/*- * Copyright (c) 2003-2009 RMI Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of RMI Corporation, nor the names of its contributors, * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RMI_BSD */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void disable_msgring_int(void *arg); void enable_msgring_int(void *arg); /* definitions */ struct tx_stn_handler { void (*action) (int, int, int, int, struct msgrng_msg *, void *); void *dev_id; }; struct msgring_ithread { struct thread *i_thread; u_int i_pending; u_int i_flags; int i_cpu; int i_core; }; struct msgring_ithread *msgring_ithreads[MAXCPU]; /* globals */ static struct tx_stn_handler tx_stn_handlers[MAX_TX_STNS]; #define MSGRNG_CC_INIT_CPU_DEST(dest, counter) \ do { \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][0], 0 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][1], 1 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][2], 2 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][3], 3 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][4], 4 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][5], 5 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][6], 6 ); \ msgrng_write_cc(MSGRNG_CC_##dest##_REG, counter[dest][7], 7 ); \ } while(0) /* make this a read/write spinlock */ static struct mtx msgrng_lock; static int msgring_int_enabled; struct mtx xlr_pic_lock; static int msgring_pop_num_buckets; static uint32_t msgring_pop_bucket_mask; static int msgring_int_type; static int msgring_watermark_count; static uint32_t msgring_thread_mask; uint32_t msgrng_msg_cycles = 0; void xlr_msgring_handler(struct trapframe *); void xlr_msgring_cpu_init(void) { struct stn_cc *cc_config; struct bucket_size *bucket_sizes; int id; unsigned long flags; KASSERT(xlr_thr_id() == 0, ("xlr_msgring_cpu_init from non-zero thread\n")); id = xlr_core_id(); bucket_sizes = xlr_board_info.bucket_sizes; cc_config = xlr_board_info.credit_configs[id]; msgrng_flags_save(flags); /* * Message Stations are shared among all threads in a cpu core * Assume, thread 0 on all cores are always active when more than 1 * thread is active in a core */ msgrng_write_bucksize(0, bucket_sizes->bucket[id * 8 + 0]); msgrng_write_bucksize(1, bucket_sizes->bucket[id * 8 + 1]); msgrng_write_bucksize(2, bucket_sizes->bucket[id * 8 + 2]); msgrng_write_bucksize(3, bucket_sizes->bucket[id * 8 + 3]); msgrng_write_bucksize(4, bucket_sizes->bucket[id * 8 + 4]); msgrng_write_bucksize(5, bucket_sizes->bucket[id * 8 + 5]); msgrng_write_bucksize(6, bucket_sizes->bucket[id * 8 + 6]); msgrng_write_bucksize(7, bucket_sizes->bucket[id * 8 + 7]); MSGRNG_CC_INIT_CPU_DEST(0, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(1, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(2, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(3, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(4, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(5, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(6, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(7, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(8, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(9, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(10, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(11, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(12, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(13, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(14, cc_config->counters); MSGRNG_CC_INIT_CPU_DEST(15, cc_config->counters); msgrng_flags_restore(flags); } void xlr_msgring_config(void) { msgring_int_type = 0x02; msgring_pop_num_buckets = 8; msgring_pop_bucket_mask = 0xff; msgring_watermark_count = 1; msgring_thread_mask = 0x01; } void xlr_msgring_handler(struct trapframe *tf) { unsigned long mflags; int bucket = 0; int size = 0, code = 0, rx_stid = 0, tx_stid = 0; struct msgrng_msg msg; unsigned int bucket_empty_bm = 0; unsigned int status = 0; /* TODO: not necessary to disable preemption */ msgrng_flags_save(mflags); /* First Drain all the high priority messages */ for (;;) { bucket_empty_bm = (msgrng_read_status() >> 24) & msgring_pop_bucket_mask; /* all buckets empty, break */ if (bucket_empty_bm == msgring_pop_bucket_mask) break; for (bucket = 0; bucket < msgring_pop_num_buckets; bucket++) { if ((bucket_empty_bm & (1 << bucket)) /* empty */ ) continue; status = message_receive(bucket, &size, &code, &rx_stid, &msg); if (status) continue; tx_stid = xlr_board_info.msgmap[rx_stid]; if (!tx_stn_handlers[tx_stid].action) { printf("[%s]: No Handler for message from stn_id=%d, bucket=%d, " "size=%d, msg0=%jx, dropping message\n", __FUNCTION__, tx_stid, bucket, size, (uintmax_t)msg.msg0); } else { //printf("[%s]: rx_stid = %d\n", __FUNCTION__, rx_stid); msgrng_flags_restore(mflags); (*tx_stn_handlers[tx_stid].action) (bucket, size, code, rx_stid, &msg, tx_stn_handlers[tx_stid].dev_id); msgrng_flags_save(mflags); } } } xlr_set_counter(MSGRNG_EXIT_STATUS, msgrng_read_status()); msgrng_flags_restore(mflags); } void enable_msgring_int(void *arg) { unsigned long mflags = 0; msgrng_access_save(&msgrng_lock, mflags); /* enable the message ring interrupts */ msgrng_write_config((msgring_watermark_count << 24) | (IRQ_MSGRING << 16) | (msgring_thread_mask << 8) | msgring_int_type); msgrng_access_restore(&msgrng_lock, mflags); } void disable_msgring_int(void *arg) { unsigned long mflags = 0; uint32_t config; msgrng_access_save(&msgrng_lock, mflags); config = msgrng_read_config(); config &= ~0x3; msgrng_write_config(config); msgrng_access_restore(&msgrng_lock, mflags); } static int msgring_process_fast_intr(void *arg) { int core = xlr_core_id(); volatile struct msgring_ithread *it; struct thread *td; /* wakeup an appropriate intr_thread for processing this interrupt */ it = (volatile struct msgring_ithread *)msgring_ithreads[core]; KASSERT(it != NULL, ("No interrupt thread on cpu %d", core)); td = it->i_thread; /* * Interrupt thread will enable the interrupts after processing all * messages */ disable_msgring_int(NULL); atomic_store_rel_int(&it->i_pending, 1); thread_lock(td); if (TD_AWAITING_INTR(td)) { TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } thread_unlock(td); return FILTER_HANDLED; } static void msgring_process(void *arg) { volatile struct msgring_ithread *ithd; struct thread *td; struct proc *p; td = curthread; p = td->td_proc; ithd = (volatile struct msgring_ithread *)arg; KASSERT(ithd->i_thread == td, ("%s:msg_ithread and proc linkage out of sync", __func__)); /* First bind this thread to the right CPU */ thread_lock(td); sched_bind(td, ithd->i_cpu); thread_unlock(td); atomic_store_rel_ptr((volatile uintptr_t *)&msgring_ithreads[ithd->i_core], (uintptr_t)arg); enable_msgring_int(NULL); while (1) { while (ithd->i_pending) { /* * This might need a full read and write barrier to * make sure that this write posts before any of the * memory or device accesses in the handlers. */ xlr_msgring_handler(NULL); atomic_store_rel_int(&ithd->i_pending, 0); enable_msgring_int(NULL); } if (!ithd->i_pending) { thread_lock(td); if (ithd->i_pending) { thread_unlock(td); continue; } sched_class(td, PRI_ITHD); TD_SET_IWAIT(td); mi_switch(SW_VOL, NULL); thread_unlock(td); } } } static void create_msgring_thread(int core, int cpu) { struct msgring_ithread *ithd; struct thread *td; struct proc *p; int error; /* Create kernel thread for message ring interrupt processing */ /* Currently create one task for thread 0 of each core */ ithd = malloc(sizeof(struct msgring_ithread), M_DEVBUF, M_WAITOK | M_ZERO); error = kproc_create(msgring_process, (void *)ithd, &p, RFSTOPPED | RFHIGHPID, 2, "msg_intr%d", cpu); if (error) panic("kproc_create() failed with %d", error); td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */ ithd->i_thread = td; ithd->i_pending = 0; ithd->i_cpu = cpu; ithd->i_core = core; thread_lock(td); sched_class(td, PRI_ITHD); sched_add(td, SRQ_INTR); thread_unlock(td); CTR2(KTR_INTR, "%s: created %s", __func__, ithd_name[core]); } int register_msgring_handler(int major, void (*action) (int, int, int, int, struct msgrng_msg *, void *), void *dev_id) { void *cookie; /* FIXME - use? */ if (major >= MAX_TX_STNS) return 1; //dbg_msg("major=%d, action=%p, dev_id=%p\n", major, action, dev_id); if (rmi_spin_mutex_safe) mtx_lock_spin(&msgrng_lock); tx_stn_handlers[major].action = action; tx_stn_handlers[major].dev_id = dev_id; if (rmi_spin_mutex_safe) mtx_unlock_spin(&msgrng_lock); if (xlr_test_and_set(&msgring_int_enabled)) { create_msgring_thread(0, 0); cpu_establish_hardintr("msgring", (driver_filter_t *) msgring_process_fast_intr, NULL, NULL, IRQ_MSGRING, INTR_TYPE_NET | INTR_FAST, &cookie); } return 0; } static void pic_init(void) { xlr_reg_t *mmio = xlr_io_mmio(XLR_IO_PIC_OFFSET); int i = 0; int level; dbg_msg("Initializing PIC...\n"); for (i = 0; i < PIC_NUM_IRTS; i++) { level = PIC_IRQ_IS_EDGE_TRIGGERED(i); /* Bind all PIC irqs to cpu 0 */ xlr_write_reg(mmio, PIC_IRT_0_BASE + i, 0x01); /* * Use local scheduling and high polarity for all IRTs * Invalidate all IRTs, by default */ xlr_write_reg(mmio, PIC_IRT_1_BASE + i, (level << 30) | (1 << 6) | (PIC_IRQ_BASE + i)); } dbg_msg("PIC init now done\n"); } void on_chip_init(void) { /* Set xlr_io_base to the run time value */ mtx_init(&msgrng_lock, "msgring", NULL, MTX_SPIN | MTX_RECURSE); mtx_init(&xlr_pic_lock, "pic", NULL, MTX_SPIN); xlr_board_info_setup(); msgring_int_enabled = 0; xlr_msgring_config(); pic_init(); xlr_msgring_cpu_init(); } static void start_msgring_threads(void *arg) { int core, cpu; for (core = 1; core < XLR_MAX_CORES; core++) { if ((xlr_hw_thread_mask >> (4 * core)) & 0xf) { /* start one thread for an enabled core */ cpu = xlr_hwtid_to_cpuid[4 * core]; create_msgring_thread(core, cpu); } } } SYSINIT(start_msgring_threads, SI_SUB_SMP, SI_ORDER_MIDDLE, start_msgring_threads, NULL);