("invalid free index %d", i); return; } pos = i / 32; mask = 1 << (i % 32); if (p->bitmap[pos] & mask) { D("slot %d already free", i); return; } p->bitmap[pos] |= mask; p->free++; } /* Descriptor of the memory objects handled by our memory allocator. */ struct netmap_mem_obj { TAILQ_ENTRY(netmap_mem_obj) nmo_next; /* next object in the chain. */ int nmo_used; /* flag set on used memory objects. */ size_t nmo_size; /* size of the memory area reserved for the object. */ void *nmo_data; /* pointer to the memory area. */ }; /* Wrap our memory objects to make them ``chainable``. */ TAILQ_HEAD(netmap_mem_obj_h, netmap_mem_obj); /* Descriptor of our custom memory allocator. */ struct netmap_mem_d { struct mtx nm_mtx; /* lock used to handle the chain of memory objects. */ struct netmap_mem_obj_h nm_molist; /* list of memory objects */ size_t nm_size; /* total amount of memory used for rings etc. */ size_t nm_totalsize; /* total amount of allocated memory (the difference is used for buffers) */ size_t nm_buf_start; /* offset of packet buffers. This is page-aligned. */ size_t nm_buf_len; /* total memory for buffers */ void *nm_buffer; /* pointer to the whole pre-allocated memory area. */ }; /* Structure associated to each thread which registered an interface. */ struct netmap_priv_d { struct netmap_if *np_nifp; /* netmap interface descriptor. */ struct ifnet *np_ifp; /* device for which we hold a reference */ int np_ringid; /* from the ioctl */ u_int np_qfirst, np_qlast; /* range of rings to scan */ uint16_t np_txpoll; }; /* Shorthand to compute a netmap interface offset. */ #define netmap_if_offset(v) \ ((char *) (v) - (char *) netmap_mem_d->nm_buffer) /* .. and get a physical address given a memory offset */ #define netmap_ofstophys(o) \ (vtophys(netmap_mem_d->nm_buffer) + (o)) static struct cdev *netmap_dev; /* /dev/netmap character device. */ static struct netmap_mem_d *netmap_mem_d; /* Our memory allocator. */ static d_mmap_t netmap_mmap; static d_ioctl_t netmap_ioctl; static d_poll_t netmap_poll; #ifdef NETMAP_KEVENT static d_kqfilter_t netmap_kqfilter; #endif static struct cdevsw netmap_cdevsw = { .d_version = D_VERSION, .d_name = "netmap", .d_mmap = netmap_mmap, .d_ioctl = netmap_ioctl, .d_poll = netmap_poll, #ifdef NETMAP_KEVENT .d_kqfilter = netmap_kqfilter, #endif }; #ifdef NETMAP_KEVENT static int netmap_kqread(struct knote *, long); static int netmap_kqwrite(struct knote *, long); static void netmap_kqdetach(struct knote *); static struct filterops netmap_read_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = netmap_kqdetach, .f_event = netmap_kqread, }; static struct filterops netmap_write_filterops = { .f_isfd = 1, .f_attach = NULL, .f_detach = netmap_kqdetach, .f_event = netmap_kqwrite, }; /* * support for the kevent() system call. * * This is the kevent filter, and is executed each time a new event * is triggered on the device. This function execute some operation * depending on the received filter. * * The implementation should test the filters and should implement * filter operations we are interested on (a full list in /sys/event.h). * * On a match we should: * - set kn->kn_fop * - set kn->kn_hook * - call knlist_add() to deliver the event to the application. * * Return 0 if the event should be delivered to the application. */ static int netmap_kqfilter(struct cdev *dev, struct knote *kn) { /* declare variables needed to read/write */ switch(kn->kn_filter) { case EVFILT_READ: if (netmap_verbose) D("%s kqfilter: EVFILT_READ" ifp->if_xname); /* read operations */ kn->kn_fop = &netmap_read_filterops; break; case EVFILT_WRITE: if (netmap_verbose) D("%s kqfilter: EVFILT_WRITE" ifp->if_xname); /* write operations */ kn->kn_fop = &netmap_write_filterops; break; default: if (netmap_verbose) D("%s kqfilter: invalid filter" ifp->if_xname); return(EINVAL); } kn->kn_hook = 0;// knlist_add(&netmap_sc->tun_rsel.si_note, kn, 0); return (0); } #endif /* NETMAP_KEVENT */ /* * File descriptor's private data destructor. * * Call nm_register(ifp,0) to stop netmap mode on the interface and * revert to normal operation. We expect that np_ifp has not gone. */ static void netmap_dtor(void *data) { struct netmap_priv_d *priv = data; struct ifnet *ifp = priv->np_ifp; struct netmap_adapter *na = NA(ifp); struct netmap_if *nifp = priv->np_nifp; if (0) printf("%s starting for %p ifp %p\n", __FUNCTION__, priv, priv ? priv->np_ifp : NULL); na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); na->refcount--; if (na->refcount <= 0) { /* last instance */ u_int i; D("deleting last netmap instance for %s", ifp->if_xname); /* * there is a race here with *_netmap_task() and * netmap_poll(), which don't run under NETMAP_CORE_LOCK. * na->refcount == 0 && na->ifp->if_capenable & IFCAP_NETMAP * (aka NETMAP_DELETING(na)) are a unique marker that the * device is dying. * Before destroying stuff we sleep a bit, and then complete * the job. NIOCREG should realize the condition and * loop until they can continue; the other routines * should check the condition at entry and quit if * they cannot run. */ na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); tsleep(na, 0, "NIOCUNREG", 4); na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); na->nm_register(ifp, 0); /* off, clear IFCAP_NETMAP */ /* Wake up any sleeping threads. netmap_poll will * then return POLLERR */ for (i = 0; i < na->num_queues + 2; i++) { selwakeuppri(&na->tx_rings[i].si, PI_NET); selwakeuppri(&na->rx_rings[i].si, PI_NET); } /* release all buffers */ NMA_LOCK(); for (i = 0; i < na->num_queues + 1; i++) { int j, lim; struct netmap_ring *ring; ND("tx queue %d", i); ring = na->tx_rings[i].ring; lim = na->tx_rings[i].nkr_num_slots; for (j = 0; j < lim; j++) netmap_free_buf(nifp, ring->slot[j].buf_idx); ND("rx queue %d", i); ring = na->rx_rings[i].ring; lim = na->rx_rings[i].nkr_num_slots; for (j = 0; j < lim; j++) netmap_free_buf(nifp, ring->slot[j].buf_idx); } NMA_UNLOCK(); netmap_free_rings(na); wakeup(na); } netmap_if_free(nifp); na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); if_rele(ifp); bzero(priv, sizeof(*priv)); /* XXX for safety */ free(priv, M_DEVBUF); } /* * Create and return a new ``netmap_if`` object, and possibly also * rings and packet buffors. * * Return NULL on failure. */ static void * netmap_if_new(const char *ifname, struct netmap_adapter *na) { struct netmap_if *nifp; struct netmap_ring *ring; char *buff; u_int i, len, ofs; u_int n = na->num_queues + 1; /* shorthand, include stack queue */ /* * the descriptor is followed inline by an array of offsets * to the tx and rx rings in the shared memory region. */ len = sizeof(struct netmap_if) + 2 * n * sizeof(ssize_t); nifp = netmap_if_malloc(len); if (nifp == NULL) return (NULL); /* initialize base fields */ *(int *)(uintptr_t)&nifp->ni_num_queues = na->num_queues; strncpy(nifp->ni_name, ifname, IFNAMSIZ); (na->refcount)++; /* XXX atomic ? we are under lock */ if (na->refcount > 1) goto final; /* * If this is the first instance, allocate the shadow rings and * buffers for this card (one for each hw queue, one for the host). * The rings are contiguous, but have variable size. * The entire block is reachable at * na->tx_rings[0].ring */ len = n * (2 * sizeof(struct netmap_ring) + (na->num_tx_desc + na->num_rx_desc) * sizeof(struct netmap_slot) ); buff = netmap_ring_malloc(len); if (buff == NULL) { D("failed to allocate %d bytes for %s shadow ring", len, ifname); error: (na->refcount)--; netmap_if_free(nifp); return (NULL); } /* do we have the bufers ? we are in need of num_tx_desc buffers for * each tx ring and num_tx_desc buffers for each rx ring. */ len = n * (na->num_tx_desc + na->num_rx_desc); NMA_LOCK(); if (nm_buf_pool.free < len) { NMA_UNLOCK(); netmap_free(buff, "not enough bufs"); goto error; } /* * in the kring, store the pointers to the shared rings * and initialize the rings. We are under NMA_LOCK(). */ ofs = 0; for (i = 0; i < n; i++) { struct netmap_kring *kring; int numdesc; /* Transmit rings */ kring = &na->tx_rings[i]; numdesc = na->num_tx_desc; bzero(kring, sizeof(*kring)); kring->na = na; ring = kring->ring = (struct netmap_ring *)(buff + ofs); *(ssize_t *)(uintptr_t)&ring->buf_ofs = nm_buf_pool.base - (char *)ring; ND("txring[%d] at %p ofs %d", i, ring, ring->buf_ofs); *(int *)(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = numdesc; /* * IMPORTANT: * Always keep one slot empty, so we can detect new * transmissions comparing cur and nr_hwcur (they are * the same only if there are no new transmissions). */ ring->avail = kring->nr_hwavail = numdesc - 1; ring->cur = kring->nr_hwcur = 0; netmap_new_bufs(nifp, ring->slot, numdesc); ofs += sizeof(struct netmap_ring) + numdesc * sizeof(struct netmap_slot); /* Receive rings */ kring = &na->rx_rings[i]; numdesc = na->num_rx_desc; bzero(kring, sizeof(*kring)); kring->na = na; ring = kring->ring = (struct netmap_ring *)(buff + ofs); *(ssize_t *)(uintptr_t)&ring->buf_ofs = nm_buf_pool.base - (char *)ring; ND("rxring[%d] at %p offset %d", i, ring, ring->buf_ofs); *(int *)(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = numdesc; ring->cur = kring->nr_hwcur = 0; ring->avail = kring->nr_hwavail = 0; /* empty */ netmap_new_bufs(nifp, ring->slot, numdesc); ofs += sizeof(struct netmap_ring) + numdesc * sizeof(struct netmap_slot); } NMA_UNLOCK(); for (i = 0; i < n+1; i++) { // XXX initialize the selrecord structs. } final: /* * fill the slots for the rx and tx queues. They contain the offset * between the ring and nifp, so the information is usable in * userspace to reach the ring from the nifp. */ for (i = 0; i < n; i++) { char *base = (char *)nifp; *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = (char *)na->tx_rings[i].ring - base; *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n] = (char *)na->rx_rings[i].ring - base; } return (nifp); } /* * mmap(2) support for the "netmap" device. * * Expose all the memory previously allocated by our custom memory * allocator: this way the user has only to issue a single mmap(2), and * can work on all the data structures flawlessly. * * Return 0 on success, -1 otherwise. */ static int #if __FreeBSD_version < 900000 netmap_mmap(__unused struct cdev *dev, vm_offset_t offset, vm_paddr_t *paddr, int nprot) #else netmap_mmap(__unused struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr, int nprot, __unused vm_memattr_t *memattr) #endif { if (nprot & PROT_EXEC) return (-1); // XXX -1 or EINVAL ? ND("request for offset 0x%x", (uint32_t)offset); *paddr = netmap_ofstophys(offset); return (0); } /* * Handlers for synchronization of the queues from/to the host. * * netmap_sync_to_host() passes packets up. We are called from a * system call in user process context, and the only contention * can be among multiple user threads erroneously calling * this routine concurrently. In principle we should not even * need to lock. */ static void netmap_sync_to_host(struct netmap_adapter *na) { struct netmap_kring *kring = &na->tx_rings[na->num_queues]; struct netmap_ring *ring = kring->ring; struct mbuf *head = NULL, *tail = NULL, *m; u_int k, n, lim = kring->nkr_num_slots - 1; k = ring->cur; if (k > lim) { netmap_ring_reinit(kring); return; } // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); /* Take packets from hwcur to cur and pass them up. * In case of no buffers we give up. At the end of the loop, * the queue is drained in all cases. */ for (n = kring->nr_hwcur; n != k;) { struct netmap_slot *slot = &ring->slot[n]; n = (n == lim) ? 0 : n + 1; if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE) { D("bad pkt at %d len %d", n, slot->len); continue; } m = m_devget(NMB(slot), slot->len, 0, na->ifp, NULL); if (m == NULL) break; if (tail) tail->m_nextpkt = m; else head = m; tail = m; m->m_nextpkt = NULL; } kring->nr_hwcur = k; kring->nr_hwavail = ring->avail = lim; // na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); /* send packets up, outside the lock */ while ((m = head) != NULL) { head = head->m_nextpkt; m->m_nextpkt = NULL; m->m_pkthdr.rcvif = na->ifp; if (netmap_verbose & NM_VERB_HOST) D("sending up pkt %p size %d", m, m->m_pkthdr.len); (na->ifp->if_input)(na->ifp, m); } } /* * rxsync backend for packets coming from the host stack. * They have been put in the queue by netmap_start() so we * need to protect access to the kring using a lock. * * This routine also does the selrecord if called from the poll handler * (we know because td != NULL). */ static void netmap_sync_from_host(struct netmap_adapter *na, struct thread *td) { struct netmap_kring *kring = &na->rx_rings[na->num_queues]; struct netmap_ring *ring = kring->ring; int error = 1, delta; u_int k = ring->cur, lim = kring->nkr_num_slots; na->nm_lock(na->ifp->if_softc, NETMAP_CORE_LOCK, 0); if (k >= lim) /* bad value */ goto done; delta = k - kring->nr_hwcur; if (delta < 0) delta += lim; kring->nr_hwavail -= delta; if (kring->nr_hwavail < 0) /* error */ goto done; kring->nr_hwcur = k; error = 0; k = ring->avail = kring->nr_hwavail; if (k == 0 && td) selrecord(td, &kring->si); if (k && (netmap_verbose & NM_VERB_HOST)) D("%d pkts from stack", k); done: na->nm_lock(na->ifp->if_softc, NETMAP_CORE_UNLOCK, 0); if (error) netmap_ring_reinit(kring); } /* * get a refcounted reference to an interface. * Return ENXIO if the interface does not exist, EINVAL if netmap * is not supported by the interface. * If successful, hold a reference. */ static int get_ifp(const char *name, struct ifnet **ifp) { *ifp = ifunit_ref(name); if (*ifp == NULL) return (ENXIO); /* can do this if the capability exists and if_pspare[0] * points to the netmap descriptor. */ if ((*ifp)->if_capabilities & IFCAP_NETMAP && NA(*ifp)) return 0; /* valid pointer, we hold the refcount */ if_rele(*ifp); return EINVAL; // not NETMAP capable } /* * Error routine called when txsync/rxsync detects an error. * Can't do much more than resetting cur = hwcur, avail = hwavail. * Return 1 on reinit. * * This routine is only called by the upper half of the kernel. * It only reads hwcur (which is changed only by the upper half, too) * and hwavail (which may be changed by the lower half, but only on * a tx ring and only to increase it, so any error will be recovered * on the next call). For the above, we don't strictly need to call * it under lock. */ int netmap_ring_reinit(struct netmap_kring *kring) { struct netmap_ring *ring = kring->ring; u_int i, lim = kring->nkr_num_slots - 1; int errors = 0; D("called for %s", kring->na->ifp->if_xname); if (ring->cur > lim) errors++; for (i = 0; i <= lim; i++) { u_int idx = ring->slot[i].buf_idx; u_int len = ring->slot[i].len; if (idx < 2 || idx >= netmap_total_buffers) { if (!errors++) D("bad buffer at slot %d idx %d len %d ", i, idx, len); ring->slot[i].buf_idx = 0; ring->slot[i].len = 0; } else if (len > NETMAP_BUF_SIZE) { ring->slot[i].len = 0; if (!errors++) D("bad len %d at slot %d idx %d", len, i, idx); } } if (errors) { int pos = kring - kring->na->tx_rings; int n = kring->na->num_queues + 2; D("total %d errors", errors); errors++; D("%s %s[%d] reinit, cur %d -> %d avail %d -> %d", kring->na->ifp->if_xname, pos < n ? "TX" : "RX", pos < n ? pos : pos - n, ring->cur, kring->nr_hwcur, ring->avail, kring->nr_hwavail); ring->cur = kring->nr_hwcur; ring->avail = kring->nr_hwavail; } return (errors ? 1 : 0); } /* * Set the ring ID. For devices with a single queue, a request * for all rings is the same as a single ring. */ static int netmap_set_ringid(struct netmap_priv_d *priv, u_int ringid) { struct ifnet *ifp = priv->np_ifp; struct netmap_adapter *na = NA(ifp); void *adapter = na->ifp->if_softc; /* shorthand */ u_int i = ringid & NETMAP_RING_MASK; /* first time we don't lock */ int need_lock = (priv->np_qfirst != priv->np_qlast); if ( (ringid & NETMAP_HW_RING) && i >= na->num_queues) { D("invalid ring id %d", i); return (EINVAL); } if (need_lock) na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); priv->np_ringid = ringid; if (ringid & NETMAP_SW_RING) { priv->np_qfirst = na->num_queues; priv->np_qlast = na->num_queues + 1; } else if (ringid & NETMAP_HW_RING) { priv->np_qfirst = i; priv->np_qlast = i + 1; } else { priv->np_qfirst = 0; priv->np_qlast = na->num_queues; } priv->np_txpoll = (ringid & NETMAP_NO_TX_POLL) ? 0 : 1; if (need_lock) na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); if (ringid & NETMAP_SW_RING) D("ringid %s set to SW RING", ifp->if_xname); else if (ringid & NETMAP_HW_RING) D("ringid %s set to HW RING %d", ifp->if_xname, priv->np_qfirst); else D("ringid %s set to all %d HW RINGS", ifp->if_xname, priv->np_qlast); return 0; } /* * ioctl(2) support for the "netmap" device. * * Following a list of accepted commands: * - NIOCGINFO * - SIOCGIFADDR just for convenience * - NIOCREGIF * - NIOCUNREGIF * - NIOCTXSYNC * - NIOCRXSYNC * * Return 0 on success, errno otherwise. */ static int netmap_ioctl(__unused struct cdev *dev, u_long cmd, caddr_t data, __unused int fflag, struct thread *td) { struct netmap_priv_d *priv = NULL; struct ifnet *ifp; struct nmreq *nmr = (struct nmreq *) data; struct netmap_adapter *na; void *adapter; int error; u_int i; struct netmap_if *nifp; CURVNET_SET(TD_TO_VNET(td)); error = devfs_get_cdevpriv((void **)&priv); if (error != ENOENT && error != 0) { CURVNET_RESTORE(); return (error); } error = 0; /* Could be ENOENT */ switch (cmd) { case NIOCGINFO: /* return capabilities etc */ /* memsize is always valid */ nmr->nr_memsize = netmap_mem_d->nm_totalsize; nmr->nr_offset = 0; nmr->nr_numrings = 0; nmr->nr_numslots = 0; if (nmr->nr_name[0] == '\0') /* just get memory info */ break; error = get_ifp(nmr->nr_name, &ifp); /* get a refcount */ if (error) break; na = NA(ifp); /* retrieve netmap_adapter */ nmr->nr_numrings = na->num_queues; nmr->nr_numslots = na->num_tx_desc; if_rele(ifp); /* return the refcount */ break; case NIOCREGIF: if (priv != NULL) { /* thread already registered */ error = netmap_set_ringid(priv, nmr->nr_ringid); break; } /* find the interface and a reference */ error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ if (error) break; na = NA(ifp); /* retrieve netmap adapter */ adapter = na->ifp->if_softc; /* shorthand */ /* * Allocate the private per-thread structure. * XXX perhaps we can use a blocking malloc ? */ priv = malloc(sizeof(struct netmap_priv_d), M_DEVBUF, M_NOWAIT | M_ZERO); if (priv == NULL) { error = ENOMEM; if_rele(ifp); /* return the refcount */ break; } for (i = 10; i > 0; i--) { na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); if (!NETMAP_DELETING(na)) break; na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); tsleep(na, 0, "NIOCREGIF", hz/10); } if (i == 0) { D("too many NIOCREGIF attempts, give up"); error = EINVAL; free(priv, M_DEVBUF); if_rele(ifp); /* return the refcount */ break; } priv->np_ifp = ifp; /* store the reference */ error = netmap_set_ringid(priv, nmr->nr_ringid); if (error) goto error; priv->np_nifp = nifp = netmap_if_new(nmr->nr_name, na); if (nifp == NULL) { /* allocation failed */ error = ENOMEM; } else if (ifp->if_capenable & IFCAP_NETMAP) { /* was already set */ } else { /* Otherwise set the card in netmap mode * and make it use the shared buffers. */ error = na->nm_register(ifp, 1); /* mode on */ if (error) { /* * do something similar to netmap_dtor(). */ netmap_free_rings(na); // XXX tx_rings is inline, must not be freed. // free(na->tx_rings, M_DEVBUF); // XXX wrong ? na->tx_rings = na->rx_rings = NULL; na->refcount--; netmap_if_free(nifp); nifp = NULL; } } if (error) { /* reg. failed, release priv and ref */ error: na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); free(priv, M_DEVBUF); if_rele(ifp); /* return the refcount */ break; } na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); error = devfs_set_cdevpriv(priv, netmap_dtor); if (error != 0) { /* could not assign the private storage for the * thread, call the destructor explicitly. */ netmap_dtor(priv); break; } /* return the offset of the netmap_if object */ nmr->nr_numrings = na->num_queues; nmr->nr_numslots = na->num_tx_desc; nmr->nr_memsize = netmap_mem_d->nm_totalsize; nmr->nr_offset = netmap_if_offset(nifp); break; case NIOCUNREGIF: if (priv == NULL) { error = ENXIO; break; } /* the interface is unregistered inside the destructor of the private data. */ devfs_clear_cdevpriv(); break; case NIOCTXSYNC: case NIOCRXSYNC: if (priv == NULL) { error = ENXIO; break; } ifp = priv->np_ifp; /* we have a reference */ na = NA(ifp); /* retrieve netmap adapter */ adapter = ifp->if_softc; /* shorthand */ if (priv->np_qfirst == na->num_queues) { /* queues to/from host */ if (cmd == NIOCTXSYNC) netmap_sync_to_host(na); else netmap_sync_from_host(na, NULL); break; } for (i = priv->np_qfirst; i < priv->np_qlast; i++) { if (cmd == NIOCTXSYNC) { struct netmap_kring *kring = &na->tx_rings[i]; if (netmap_verbose & NM_VERB_TXSYNC) D("sync tx ring %d cur %d hwcur %d", i, kring->ring->cur, kring->nr_hwcur); na->nm_txsync(adapter, i, 1 /* do lock */); if (netmap_verbose & NM_VERB_TXSYNC) D("after sync tx ring %d cur %d hwcur %d", i, kring->ring->cur, kring->nr_hwcur); } else { na->nm_rxsync(adapter, i, 1 /* do lock */); microtime(&na->rx_rings[i].ring->ts); } } break; case BIOCIMMEDIATE: case BIOCGHDRCMPLT: case BIOCSHDRCMPLT: case BIOCSSEESENT: D("ignore BIOCIMMEDIATE/BIOCSHDRCMPLT/BIOCSHDRCMPLT/BIOCSSEESENT"); break; default: { /* * allow device calls */ struct socket so; bzero(&so, sizeof(so)); error = get_ifp(nmr->nr_name, &ifp); /* keep reference */ if (error) break; so.so_vnet = ifp->if_vnet; // so->so_proto not null. error = ifioctl(&so, cmd, data, td); if_rele(ifp); } } CURVNET_RESTORE(); return (error); } /* * select(2) and poll(2) handlers for the "netmap" device. * * Can be called for one or more queues. * Return true the event mask corresponding to ready events. * If there are no ready events, do a selrecord on either individual * selfd or on the global one. * Device-dependent parts (locking and sync of tx/rx rings) * are done through callbacks. */ static int netmap_poll(__unused struct cdev *dev, int events, struct thread *td) { struct netmap_priv_d *priv = NULL; struct netmap_adapter *na; struct ifnet *ifp; struct netmap_kring *kring; u_int core_lock, i, check_all, want_tx, want_rx, revents = 0; void *adapter; if (devfs_get_cdevpriv((void **)&priv) != 0 || priv == NULL) return POLLERR; ifp = priv->np_ifp; // XXX check for deleting() ? if ( (ifp->if_capenable & IFCAP_NETMAP) == 0) return POLLERR; if (netmap_verbose & 0x8000) D("device %s events 0x%x", ifp->if_xname, events); want_tx = events & (POLLOUT | POLLWRNORM); want_rx = events & (POLLIN | POLLRDNORM); adapter = ifp->if_softc; na = NA(ifp); /* retrieve netmap adapter */ /* how many queues we are scanning */ i = priv->np_qfirst; if (i == na->num_queues) { /* from/to host */ if (priv->np_txpoll || want_tx) { /* push any packets up, then we are always ready */ kring = &na->tx_rings[i]; netmap_sync_to_host(na); revents |= want_tx; } if (want_rx) { kring = &na->rx_rings[i]; if (kring->ring->avail == 0) netmap_sync_from_host(na, td); if (kring->ring->avail > 0) { revents |= want_rx; } } return (revents); } /* * check_all is set if the card has more than one queue and * the client is polling all of them. If true, we sleep on * the "global" selfd, otherwise we sleep on individual selfd * (we can only sleep on one of them per direction). * The interrupt routine in the driver should always wake on * the individual selfd, and also on the global one if the card * has more than one ring. * * If the card has only one lock, we just use that. * If the card has separate ring locks, we just use those * unless we are doing check_all, in which case the whole * loop is wrapped by the global lock. * We acquire locks only when necessary: if poll is called * when buffers are available, we can just return without locks. * * rxsync() is only called if we run out of buffers on a POLLIN. * txsync() is called if we run out of buffers on POLLOUT, or * there are pending packets to send. The latter can be disabled * passing NETMAP_NO_TX_POLL in the NIOCREG call. */ check_all = (i + 1 != priv->np_qlast); /* * core_lock indicates what to do with the core lock. * The core lock is used when either the card has no individual * locks, or it has individual locks but we are cheking all * rings so we need the core lock to avoid missing wakeup events. * * It has three possible states: * NO_CL we don't need to use the core lock, e.g. * because we are protected by individual locks. * NEED_CL we need the core lock. In this case, when we * call the lock routine, move to LOCKED_CL * to remember to release the lock once done. * LOCKED_CL core lock is set, so we need to release it. */ enum {NO_CL, NEED_CL, LOCKED_CL }; core_lock = (check_all || !na->separate_locks) ? NEED_CL:NO_CL; /* * We start with a lock free round which is good if we have * data available. If this fails, then lock and call the sync * routines. */ for (i = priv->np_qfirst; want_rx && i < priv->np_qlast; i++) { kring = &na->rx_rings[i]; if (kring->ring->avail > 0) { revents |= want_rx; want_rx = 0; /* also breaks the loop */ } } for (i = priv->np_qfirst; want_tx && i < priv->np_qlast; i++) { kring = &na->tx_rings[i]; if (kring->ring->avail > 0) { revents |= want_tx; want_tx = 0; /* also breaks the loop */ } } /* * If we to push packets out (priv->np_txpoll) or want_tx is * still set, we do need to run the txsync calls (on all rings, * to avoid that the tx rings stall). */ if (priv->np_txpoll || want_tx) { for (i = priv->np_qfirst; i < priv->np_qlast; i++) { kring = &na->tx_rings[i]; if (!want_tx && kring->ring->cur == kring->nr_hwcur) continue; if (core_lock == NEED_CL) { na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); core_lock = LOCKED_CL; } if (na->separate_locks) na->nm_lock(adapter, NETMAP_TX_LOCK, i); if (netmap_verbose & NM_VERB_TXSYNC) D("send %d on %s %d", kring->ring->cur, ifp->if_xname, i); if (na->nm_txsync(adapter, i, 0 /* no lock */)) revents |= POLLERR; if (want_tx) { if (kring->ring->avail > 0) { /* stop at the first ring. We don't risk * starvation. */ revents |= want_tx; want_tx = 0; } else if (!check_all) selrecord(td, &kring->si); } if (na->separate_locks) na->nm_lock(adapter, NETMAP_TX_UNLOCK, i); } } /* * now if want_rx is still set we need to lock and rxsync. * Do it on all rings because otherwise we starve. */ if (want_rx) { for (i = priv->np_qfirst; i < priv->np_qlast; i++) { kring = &na->rx_rings[i]; if (core_lock == NEED_CL) { na->nm_lock(adapter, NETMAP_CORE_LOCK, 0); core_lock = LOCKED_CL; } if (na->separate_locks) na->nm_lock(adapter, NETMAP_RX_LOCK, i); if (na->nm_rxsync(adapter, i, 0 /* no lock */)) revents |= POLLERR; if (no_timestamp == 0 || kring->ring->flags & NR_TIMESTAMP) microtime(&kring->ring->ts); if (kring->ring->avail > 0) revents |= want_rx; else if (!check_all) selrecord(td, &kring->si); if (na->separate_locks) na->nm_lock(adapter, NETMAP_RX_UNLOCK, i); } } if (check_all && revents == 0) { i = na->num_queues + 1; /* the global queue */ if (want_tx) selrecord(td, &na->tx_rings[i].si); if (want_rx) selrecord(td, &na->rx_rings[i].si); } if (core_lock == LOCKED_CL) na->nm_lock(adapter, NETMAP_CORE_UNLOCK, 0); return (revents); } /*------- driver support routines ------*/ /* * Initialize a ``netmap_adapter`` object created by driver on attach. * We allocate a block of memory with room for a struct netmap_adapter * plus two sets of N+2 struct netmap_kring (where N is the number * of hardware rings): * krings 0..N-1 are for the hardware queues. * kring N is for the host stack queue * kring N+1 is only used for the selinfo for all queues. * Return 0 on success, ENOMEM otherwise. */ int netmap_attach(struct netmap_adapter *na, int num_queues) { int n = num_queues + 2; int size = sizeof(*na) + 2 * n * sizeof(struct netmap_kring); void *buf; struct ifnet *ifp = na->ifp; if (ifp == NULL) { D("ifp not set, giving up"); return EINVAL; } na->refcount = 0; na->num_queues = num_queues; buf = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf) { WNA(ifp) = buf; na->tx_rings = (void *)((char *)buf + sizeof(*na)); na->rx_rings = na->tx_rings + n; bcopy(na, buf, sizeof(*na)); ifp->if_capabilities |= IFCAP_NETMAP; } D("%s for %s", buf ? "ok" : "failed", ifp->if_xname); return (buf ? 0 : ENOMEM); } /* * Free the allocated memory linked to the given ``netmap_adapter`` * object. */ void netmap_detach(struct ifnet *ifp) { u_int i; struct netmap_adapter *na = NA(ifp); if (!na) return; for (i = 0; i < na->num_queues + 2; i++) { knlist_destroy(&na->tx_rings[i].si.si_note); knlist_destroy(&na->rx_rings[i].si.si_note); } bzero(na, sizeof(*na)); WNA(ifp) = NULL; free(na, M_DEVBUF); } /* * Intercept packets from the network stack and pass them * to netmap as incoming packets on the 'software' ring. * We are not locked when called. */ int netmap_start(struct ifnet *ifp, struct mbuf *m) { struct netmap_adapter *na = NA(ifp); struct netmap_kring *kring = &na->rx_rings[na->num_queues]; u_int i, len = m->m_pkthdr.len; int error = EBUSY, lim = kring->nkr_num_slots - 1; struct netmap_slot *slot; if (netmap_verbose & NM_VERB_HOST) D("%s packet %d len %d from the stack", ifp->if_xname, kring->nr_hwcur + kring->nr_hwavail, len); na->nm_lock(ifp->if_softc, NETMAP_CORE_LOCK, 0); if (kring->nr_hwavail >= lim) { D("stack ring %s full\n", ifp->if_xname); goto done; /* no space */ } if (len > na->buff_size) { D("drop packet size %d > %d", len, na->buff_size); goto done; /* too long for us */ } /* compute the insert position */ i = kring->nr_hwcur + kring->nr_hwavail; if (i > lim) i -= lim + 1; slot = &kring->ring->slot[i]; m_copydata(m, 0, len, NMB(slot)); slot->len = len; kring->nr_hwavail++; if (netmap_verbose & NM_VERB_HOST) D("wake up host ring %s %d", na->ifp->if_xname, na->num_queues); selwakeuppri(&kring->si, PI_NET); error = 0; done: na->nm_lock(ifp->if_softc, NETMAP_CORE_UNLOCK, 0); /* release the mbuf in either cases of success or failure. As an * alternative, put the mbuf in a free list and free the list * only when really necessary. */ m_freem(m); return (error); } /* * netmap_reset() is called by the driver routines when reinitializing * a ring. The driver is in charge of locking to protect the kring. * If netmap mode is not set just return NULL. */ struct netmap_slot * netmap_reset(struct netmap_adapter *na, enum txrx tx, int n, u_int new_cur) { struct netmap_kring *kring; struct netmap_ring *ring; int new_hwofs, lim; if (na == NULL) return NULL; /* no netmap support here */ if (!(na->ifp->if_capenable & IFCAP_NETMAP)) return NULL; /* nothing to reinitialize */ kring = tx == NR_TX ? na->tx_rings + n : na->rx_rings + n; ring = kring->ring; lim = kring->nkr_num_slots - 1; if (tx == NR_TX) new_hwofs = kring->nr_hwcur - new_cur; else new_hwofs = kring->nr_hwcur + kring->nr_hwavail - new_cur; if (new_hwofs > lim) new_hwofs -= lim + 1; /* Alwayws set the new offset value and realign the ring. */ kring->nkr_hwofs = new_hwofs; if (tx == NR_TX) kring->nr_hwavail = kring->nkr_num_slots - 1; D("new hwofs %d on %s %s[%d]", kring->nkr_hwofs, na->ifp->if_xname, tx == NR_TX ? "TX" : "RX", n); /* * We do the wakeup here, but the ring is not yet reconfigured. * However, we are under lock so there are no races. */ selwakeuppri(&kring->si, PI_NET); selwakeuppri(&kring[na->num_queues + 1 - n].si, PI_NET); return kring->ring->slot; } static void ns_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) { } /* unload a bus_dmamap and create a new one. Used when the * buffer in the slot is changed. * XXX buflen is probably not needed, buffers have constant size. */ void netmap_reload_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { bus_dmamap_unload(tag, map); bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, ns_dmamap_cb, NULL, BUS_DMA_NOWAIT); } void netmap_load_map(bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE, ns_dmamap_cb, NULL, BUS_DMA_NOWAIT); } /*------ netmap memory allocator -------*/ /* * Request for a chunk of memory. * * Memory objects are arranged into a list, hence we need to walk this * list until we find an object with the needed amount of data free. * This sounds like a completely inefficient implementation, but given * the fact that data allocation is done once, we can handle it * flawlessly. * * Return NULL on failure. */ static void * netmap_malloc(size_t size, __unused const char *msg) { struct netmap_mem_obj *mem_obj, *new_mem_obj; void *ret = NULL; NMA_LOCK(); TAILQ_FOREACH(mem_obj, &netmap_mem_d->nm_molist, nmo_next) { if (mem_obj->nmo_used != 0 || mem_obj->nmo_size < size) continue; new_mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, M_WAITOK | M_ZERO); TAILQ_INSERT_BEFORE(mem_obj, new_mem_obj, nmo_next); new_mem_obj->nmo_used = 1; new_mem_obj->nmo_size = size; new_mem_obj->nmo_data = mem_obj->nmo_data; memset(new_mem_obj->nmo_data, 0, new_mem_obj->nmo_size); mem_obj->nmo_size -= size; mem_obj->nmo_data = (char *) mem_obj->nmo_data + size; if (mem_obj->nmo_size == 0) { TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); free(mem_obj, M_NETMAP); } ret = new_mem_obj->nmo_data; break; } NMA_UNLOCK(); ND("%s: %d bytes at %p", msg, size, ret); return (ret); } /* * Return the memory to the allocator. * * While freeing a memory object, we try to merge adjacent chunks in * order to reduce memory fragmentation. */ static void netmap_free(void *addr, const char *msg) { size_t size; struct netmap_mem_obj *cur, *prev, *next; if (addr == NULL) { D("NULL addr for %s", msg); return; } NMA_LOCK(); TAILQ_FOREACH(cur, &netmap_mem_d->nm_molist, nmo_next) { if (cur->nmo_data == addr && cur->nmo_used) break; } if (cur == NULL) { NMA_UNLOCK(); D("invalid addr %s %p", msg, addr); return; } size = cur->nmo_size; cur->nmo_used = 0; /* merge current chunk of memory with the previous one, if present. */ prev = TAILQ_PREV(cur, netmap_mem_obj_h, nmo_next); if (prev && prev->nmo_used == 0) { TAILQ_REMOVE(&netmap_mem_d->nm_molist, cur, nmo_next); prev->nmo_size += cur->nmo_size; free(cur, M_NETMAP); cur = prev; } /* merge with the next one */ next = TAILQ_NEXT(cur, nmo_next); if (next && next->nmo_used == 0) { TAILQ_REMOVE(&netmap_mem_d->nm_molist, next, nmo_next); cur->nmo_size += next->nmo_size; free(next, M_NETMAP); } NMA_UNLOCK(); ND("freed %s %d bytes at %p", msg, size, addr); } /* * Initialize the memory allocator. * * Create the descriptor for the memory , allocate the pool of memory * and initialize the list of memory objects with a single chunk * containing the whole pre-allocated memory marked as free. * * Start with a large size, then halve as needed if we fail to * allocate the block. While halving, always add one extra page * because buffers 0 and 1 are used for special purposes. * Return 0 on success, errno otherwise. */ static int netmap_memory_init(void) { struct netmap_mem_obj *mem_obj; void *buf = NULL; int i, n, sz = NETMAP_MEMORY_SIZE; int extra_sz = 0; // space for rings and two spare buffers for (; !buf && sz >= 1<<20; sz >>=1) { extra_sz = sz/200; extra_sz = (extra_sz + 2*PAGE_SIZE - 1) & ~(PAGE_SIZE-1); buf = contigmalloc(sz + extra_sz, M_NETMAP, M_WAITOK | M_ZERO, 0, /* low address */ -1UL, /* high address */ PAGE_SIZE, /* alignment */ 0 /* boundary */ ); } if (buf == NULL) return (ENOMEM); sz += extra_sz; netmap_mem_d = malloc(sizeof(struct netmap_mem_d), M_NETMAP, M_WAITOK | M_ZERO); mtx_init(&netmap_mem_d->nm_mtx, "netmap memory allocator lock", NULL, MTX_DEF); TAILQ_INIT(&netmap_mem_d->nm_molist); netmap_mem_d->nm_buffer = buf; netmap_mem_d->nm_totalsize = sz; /* * A buffer takes 2k, a slot takes 8 bytes + ring overhead, * so the ratio is 200:1. In other words, we can use 1/200 of * the memory for the rings, and the rest for the buffers, * and be sure we never run out. */ netmap_mem_d->nm_size = sz/200; netmap_mem_d->nm_buf_start = (netmap_mem_d->nm_size + PAGE_SIZE - 1) & ~(PAGE_SIZE-1); netmap_mem_d->nm_buf_len = sz - netmap_mem_d->nm_buf_start; nm_buf_pool.base = netmap_mem_d->nm_buffer; nm_buf_pool.base += netmap_mem_d->nm_buf_start; netmap_buffer_base = nm_buf_pool.base; D("netmap_buffer_base %p (offset %d)", netmap_buffer_base, (int)netmap_mem_d->nm_buf_start); /* number of buffers, they all start as free */ netmap_total_buffers = nm_buf_pool.total_buffers = netmap_mem_d->nm_buf_len / NETMAP_BUF_SIZE; nm_buf_pool.bufsize = NETMAP_BUF_SIZE; D("Have %d MB, use %dKB for rings, %d buffers at %p", (sz >> 20), (int)(netmap_mem_d->nm_size >> 10), nm_buf_pool.total_buffers, nm_buf_pool.base); /* allocate and initialize the bitmap. Entry 0 is considered * always busy (used as default when there are no buffers left). */ n = (nm_buf_pool.total_buffers + 31) / 32; nm_buf_pool.bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO); nm_buf_pool.bitmap[0] = ~3; /* slot 0 and 1 always busy */ for (i = 1; i < n; i++) nm_buf_pool.bitmap[i] = ~0; nm_buf_pool.free = nm_buf_pool.total_buffers - 2; mem_obj = malloc(sizeof(struct netmap_mem_obj), M_NETMAP, M_WAITOK | M_ZERO); TAILQ_INSERT_HEAD(&netmap_mem_d->nm_molist, mem_obj, nmo_next); mem_obj->nmo_used = 0; mem_obj->nmo_size = netmap_mem_d->nm_size; mem_obj->nmo_data = netmap_mem_d->nm_buffer; return (0); } /* * Finalize the memory allocator. * * Free all the memory objects contained inside the list, and deallocate * the pool of memory; finally free the memory allocator descriptor. */ static void netmap_memory_fini(void) { struct netmap_mem_obj *mem_obj; while (!TAILQ_EMPTY(&netmap_mem_d->nm_molist)) { mem_obj = TAILQ_FIRST(&netmap_mem_d->nm_molist); TAILQ_REMOVE(&netmap_mem_d->nm_molist, mem_obj, nmo_next); if (mem_obj->nmo_used == 1) { printf("netmap: leaked %d bytes at %p\n", (int)mem_obj->nmo_size, mem_obj->nmo_data); } free(mem_obj, M_NETMAP); } contigfree(netmap_mem_d->nm_buffer, netmap_mem_d->nm_totalsize, M_NETMAP); // XXX mutex_destroy(nm_mtx); free(netmap_mem_d, M_NETMAP); } /* * Module loader. * * Create the /dev/netmap device and initialize all global * variables. * * Return 0 on success, errno on failure. */ static int netmap_init(void) { int error; error = netmap_memory_init(); if (error != 0) { printf("netmap: unable to initialize the memory allocator."); return (error); } printf("netmap: loaded module with %d Mbytes\n", (int)(netmap_mem_d->nm_totalsize >> 20)); netmap_dev = make_dev(&netmap_cdevsw, 0, UID_ROOT, GID_WHEEL, 0660, "netmap"); return (0); } /* * Module unloader. * * Free all the memory, and destroy the ``/dev/netmap`` device. */ static void netmap_fini(void) { destroy_dev(netmap_dev); netmap_memory_fini(); printf("netmap: unloaded module.\n"); } /* * Kernel entry point. * * Initialize/finalize the module and return. * * Return 0 on success, errno on failure. */ static int netmap_loader(__unused struct module *module, int event, __unused void *arg) { int error = 0; switch (event) { case MOD_LOAD: error = netmap_init(); break; case MOD_UNLOAD: netmap_fini(); break; default: error = EOPNOTSUPP; break; } return (error); } DEV_MODULE(netmap, netmap_loader, NULL);