/*- * Copyright (c) 2000 Marcel Moolenaar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct linux_descriptor { unsigned int entry_number; unsigned long base_addr; unsigned int limit; unsigned int seg_32bit:1; unsigned int contents:2; unsigned int read_exec_only:1; unsigned int limit_in_pages:1; unsigned int seg_not_present:1; unsigned int useable:1; }; struct linux_select_argv { int nfds; fd_set *readfds; fd_set *writefds; fd_set *exceptfds; struct timeval *timeout; }; int linux_to_bsd_sigaltstack(int lsa) { int bsa = 0; if (lsa & LINUX_SS_DISABLE) bsa |= SS_DISABLE; if (lsa & LINUX_SS_ONSTACK) bsa |= SS_ONSTACK; return (bsa); } int bsd_to_linux_sigaltstack(int bsa) { int lsa = 0; if (bsa & SS_DISABLE) lsa |= LINUX_SS_DISABLE; if (bsa & SS_ONSTACK) lsa |= LINUX_SS_ONSTACK; return (lsa); } int linux_execve(struct proc *p, struct linux_execve_args *args) { struct execve_args bsd; caddr_t sg; sg = stackgap_init(); CHECKALTEXIST(p, &sg, args->path); #ifdef DEBUG printf("Linux-emul(%d): execve(%s)\n", p->p_pid, args->path); #endif bsd.fname = args->path; bsd.argv = args->argp; bsd.envv = args->envp; return (execve(p, &bsd)); } int linux_ipc(struct proc *p, struct linux_ipc_args *args) { switch (args->what) { case LINUX_SEMOP: return (linux_semop(p, args)); case LINUX_SEMGET: return (linux_semget(p, args)); case LINUX_SEMCTL: return (linux_semctl(p, args)); case LINUX_MSGSND: return (linux_msgsnd(p, args)); case LINUX_MSGRCV: return (linux_msgrcv(p, args)); case LINUX_MSGGET: return (linux_msgget(p, args)); case LINUX_MSGCTL: return (linux_msgctl(p, args)); case LINUX_SHMAT: return (linux_shmat(p, args)); case LINUX_SHMDT: return (linux_shmdt(p, args)); case LINUX_SHMGET: return (linux_shmget(p, args)); case LINUX_SHMCTL: return (linux_shmctl(p, args)); } uprintf("LINUX: 'ipc' typ=%d not implemented\n", args->what); return (ENOSYS); } int linux_select(struct proc *p, struct linux_select_args *args) { struct linux_select_argv linux_args; struct linux_newselect_args newsel; int error; #ifdef SELECT_DEBUG printf("Linux-emul(%ld): select(%x)\n", (long)p->p_pid, args->ptr); #endif error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); newsel.nfds = linux_args.nfds; newsel.readfds = linux_args.readfds; newsel.writefds = linux_args.writefds; newsel.exceptfds = linux_args.exceptfds; newsel.timeout = linux_args.timeout; return (linux_newselect(p, &newsel)); } int linux_fork(struct proc *p, struct linux_fork_args *args) { int error; #ifdef DEBUG printf("Linux-emul(%ld): fork()\n", (long)p->p_pid); #endif if ((error = fork(p, (struct fork_args *)args)) != 0) return (error); if (p->p_retval[1] == 1) p->p_retval[0] = 0; return (0); } int linux_vfork(struct proc *p, struct linux_vfork_args *args) { int error; #ifdef DEBUG printf("Linux-emul(%ld): vfork()\n", (long)p->p_pid); #endif if ((error = vfork(p, (struct vfork_args *)args)) != 0) return (error); /* Are we the child? */ if (p->p_retval[1] == 1) p->p_retval[0] = 0; return (0); } #define CLONE_VM 0x100 #define CLONE_FS 0x200 #define CLONE_FILES 0x400 #define CLONE_SIGHAND 0x800 #define CLONE_PID 0x1000 int linux_clone(struct proc *p, struct linux_clone_args *args) { int error, ff = RFPROC; struct proc *p2; int exit_signal; vm_offset_t start; struct rfork_args rf_args; #ifdef DEBUG if (args->flags & CLONE_PID) printf("linux_clone(%ld): CLONE_PID not yet supported\n", (long)p->p_pid); printf("linux_clone(%ld): invoked with flags %x and stack %x\n", (long)p->p_pid, (unsigned int)args->flags, (unsigned int)args->stack); #endif if (!args->stack) return (EINVAL); exit_signal = args->flags & 0x000000ff; if (exit_signal >= LINUX_NSIG) return (EINVAL); if (exit_signal <= LINUX_SIGTBLSZ) exit_signal = linux_to_bsd_signal[_SIG_IDX(exit_signal)]; /* RFTHREAD probably not necessary here, but it shouldn't hurt */ ff |= RFTHREAD; if (args->flags & CLONE_VM) ff |= RFMEM; if (args->flags & CLONE_SIGHAND) ff |= RFSIGSHARE; if (!(args->flags & CLONE_FILES)) ff |= RFFDG; error = 0; start = 0; rf_args.flags = ff; if ((error = rfork(p, &rf_args)) != 0) return (error); p2 = pfind(p->p_retval[0]); if (p2 == NULL) return (ESRCH); PROC_LOCK(p2); p2->p_sigparent = exit_signal; PROC_UNLOCK(p2); p2->p_md.md_regs->tf_esp = (unsigned int)args->stack; #ifdef DEBUG printf ("linux_clone(%ld): successful rfork to %ld\n", (long)p->p_pid, (long)p2->p_pid); #endif return (0); } /* XXX move */ struct linux_mmap_argv { linux_caddr_t addr; int len; int prot; int flags; int fd; int pos; }; #define STACK_SIZE (2 * 1024 * 1024) #define GUARD_SIZE (4 * PAGE_SIZE) int linux_mmap(struct proc *p, struct linux_mmap_args *args) { struct mmap_args /* { caddr_t addr; size_t len; int prot; int flags; int fd; long pad; off_t pos; } */ bsd_args; int error; struct linux_mmap_argv linux_args; error = copyin(args->ptr, &linux_args, sizeof(linux_args)); if (error) return (error); #ifdef DEBUG printf("Linux-emul(%ld): mmap(%p, %d, %d, 0x%08x, %d, %d)", (long)p->p_pid, (void *)linux_args.addr, linux_args.len, linux_args.prot, linux_args.flags, linux_args.fd, linux_args.pos); #endif bsd_args.flags = 0; if (linux_args.flags & LINUX_MAP_SHARED) bsd_args.flags |= MAP_SHARED; if (linux_args.flags & LINUX_MAP_PRIVATE) bsd_args.flags |= MAP_PRIVATE; if (linux_args.flags & LINUX_MAP_FIXED) bsd_args.flags |= MAP_FIXED; if (linux_args.flags & LINUX_MAP_ANON) bsd_args.flags |= MAP_ANON; if (linux_args.flags & LINUX_MAP_GROWSDOWN) { bsd_args.flags |= MAP_STACK; /* The linux MAP_GROWSDOWN option does not limit auto * growth of the region. Linux mmap with this option * takes as addr the inital BOS, and as len, the initial * region size. It can then grow down from addr without * limit. However, linux threads has an implicit internal * limit to stack size of STACK_SIZE. Its just not * enforced explicitly in linux. But, here we impose * a limit of (STACK_SIZE - GUARD_SIZE) on the stack * region, since we can do this with our mmap. * * Our mmap with MAP_STACK takes addr as the maximum * downsize limit on BOS, and as len the max size of * the region. It them maps the top SGROWSIZ bytes, * and autgrows the region down, up to the limit * in addr. * * If we don't use the MAP_STACK option, the effect * of this code is to allocate a stack region of a * fixed size of (STACK_SIZE - GUARD_SIZE). */ /* This gives us TOS */ bsd_args.addr = linux_args.addr + linux_args.len; if (bsd_args.addr > p->p_vmspace->vm_maxsaddr) { /* Some linux apps will attempt to mmap * thread stacks near the top of their * address space. If their TOS is greater * than vm_maxsaddr, vm_map_growstack() * will confuse the thread stack with the * process stack and deliver a SEGV if they * attempt to grow the thread stack past their * current stacksize rlimit. To avoid this, * adjust vm_maxsaddr upwards to reflect * the current stacksize rlimit rather * than the maximum possible stacksize. * It would be better to adjust the * mmap'ed region, but some apps do not check * mmap's return value. */ mtx_assert(&Giant, MA_OWNED); p->p_vmspace->vm_maxsaddr = (char *)USRSTACK - p->p_rlimit[RLIMIT_STACK].rlim_cur; } /* This gives us our maximum stack size */ if (linux_args.len > STACK_SIZE - GUARD_SIZE) bsd_args.len = linux_args.len; else bsd_args.len = STACK_SIZE - GUARD_SIZE; /* This gives us a new BOS. If we're using VM_STACK, then * mmap will just map the top SGROWSIZ bytes, and let * the stack grow down to the limit at BOS. If we're * not using VM_STACK we map the full stack, since we * don't have a way to autogrow it. */ bsd_args.addr -= bsd_args.len; } else { bsd_args.addr = linux_args.addr; bsd_args.len = linux_args.len; } bsd_args.prot = linux_args.prot | PROT_READ; /* always required */ if (linux_args.flags & LINUX_MAP_ANON) bsd_args.fd = -1; else bsd_args.fd = linux_args.fd; bsd_args.pos = linux_args.pos; bsd_args.pad = 0; #ifdef DEBUG printf("-> (%p, %d, %d, 0x%08x, %d, %d)\n", (void *)bsd_args.addr, bsd_args.len, bsd_args.prot, bsd_args.flags, bsd_args.fd, (int)bsd_args.pos); #endif return (mmap(p, &bsd_args)); } int linux_pipe(struct proc *p, struct linux_pipe_args *args) { int error; int reg_edx; #ifdef DEBUG printf("Linux-emul(%ld): pipe(*)\n", (long)p->p_pid); #endif reg_edx = p->p_retval[1]; error = pipe(p, 0); if (error) { p->p_retval[1] = reg_edx; return (error); } error = copyout(p->p_retval, args->pipefds, 2*sizeof(int)); if (error) { p->p_retval[1] = reg_edx; return (error); } p->p_retval[1] = reg_edx; p->p_retval[0] = 0; return (0); } int linux_ioperm(struct proc *p, struct linux_ioperm_args *args) { struct sysarch_args sa; struct i386_ioperm_args *iia; caddr_t sg; sg = stackgap_init(); iia = stackgap_alloc(&sg, sizeof(struct i386_ioperm_args)); iia->start = args->start; iia->length = args->length; iia->enable = args->enable; sa.op = I386_SET_IOPERM; sa.parms = (char *)iia; return (sysarch(p, &sa)); } int linux_iopl(struct proc *p, struct linux_iopl_args *args) { int error; if (args->level < 0 || args->level > 3) return (EINVAL); if ((error = suser(p)) != 0) return (error); if (securelevel > 0) return (EPERM); p->p_md.md_regs->tf_eflags = (p->p_md.md_regs->tf_eflags & ~PSL_IOPL) | (args->level * (PSL_IOPL / 3)); return (0); } int linux_modify_ldt(p, uap) struct proc *p; struct linux_modify_ldt_args *uap; { int error; caddr_t sg; struct sysarch_args args; struct i386_ldt_args *ldt; struct linux_descriptor ld; union descriptor *desc; sg = stackgap_init(); if (uap->ptr == NULL) return (EINVAL); switch (uap->func) { case 0x00: /* read_ldt */ ldt = stackgap_alloc(&sg, sizeof(*ldt)); ldt->start = 0; ldt->descs = uap->ptr; ldt->num = uap->bytecount / sizeof(union descriptor); args.op = I386_GET_LDT; args.parms = (char*)ldt; error = sysarch(p, &args); p->p_retval[0] *= sizeof(union descriptor); break; case 0x01: /* write_ldt */ case 0x11: /* write_ldt */ if (uap->bytecount != sizeof(ld)) return (EINVAL); error = copyin(uap->ptr, &ld, sizeof(ld)); if (error) return (error); ldt = stackgap_alloc(&sg, sizeof(*ldt)); desc = stackgap_alloc(&sg, sizeof(*desc)); ldt->start = ld.entry_number; ldt->descs = desc; ldt->num = 1; desc->sd.sd_lolimit = (ld.limit & 0x0000ffff); desc->sd.sd_hilimit = (ld.limit & 0x000f0000) >> 16; desc->sd.sd_lobase = (ld.base_addr & 0x00ffffff); desc->sd.sd_hibase = (ld.base_addr & 0xff000000) >> 24; desc->sd.sd_type = SDT_MEMRO | ((ld.read_exec_only ^ 1) << 1) | (ld.contents << 2); desc->sd.sd_dpl = 3; desc->sd.sd_p = (ld.seg_not_present ^ 1); desc->sd.sd_xx = 0; desc->sd.sd_def32 = ld.seg_32bit; desc->sd.sd_gran = ld.limit_in_pages; args.op = I386_SET_LDT; args.parms = (char*)ldt; error = sysarch(p, &args); break; default: error = EINVAL; break; } if (error == EOPNOTSUPP) { printf("linux: modify_ldt needs kernel option USER_LDT\n"); error = ENOSYS; } return (error); } int linux_sigaction(struct proc *p, struct linux_sigaction_args *args) { linux_osigaction_t osa; linux_sigaction_t act, oact; int error; #ifdef DEBUG printf("Linux-emul(%ld): sigaction(%d, %p, %p)\n", (long)p->p_pid, args->sig, (void *)args->nsa, (void *)args->osa); #endif if (args->nsa != NULL) { error = copyin(args->nsa, &osa, sizeof(linux_osigaction_t)); if (error) return (error); act.lsa_handler = osa.lsa_handler; act.lsa_flags = osa.lsa_flags; act.lsa_restorer = osa.lsa_restorer; LINUX_SIGEMPTYSET(act.lsa_mask); act.lsa_mask.__bits[0] = osa.lsa_mask; } error = linux_do_sigaction(p, args->sig, args->nsa ? &act : NULL, args->osa ? &oact : NULL); if (args->osa != NULL && !error) { osa.lsa_handler = oact.lsa_handler; osa.lsa_flags = oact.lsa_flags; osa.lsa_restorer = oact.lsa_restorer; osa.lsa_mask = oact.lsa_mask.__bits[0]; error = copyout(&osa, args->osa, sizeof(linux_osigaction_t)); } return (error); } /* * Linux has two extra args, restart and oldmask. We dont use these, * but it seems that "restart" is actually a context pointer that * enables the signal to happen with a different register set. */ int linux_sigsuspend(struct proc *p, struct linux_sigsuspend_args *args) { struct sigsuspend_args bsd; sigset_t *sigmask; linux_sigset_t mask; caddr_t sg = stackgap_init(); #ifdef DEBUG printf("Linux-emul(%ld): sigsuspend(%08lx)\n", (long)p->p_pid, (unsigned long)args->mask); #endif sigmask = stackgap_alloc(&sg, sizeof(sigset_t)); LINUX_SIGEMPTYSET(mask); mask.__bits[0] = args->mask; linux_to_bsd_sigset(&mask, sigmask); bsd.sigmask = sigmask; return (sigsuspend(p, &bsd)); } int linux_rt_sigsuspend(p, uap) struct proc *p; struct linux_rt_sigsuspend_args *uap; { linux_sigset_t lmask; sigset_t *bmask; struct sigsuspend_args bsd; caddr_t sg = stackgap_init(); int error; #ifdef DEBUG printf("Linux-emul(%ld): rt_sigsuspend(%p, %d)\n", (long)p->p_pid, (void *)uap->newset, uap->sigsetsize); #endif if (uap->sigsetsize != sizeof(linux_sigset_t)) return (EINVAL); error = copyin(uap->newset, &lmask, sizeof(linux_sigset_t)); if (error) return (error); bmask = stackgap_alloc(&sg, sizeof(sigset_t)); linux_to_bsd_sigset(&lmask, bmask); bsd.sigmask = bmask; return (sigsuspend(p, &bsd)); } int linux_pause(struct proc *p, struct linux_pause_args *args) { struct sigsuspend_args bsd; sigset_t *sigmask; caddr_t sg = stackgap_init(); #ifdef DEBUG printf("Linux-emul(%d): pause()\n", p->p_pid); #endif sigmask = stackgap_alloc(&sg, sizeof(sigset_t)); PROC_LOCK(p); *sigmask = p->p_sigmask; PROC_UNLOCK(p); bsd.sigmask = sigmask; return (sigsuspend(p, &bsd)); } int linux_sigaltstack(p, uap) struct proc *p; struct linux_sigaltstack_args *uap; { struct sigaltstack_args bsd; stack_t *ss, *oss; linux_stack_t lss; int error; caddr_t sg = stackgap_init(); #ifdef DEBUG printf("Linux-emul(%ld): sigaltstack(%p, %p)\n", (long)p->p_pid, uap->uss, uap->uoss); #endif if (uap->uss == NULL) { ss = NULL; } else { error = copyin(uap->uss, &lss, sizeof(linux_stack_t)); if (error) return (error); ss = stackgap_alloc(&sg, sizeof(stack_t)); ss->ss_sp = lss.ss_sp; ss->ss_size = lss.ss_size; ss->ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags); } oss = (uap->uoss != NULL) ? stackgap_alloc(&sg, sizeof(stack_t)) : NULL; bsd.ss = ss; bsd.oss = oss; error = sigaltstack(p, &bsd); if (!error && oss != NULL) { lss.ss_sp = oss->ss_sp; lss.ss_size = oss->ss_size; lss.ss_flags = bsd_to_linux_sigaltstack(oss->ss_flags); error = copyout(&lss, uap->uoss, sizeof(linux_stack_t)); } return (error); }