/* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD$ */ #include "opt_ipsec.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif /* INET6 */ #include "faith.h" #ifdef IPSEC #include #include #endif /* IPSEC */ struct in_addr zeroin_addr; static void in_rtchange __P((struct inpcb *, int)); /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ #define RANGECHK(var, min, max) \ if ((var) < (min)) { (var) = (min); } \ else if ((var) > (max)) { (var) = (max); } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error) { RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX); } return error; } #undef RANGECHK SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called at * splnet(). XXX - There are, unfortunately, a few exceptions to this * rule that should be fixed. */ /* * Allocate a PCB and associate it with the socket. */ int in_pcballoc(so, pcbinfo, p) struct socket *so; struct inpcbinfo *pcbinfo; struct proc *p; { register struct inpcb *inp; inp = zalloci(pcbinfo->ipi_zone); if (inp == NULL) return (ENOBUFS); bzero((caddr_t)inp, sizeof(*inp)); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = pcbinfo; inp->inp_socket = so; #if defined(INET6) if (ip6_mapped_addr_on) inp->inp_flags &= ~IN6P_BINDV6ONLY; else inp->inp_flags |= IN6P_BINDV6ONLY; #endif LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); pcbinfo->ipi_count++; so->so_pcb = (caddr_t)inp; return (0); } int in_pcbbind(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { register struct socket *so = inp->inp_socket; unsigned short *lastport; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error, prison = 0; if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) wild = 1; if (nam) { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif if (prison_ip(p, 0, &sin->sin_addr.s_addr)) return(EINVAL); lport = sin->sin_port; if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR|SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) return (EADDRNOTAVAIL); } if (lport) { struct inpcb *t; /* GROSS */ if (ntohs(lport) < IPPORT_RESERVED && p && suser_xxx(0, p, PRISON_ROOT)) return (EACCES); if (p && p->p_prison) prison = 1; if (so->so_cred->cr_uid != 0 && !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { t = in_pcblookup_local(inp->inp_pcbinfo, sin->sin_addr, lport, prison ? 0 : INPLOOKUP_WILDCARD); if (t && (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || (t->inp_socket->so_options & SO_REUSEPORT) == 0) && (so->so_cred->cr_uid != t->inp_socket->so_cred->cr_uid)) { #if defined(INET6) if ((inp->inp_flags & IN6P_BINDV6ONLY) != 0 || ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif /* defined(INET6) */ return (EADDRINUSE); } } t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, prison ? 0 : wild); if (t && (reuseport & t->inp_socket->so_options) == 0) { #if defined(INET6) if ((inp->inp_flags & IN6P_BINDV6ONLY) != 0 || ntohl(sin->sin_addr.s_addr) != INADDR_ANY || ntohl(t->inp_laddr.s_addr) != INADDR_ANY || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif /* defined(INET6) */ return (EADDRINUSE); } } inp->inp_laddr = sin->sin_addr; } if (lport == 0) { ushort first, last; int count; if (prison_ip(p, 0, &inp->inp_laddr.s_addr )) return (EINVAL); inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->lasthi; } else if (inp->inp_flags & INP_LOWPORT) { if (p && (error = suser_xxx(0, p, PRISON_ROOT))) return error; first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->lastport; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ count = first - last; do { if (count-- < 0) { /* completely used? */ /* * Undo any address bind that may have * occurred above. */ inp->inp_laddr.s_addr = INADDR_ANY; return (EAGAIN); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } else { /* * counting up */ count = last - first; do { if (count-- < 0) { /* completely used? */ /* * Undo any address bind that may have * occurred above. */ inp->inp_laddr.s_addr = INADDR_ANY; return (EAGAIN); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } } inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } return (0); } /* * Transform old in_pcbconnect() into an inner subroutine for new * in_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ int in_pcbladdr(inp, nam, plocal_sin) register struct inpcb *inp; struct sockaddr *nam; struct sockaddr_in **plocal_sin; { struct in_ifaddr *ia; register struct sockaddr_in *sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof (*sin)) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); if (!TAILQ_EMPTY(&in_ifaddrhead)) { /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ #define satosin(sa) ((struct sockaddr_in *)(sa)) #define sintosa(sin) ((struct sockaddr *)(sin)) #define ifatoia(ifa) ((struct in_ifaddr *)(ifa)) if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr = IA_SIN(in_ifaddrhead.tqh_first)->sin_addr; else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST && (in_ifaddrhead.tqh_first->ia_ifp->if_flags & IFF_BROADCAST)) sin->sin_addr = satosin(&in_ifaddrhead.tqh_first->ia_broadaddr)->sin_addr; } if (inp->inp_laddr.s_addr == INADDR_ANY) { register struct route *ro; ia = (struct in_ifaddr *)0; /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. */ ro = &inp->inp_route; if (ro->ro_rt && (satosin(&ro->ro_dst)->sin_addr.s_addr != sin->sin_addr.s_addr || inp->inp_socket->so_options & SO_DONTROUTE)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)0; } if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/ (ro->ro_rt == (struct rtentry *)0 || ro->ro_rt->rt_ifp == (struct ifnet *)0)) { /* No route yet, so try to acquire one */ ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = sin->sin_addr; rtalloc(ro); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). */ if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) ia = ifatoia(ro->ro_rt->rt_ifa); if (ia == 0) { u_short fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); if (ia == 0) ia = ifatoia(ifa_ifwithnet(sintosa(sin))); sin->sin_port = fport; if (ia == 0) ia = in_ifaddrhead.tqh_first; if (ia == 0) return (EADDRNOTAVAIL); } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; for (ia = in_ifaddrhead.tqh_first; ia; ia = ia->ia_link.tqe_next) if (ia->ia_ifp == ifp) break; if (ia == 0) return (EADDRNOTAVAIL); } } /* * Don't do pcblookup call here; return interface in plocal_sin * and exit to caller, that will do the lookup. */ *plocal_sin = &ia->ia_addr; } return(0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(inp, nam, p) register struct inpcb *inp; struct sockaddr *nam; struct proc *p; { struct sockaddr_in *ifaddr; register struct sockaddr_in *sin = (struct sockaddr_in *)nam; int error; /* * Call inner routine, to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &ifaddr)) != 0) return(error); if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr, inp->inp_lport, 0, NULL) != NULL) { return (EADDRINUSE); } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)0, p); if (error) return (error); } inp->inp_laddr = ifaddr->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbrehash(inp); return (0); } void in_pcbdisconnect(inp) struct inpcb *inp; { inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbrehash(inp); if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); } void in_pcbdetach(inp) struct inpcb *inp; { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; struct rtentry *rt = inp->inp_route.ro_rt; #ifdef IPSEC ipsec4_delete_pcbpolicy(inp); #endif /*IPSEC*/ inp->inp_gencnt = ++ipi->ipi_gencnt; in_pcbremlists(inp); so->so_pcb = 0; sofree(so); if (inp->inp_options) (void)m_free(inp->inp_options); if (rt) { /* * route deletion requires reference count to be <= zero */ if ((rt->rt_flags & RTF_DELCLONE) && (rt->rt_flags & RTF_WASCLONED)) { if (--rt->rt_refcnt <= 0) { rt->rt_flags &= ~RTF_UP; rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); } else /* * more than one reference, bump it up * again. */ rt->rt_refcnt++; } else rtfree(rt); } ip_freemoptions(inp->inp_moptions); inp->inp_vflag = 0; zfreei(ipi->ipi_zone, inp); } /* * The calling convention of in_setsockaddr() and in_setpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. The socket must have a valid * (i.e., non-nil) PCB, but it should be impossible to get an invalid one * except through a kernel programming error, so it is acceptable to panic * (or in this case trap) if the PCB is invalid. (Actually, we don't trap * because there actually /is/ a programming error somewhere... XXX) */ int in_setsockaddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; register struct inpcb *inp; register struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK); bzero(sin, sizeof *sin); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return ECONNRESET; } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; splx(s); *nam = (struct sockaddr *)sin; return 0; } int in_setpeeraddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; struct inpcb *inp; register struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK); bzero(sin, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return ECONNRESET; } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; splx(s); *nam = (struct sockaddr *)sin; return 0; } /* * Pass some notification to all connections of a protocol * associated with address dst. The local address and/or port numbers * may be specified to limit the search. The "usual action" will be * taken, depending on the ctlinput cmd. The caller must filter any * cmds that are uninteresting (e.g., no error in the map). * Call the protocol specific routine (if any) to report * any errors for each matching socket. */ void in_pcbnotify(head, dst, fport_arg, laddr, lport_arg, cmd, notify) struct inpcbhead *head; struct sockaddr *dst; u_int fport_arg, lport_arg; struct in_addr laddr; int cmd; void (*notify) __P((struct inpcb *, int)); { register struct inpcb *inp, *oinp; struct in_addr faddr; u_short fport = fport_arg, lport = lport_arg; int errno, s; if ((unsigned)cmd > PRC_NCMDS || dst->sa_family != AF_INET) return; faddr = ((struct sockaddr_in *)dst)->sin_addr; if (faddr.s_addr == INADDR_ANY) return; /* * Redirects go to all references to the destination, * and use in_rtchange to invalidate the route cache. * Dead host indications: notify all references to the destination. * Otherwise, if we have knowledge of the local port and address, * deliver only to that socket. */ if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) { fport = 0; lport = 0; laddr.s_addr = 0; if (cmd != PRC_HOSTDEAD) notify = in_rtchange; } errno = inetctlerrmap[cmd]; s = splnet(); for (inp = head->lh_first; inp != NULL;) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) { inp = LIST_NEXT(inp, inp_list); continue; } #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == 0 || (lport && inp->inp_lport != lport) || (laddr.s_addr && inp->inp_laddr.s_addr != laddr.s_addr) || (fport && inp->inp_fport != fport)) { inp = inp->inp_list.le_next; continue; } oinp = inp; inp = inp->inp_list.le_next; if (notify) (*notify)(oinp, errno); } splx(s); } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(inp) struct inpcb *inp; { register struct rtentry *rt; struct rt_addrinfo info; if ((rt = inp->inp_route.ro_rt)) { inp->inp_route.ro_rt = 0; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = (struct sockaddr *)&inp->inp_route.ro_dst; info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, (struct rtentry **)0); else /* * A new route can be allocated * the next time output is attempted. */ rtfree(rt); } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ static void in_rtchange(inp, errno) register struct inpcb *inp; int errno; { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = 0; /* * A new route can be allocated the next time * output is attempted. */ } } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay) struct inpcbinfo *pcbinfo; struct in_addr laddr; u_int lport_arg; int wild_okay; { register struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; if (!wild_okay) { struct inpcbhead *head; /* * Look for an unconnected (wildcard foreign addr) PCB that * matches the local address and port we're looking for. */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_lport == lport) { /* * Found. */ return (inp); } } /* * Not found. */ return (NULL); } else { struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, pcbinfo->porthashmask)]; for (phd = porthash->lh_first; phd != NULL; phd = phd->phd_hash.le_next) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ for (inp = phd->phd_pcblist.lh_first; inp != NULL; inp = inp->inp_portlist.le_next) { wildcard = 0; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } return (match); } } /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp) struct inpcbinfo *pcbinfo; struct in_addr faddr, laddr; u_int fport_arg, lport_arg; int wildcard; struct ifnet *ifp; { struct inpcbhead *head; register struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)]; for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == faddr.s_addr && inp->inp_laddr.s_addr == laddr.s_addr && inp->inp_fport == fport && inp->inp_lport == lport) { /* * Found. */ return (inp); } } if (wildcard) { struct inpcb *local_wild = NULL; #if defined(INET6) struct inpcb *local_wild_mapped = NULL; #endif /* defined(INET6) */ head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) { #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr == INADDR_ANY && inp->inp_lport == lport) { #if defined(NFAITH) && NFAITH > 0 if (ifp && ifp->if_type == IFT_FAITH && (inp->inp_flags & INP_FAITH) == 0) continue; #endif if (inp->inp_laddr.s_addr == laddr.s_addr) return (inp); else if (inp->inp_laddr.s_addr == INADDR_ANY) { #if defined(INET6) if (INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) local_wild_mapped = inp; else #endif /* defined(INET6) */ local_wild = inp; } } } #if defined(INET6) if (local_wild == NULL) return (local_wild_mapped); #endif /* defined(INET6) */ return (local_wild); } /* * Not found. */ return (NULL); } /* * Insert PCB onto various hash lists. */ int in_pcbinshash(inp) struct inpcb *inp; { struct inpcbhead *pcbhash; struct inpcbporthead *pcbporthash; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbport *phd; u_int32_t hashkey_faddr; #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)]; /* * Go through port list and look for a head for this lport. */ for (phd = pcbporthash->lh_first; phd != NULL; phd = phd->phd_hash.le_next) { if (phd->phd_port == inp->inp_lport) break; } /* * If none exists, malloc one and tack it on. */ if (phd == NULL) { MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); if (phd == NULL) { return (ENOBUFS); /* XXX */ } phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); LIST_INSERT_HEAD(pcbhash, inp, inp_hash); return (0); } /* * Move PCB to the proper hash bucket when { faddr, fport } have been * changed. NOTE: This does not handle the case of the lport changing (the * hashed port list would have to be updated as well), so the lport must * not change after in_pcbinshash() has been called. */ void in_pcbrehash(inp) struct inpcb *inp; { struct inpcbhead *head; u_int32_t hashkey_faddr; #ifdef INET6 if (inp->inp_vflag & INP_IPV6) hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; else #endif /* INET6 */ hashkey_faddr = inp->inp_faddr.s_addr; head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)]; LIST_REMOVE(inp, inp_hash); LIST_INSERT_HEAD(head, inp, inp_hash); } /* * Remove PCB from various lists. */ void in_pcbremlists(inp) struct inpcb *inp; { inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt; if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_hash); LIST_REMOVE(inp, inp_portlist); if (phd->phd_pcblist.lh_first == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } } LIST_REMOVE(inp, inp_list); inp->inp_pcbinfo->ipi_count--; } int prison_xinpcb(struct proc *p, struct inpcb *inp) { if (!p->p_prison) return (0); if (ntohl(inp->inp_laddr.s_addr) == p->p_prison->pr_ip) return (0); return (1); }