/*- * Copyright (c) 1997, Stefan Esser <se@freebsd.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kstack_usage_prof.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/conf.h> #include <sys/cpuset.h> #include <sys/rtprio.h> #include <sys/systm.h> #include <sys/interrupt.h> #include <sys/kernel.h> #include <sys/kthread.h> #include <sys/ktr.h> #include <sys/limits.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/priv.h> #include <sys/proc.h> #include <sys/random.h> #include <sys/resourcevar.h> #include <sys/sched.h> #include <sys/smp.h> #include <sys/sysctl.h> #include <sys/syslog.h> #include <sys/unistd.h> #include <sys/vmmeter.h> #include <machine/atomic.h> #include <machine/cpu.h> #include <machine/md_var.h> #include <machine/stdarg.h> #ifdef DDB #include <ddb/ddb.h> #include <ddb/db_sym.h> #endif /* * Describe an interrupt thread. There is one of these per interrupt event. */ struct intr_thread { struct intr_event *it_event; struct thread *it_thread; /* Kernel thread. */ int it_flags; /* (j) IT_* flags. */ int it_need; /* Needs service. */ }; /* Interrupt thread flags kept in it_flags */ #define IT_DEAD 0x000001 /* Thread is waiting to exit. */ #define IT_WAIT 0x000002 /* Thread is waiting for completion. */ struct intr_entropy { struct thread *td; uintptr_t event; }; struct intr_event *clk_intr_event; struct intr_event *tty_intr_event; void *vm_ih; struct proc *intrproc; static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); static int intr_storm_threshold = 1000; SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RWTUN, &intr_storm_threshold, 0, "Number of consecutive interrupts before storm protection is enabled"); static TAILQ_HEAD(, intr_event) event_list = TAILQ_HEAD_INITIALIZER(event_list); static struct mtx event_lock; MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF); static void intr_event_update(struct intr_event *ie); #ifdef INTR_FILTER static int intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *ithd); static int intr_filter_loop(struct intr_event *ie, struct trapframe *frame, struct intr_thread **ithd); static struct intr_thread *ithread_create(const char *name, struct intr_handler *ih); #else static int intr_event_schedule_thread(struct intr_event *ie); static struct intr_thread *ithread_create(const char *name); #endif static void ithread_destroy(struct intr_thread *ithread); static void ithread_execute_handlers(struct proc *p, struct intr_event *ie); #ifdef INTR_FILTER static void priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih); #endif static void ithread_loop(void *); static void ithread_update(struct intr_thread *ithd); static void start_softintr(void *); /* Map an interrupt type to an ithread priority. */ u_char intr_priority(enum intr_type flags) { u_char pri; flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); switch (flags) { case INTR_TYPE_TTY: pri = PI_TTY; break; case INTR_TYPE_BIO: pri = PI_DISK; break; case INTR_TYPE_NET: pri = PI_NET; break; case INTR_TYPE_CAM: pri = PI_DISK; break; case INTR_TYPE_AV: pri = PI_AV; break; case INTR_TYPE_CLK: pri = PI_REALTIME; break; case INTR_TYPE_MISC: pri = PI_DULL; /* don't care */ break; default: /* We didn't specify an interrupt level. */ panic("intr_priority: no interrupt type in flags"); } return pri; } /* * Update an ithread based on the associated intr_event. */ static void ithread_update(struct intr_thread *ithd) { struct intr_event *ie; struct thread *td; u_char pri; ie = ithd->it_event; td = ithd->it_thread; /* Determine the overall priority of this event. */ if (TAILQ_EMPTY(&ie->ie_handlers)) pri = PRI_MAX_ITHD; else pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri; /* Update name and priority. */ strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name)); #ifdef KTR sched_clear_tdname(td); #endif thread_lock(td); sched_prio(td, pri); thread_unlock(td); } /* * Regenerate the full name of an interrupt event and update its priority. */ static void intr_event_update(struct intr_event *ie) { struct intr_handler *ih; char *last; int missed, space; /* Start off with no entropy and just the name of the event. */ mtx_assert(&ie->ie_lock, MA_OWNED); strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); ie->ie_flags &= ~IE_ENTROPY; missed = 0; space = 1; /* Run through all the handlers updating values. */ TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 < sizeof(ie->ie_fullname)) { strcat(ie->ie_fullname, " "); strcat(ie->ie_fullname, ih->ih_name); space = 0; } else missed++; if (ih->ih_flags & IH_ENTROPY) ie->ie_flags |= IE_ENTROPY; } /* * If the handler names were too long, add +'s to indicate missing * names. If we run out of room and still have +'s to add, change * the last character from a + to a *. */ last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2]; while (missed-- > 0) { if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) { if (*last == '+') { *last = '*'; break; } else *last = '+'; } else if (space) { strcat(ie->ie_fullname, " +"); space = 0; } else strcat(ie->ie_fullname, "+"); } /* * If this event has an ithread, update it's priority and * name. */ if (ie->ie_thread != NULL) ithread_update(ie->ie_thread); CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname); } int intr_event_create(struct intr_event **event, void *source, int flags, int irq, void (*pre_ithread)(void *), void (*post_ithread)(void *), void (*post_filter)(void *), int (*assign_cpu)(void *, int), const char *fmt, ...) { struct intr_event *ie; va_list ap; /* The only valid flag during creation is IE_SOFT. */ if ((flags & ~IE_SOFT) != 0) return (EINVAL); ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO); ie->ie_source = source; ie->ie_pre_ithread = pre_ithread; ie->ie_post_ithread = post_ithread; ie->ie_post_filter = post_filter; ie->ie_assign_cpu = assign_cpu; ie->ie_flags = flags; ie->ie_irq = irq; ie->ie_cpu = NOCPU; TAILQ_INIT(&ie->ie_handlers); mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF); va_start(ap, fmt); vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap); va_end(ap); strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); mtx_lock(&event_lock); TAILQ_INSERT_TAIL(&event_list, ie, ie_list); mtx_unlock(&event_lock); if (event != NULL) *event = ie; CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name); return (0); } /* * Bind an interrupt event to the specified CPU. Note that not all * platforms support binding an interrupt to a CPU. For those * platforms this request will fail. For supported platforms, any * associated ithreads as well as the primary interrupt context will * be bound to the specificed CPU. Using a cpu id of NOCPU unbinds * the interrupt event. */ int intr_event_bind(struct intr_event *ie, int cpu) { lwpid_t id; int error; /* Need a CPU to bind to. */ if (cpu != NOCPU && CPU_ABSENT(cpu)) return (EINVAL); if (ie->ie_assign_cpu == NULL) return (EOPNOTSUPP); error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR); if (error) return (error); /* * If we have any ithreads try to set their mask first to verify * permissions, etc. */ mtx_lock(&ie->ie_lock); if (ie->ie_thread != NULL) { id = ie->ie_thread->it_thread->td_tid; mtx_unlock(&ie->ie_lock); error = cpuset_setithread(id, cpu); if (error) return (error); } else mtx_unlock(&ie->ie_lock); error = ie->ie_assign_cpu(ie->ie_source, cpu); if (error) { mtx_lock(&ie->ie_lock); if (ie->ie_thread != NULL) { cpu = ie->ie_cpu; id = ie->ie_thread->it_thread->td_tid; mtx_unlock(&ie->ie_lock); (void)cpuset_setithread(id, cpu); } else mtx_unlock(&ie->ie_lock); return (error); } mtx_lock(&ie->ie_lock); ie->ie_cpu = cpu; mtx_unlock(&ie->ie_lock); return (error); } static struct intr_event * intr_lookup(int irq) { struct intr_event *ie; mtx_lock(&event_lock); TAILQ_FOREACH(ie, &event_list, ie_list) if (ie->ie_irq == irq && (ie->ie_flags & IE_SOFT) == 0 && TAILQ_FIRST(&ie->ie_handlers) != NULL) break; mtx_unlock(&event_lock); return (ie); } int intr_setaffinity(int irq, void *m) { struct intr_event *ie; cpuset_t *mask; int cpu, n; mask = m; cpu = NOCPU; /* * If we're setting all cpus we can unbind. Otherwise make sure * only one cpu is in the set. */ if (CPU_CMP(cpuset_root, mask)) { for (n = 0; n < CPU_SETSIZE; n++) { if (!CPU_ISSET(n, mask)) continue; if (cpu != NOCPU) return (EINVAL); cpu = n; } } ie = intr_lookup(irq); if (ie == NULL) return (ESRCH); return (intr_event_bind(ie, cpu)); } int intr_getaffinity(int irq, void *m) { struct intr_event *ie; cpuset_t *mask; mask = m; ie = intr_lookup(irq); if (ie == NULL) return (ESRCH); CPU_ZERO(mask); mtx_lock(&ie->ie_lock); if (ie->ie_cpu == NOCPU) CPU_COPY(cpuset_root, mask); else CPU_SET(ie->ie_cpu, mask); mtx_unlock(&ie->ie_lock); return (0); } int intr_event_destroy(struct intr_event *ie) { mtx_lock(&event_lock); mtx_lock(&ie->ie_lock); if (!TAILQ_EMPTY(&ie->ie_handlers)) { mtx_unlock(&ie->ie_lock); mtx_unlock(&event_lock); return (EBUSY); } TAILQ_REMOVE(&event_list, ie, ie_list); #ifndef notyet if (ie->ie_thread != NULL) { ithread_destroy(ie->ie_thread); ie->ie_thread = NULL; } #endif mtx_unlock(&ie->ie_lock); mtx_unlock(&event_lock); mtx_destroy(&ie->ie_lock); free(ie, M_ITHREAD); return (0); } #ifndef INTR_FILTER static struct intr_thread * ithread_create(const char *name) { struct intr_thread *ithd; struct thread *td; int error; ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); error = kproc_kthread_add(ithread_loop, ithd, &intrproc, &td, RFSTOPPED | RFHIGHPID, 0, "intr", "%s", name); if (error) panic("kproc_create() failed with %d", error); thread_lock(td); sched_class(td, PRI_ITHD); TD_SET_IWAIT(td); thread_unlock(td); td->td_pflags |= TDP_ITHREAD; ithd->it_thread = td; CTR2(KTR_INTR, "%s: created %s", __func__, name); return (ithd); } #else static struct intr_thread * ithread_create(const char *name, struct intr_handler *ih) { struct intr_thread *ithd; struct thread *td; int error; ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); error = kproc_kthread_add(ithread_loop, ih, &intrproc, &td, RFSTOPPED | RFHIGHPID, 0, "intr", "%s", name); if (error) panic("kproc_create() failed with %d", error); thread_lock(td); sched_class(td, PRI_ITHD); TD_SET_IWAIT(td); thread_unlock(td); td->td_pflags |= TDP_ITHREAD; ithd->it_thread = td; CTR2(KTR_INTR, "%s: created %s", __func__, name); return (ithd); } #endif static void ithread_destroy(struct intr_thread *ithread) { struct thread *td; CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name); td = ithread->it_thread; thread_lock(td); ithread->it_flags |= IT_DEAD; if (TD_AWAITING_INTR(td)) { TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } thread_unlock(td); } #ifndef INTR_FILTER int intr_event_add_handler(struct intr_event *ie, const char *name, driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, enum intr_type flags, void **cookiep) { struct intr_handler *ih, *temp_ih; struct intr_thread *it; if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) return (EINVAL); /* Allocate and populate an interrupt handler structure. */ ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); ih->ih_filter = filter; ih->ih_handler = handler; ih->ih_argument = arg; strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); ih->ih_event = ie; ih->ih_pri = pri; if (flags & INTR_EXCL) ih->ih_flags = IH_EXCLUSIVE; if (flags & INTR_MPSAFE) ih->ih_flags |= IH_MPSAFE; if (flags & INTR_ENTROPY) ih->ih_flags |= IH_ENTROPY; /* We can only have one exclusive handler in a event. */ mtx_lock(&ie->ie_lock); if (!TAILQ_EMPTY(&ie->ie_handlers)) { if ((flags & INTR_EXCL) || (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { mtx_unlock(&ie->ie_lock); free(ih, M_ITHREAD); return (EINVAL); } } /* Create a thread if we need one. */ while (ie->ie_thread == NULL && handler != NULL) { if (ie->ie_flags & IE_ADDING_THREAD) msleep(ie, &ie->ie_lock, 0, "ithread", 0); else { ie->ie_flags |= IE_ADDING_THREAD; mtx_unlock(&ie->ie_lock); it = ithread_create("intr: newborn"); mtx_lock(&ie->ie_lock); ie->ie_flags &= ~IE_ADDING_THREAD; ie->ie_thread = it; it->it_event = ie; ithread_update(it); wakeup(ie); } } /* Add the new handler to the event in priority order. */ TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) { if (temp_ih->ih_pri > ih->ih_pri) break; } if (temp_ih == NULL) TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next); else TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); intr_event_update(ie); CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, ie->ie_name); mtx_unlock(&ie->ie_lock); if (cookiep != NULL) *cookiep = ih; return (0); } #else int intr_event_add_handler(struct intr_event *ie, const char *name, driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, enum intr_type flags, void **cookiep) { struct intr_handler *ih, *temp_ih; struct intr_thread *it; if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) return (EINVAL); /* Allocate and populate an interrupt handler structure. */ ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); ih->ih_filter = filter; ih->ih_handler = handler; ih->ih_argument = arg; strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); ih->ih_event = ie; ih->ih_pri = pri; if (flags & INTR_EXCL) ih->ih_flags = IH_EXCLUSIVE; if (flags & INTR_MPSAFE) ih->ih_flags |= IH_MPSAFE; if (flags & INTR_ENTROPY) ih->ih_flags |= IH_ENTROPY; /* We can only have one exclusive handler in a event. */ mtx_lock(&ie->ie_lock); if (!TAILQ_EMPTY(&ie->ie_handlers)) { if ((flags & INTR_EXCL) || (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { mtx_unlock(&ie->ie_lock); free(ih, M_ITHREAD); return (EINVAL); } } /* For filtered handlers, create a private ithread to run on. */ if (filter != NULL && handler != NULL) { mtx_unlock(&ie->ie_lock); it = ithread_create("intr: newborn", ih); mtx_lock(&ie->ie_lock); it->it_event = ie; ih->ih_thread = it; ithread_update(it); /* XXX - do we really need this?!?!? */ } else { /* Create the global per-event thread if we need one. */ while (ie->ie_thread == NULL && handler != NULL) { if (ie->ie_flags & IE_ADDING_THREAD) msleep(ie, &ie->ie_lock, 0, "ithread", 0); else { ie->ie_flags |= IE_ADDING_THREAD; mtx_unlock(&ie->ie_lock); it = ithread_create("intr: newborn", ih); mtx_lock(&ie->ie_lock); ie->ie_flags &= ~IE_ADDING_THREAD; ie->ie_thread = it; it->it_event = ie; ithread_update(it); wakeup(ie); } } } /* Add the new handler to the event in priority order. */ TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) { if (temp_ih->ih_pri > ih->ih_pri) break; } if (temp_ih == NULL) TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next); else TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); intr_event_update(ie); CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, ie->ie_name); mtx_unlock(&ie->ie_lock); if (cookiep != NULL) *cookiep = ih; return (0); } #endif /* * Append a description preceded by a ':' to the name of the specified * interrupt handler. */ int intr_event_describe_handler(struct intr_event *ie, void *cookie, const char *descr) { struct intr_handler *ih; size_t space; char *start; mtx_lock(&ie->ie_lock); #ifdef INVARIANTS TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (ih == cookie) break; } if (ih == NULL) { mtx_unlock(&ie->ie_lock); panic("handler %p not found in interrupt event %p", cookie, ie); } #endif ih = cookie; /* * Look for an existing description by checking for an * existing ":". This assumes device names do not include * colons. If one is found, prepare to insert the new * description at that point. If one is not found, find the * end of the name to use as the insertion point. */ start = strchr(ih->ih_name, ':'); if (start == NULL) start = strchr(ih->ih_name, 0); /* * See if there is enough remaining room in the string for the * description + ":". The "- 1" leaves room for the trailing * '\0'. The "+ 1" accounts for the colon. */ space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1; if (strlen(descr) + 1 > space) { mtx_unlock(&ie->ie_lock); return (ENOSPC); } /* Append a colon followed by the description. */ *start = ':'; strcpy(start + 1, descr); intr_event_update(ie); mtx_unlock(&ie->ie_lock); return (0); } /* * Return the ie_source field from the intr_event an intr_handler is * associated with. */ void * intr_handler_source(void *cookie) { struct intr_handler *ih; struct intr_event *ie; ih = (struct intr_handler *)cookie; if (ih == NULL) return (NULL); ie = ih->ih_event; KASSERT(ie != NULL, ("interrupt handler \"%s\" has a NULL interrupt event", ih->ih_name)); return (ie->ie_source); } /* * Sleep until an ithread finishes executing an interrupt handler. * * XXX Doesn't currently handle interrupt filters or fast interrupt * handlers. This is intended for compatibility with linux drivers * only. Do not use in BSD code. */ void _intr_drain(int irq) { struct intr_event *ie; struct intr_thread *ithd; struct thread *td; ie = intr_lookup(irq); if (ie == NULL) return; if (ie->ie_thread == NULL) return; ithd = ie->ie_thread; td = ithd->it_thread; /* * We set the flag and wait for it to be cleared to avoid * long delays with potentially busy interrupt handlers * were we to only sample TD_AWAITING_INTR() every tick. */ thread_lock(td); if (!TD_AWAITING_INTR(td)) { ithd->it_flags |= IT_WAIT; while (ithd->it_flags & IT_WAIT) { thread_unlock(td); pause("idrain", 1); thread_lock(td); } } thread_unlock(td); return; } #ifndef INTR_FILTER int intr_event_remove_handler(void *cookie) { struct intr_handler *handler = (struct intr_handler *)cookie; struct intr_event *ie; #ifdef INVARIANTS struct intr_handler *ih; #endif #ifdef notyet int dead; #endif if (handler == NULL) return (EINVAL); ie = handler->ih_event; KASSERT(ie != NULL, ("interrupt handler \"%s\" has a NULL interrupt event", handler->ih_name)); mtx_lock(&ie->ie_lock); CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, ie->ie_name); #ifdef INVARIANTS TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) if (ih == handler) goto ok; mtx_unlock(&ie->ie_lock); panic("interrupt handler \"%s\" not found in interrupt event \"%s\"", ih->ih_name, ie->ie_name); ok: #endif /* * If there is no ithread, then just remove the handler and return. * XXX: Note that an INTR_FAST handler might be running on another * CPU! */ if (ie->ie_thread == NULL) { TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } /* * If the interrupt thread is already running, then just mark this * handler as being dead and let the ithread do the actual removal. * * During a cold boot while cold is set, msleep() does not sleep, * so we have to remove the handler here rather than letting the * thread do it. */ thread_lock(ie->ie_thread->it_thread); if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) { handler->ih_flags |= IH_DEAD; /* * Ensure that the thread will process the handler list * again and remove this handler if it has already passed * it on the list. */ atomic_store_rel_int(&ie->ie_thread->it_need, 1); } else TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); thread_unlock(ie->ie_thread->it_thread); while (handler->ih_flags & IH_DEAD) msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); intr_event_update(ie); #ifdef notyet /* * XXX: This could be bad in the case of ppbus(8). Also, I think * this could lead to races of stale data when servicing an * interrupt. */ dead = 1; TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (!(ih->ih_flags & IH_FAST)) { dead = 0; break; } } if (dead) { ithread_destroy(ie->ie_thread); ie->ie_thread = NULL; } #endif mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } static int intr_event_schedule_thread(struct intr_event *ie) { struct intr_entropy entropy; struct intr_thread *it; struct thread *td; struct thread *ctd; struct proc *p; /* * If no ithread or no handlers, then we have a stray interrupt. */ if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || ie->ie_thread == NULL) return (EINVAL); ctd = curthread; it = ie->ie_thread; td = it->it_thread; p = td->td_proc; /* * If any of the handlers for this ithread claim to be good * sources of entropy, then gather some. */ if (ie->ie_flags & IE_ENTROPY) { entropy.event = (uintptr_t)ie; entropy.td = ctd; random_harvest(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT); } KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name)); /* * Set it_need to tell the thread to keep running if it is already * running. Then, lock the thread and see if we actually need to * put it on the runqueue. */ atomic_store_rel_int(&it->it_need, 1); thread_lock(td); if (TD_AWAITING_INTR(td)) { CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid, td->td_name); TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } else { CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", __func__, p->p_pid, td->td_name, it->it_need, td->td_state); } thread_unlock(td); return (0); } #else int intr_event_remove_handler(void *cookie) { struct intr_handler *handler = (struct intr_handler *)cookie; struct intr_event *ie; struct intr_thread *it; #ifdef INVARIANTS struct intr_handler *ih; #endif #ifdef notyet int dead; #endif if (handler == NULL) return (EINVAL); ie = handler->ih_event; KASSERT(ie != NULL, ("interrupt handler \"%s\" has a NULL interrupt event", handler->ih_name)); mtx_lock(&ie->ie_lock); CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, ie->ie_name); #ifdef INVARIANTS TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) if (ih == handler) goto ok; mtx_unlock(&ie->ie_lock); panic("interrupt handler \"%s\" not found in interrupt event \"%s\"", ih->ih_name, ie->ie_name); ok: #endif /* * If there are no ithreads (per event and per handler), then * just remove the handler and return. * XXX: Note that an INTR_FAST handler might be running on another CPU! */ if (ie->ie_thread == NULL && handler->ih_thread == NULL) { TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } /* Private or global ithread? */ it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread; /* * If the interrupt thread is already running, then just mark this * handler as being dead and let the ithread do the actual removal. * * During a cold boot while cold is set, msleep() does not sleep, * so we have to remove the handler here rather than letting the * thread do it. */ thread_lock(it->it_thread); if (!TD_AWAITING_INTR(it->it_thread) && !cold) { handler->ih_flags |= IH_DEAD; /* * Ensure that the thread will process the handler list * again and remove this handler if it has already passed * it on the list. */ atomic_store_rel_int(&it->it_need, 1); } else TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); thread_unlock(it->it_thread); while (handler->ih_flags & IH_DEAD) msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); /* * At this point, the handler has been disconnected from the event, * so we can kill the private ithread if any. */ if (handler->ih_thread) { ithread_destroy(handler->ih_thread); handler->ih_thread = NULL; } intr_event_update(ie); #ifdef notyet /* * XXX: This could be bad in the case of ppbus(8). Also, I think * this could lead to races of stale data when servicing an * interrupt. */ dead = 1; TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (handler != NULL) { dead = 0; break; } } if (dead) { ithread_destroy(ie->ie_thread); ie->ie_thread = NULL; } #endif mtx_unlock(&ie->ie_lock); free(handler, M_ITHREAD); return (0); } static int intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it) { struct intr_entropy entropy; struct thread *td; struct thread *ctd; struct proc *p; /* * If no ithread or no handlers, then we have a stray interrupt. */ if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL) return (EINVAL); ctd = curthread; td = it->it_thread; p = td->td_proc; /* * If any of the handlers for this ithread claim to be good * sources of entropy, then gather some. */ if (ie->ie_flags & IE_ENTROPY) { entropy.event = (uintptr_t)ie; entropy.td = ctd; random_harvest(&entropy, sizeof(entropy), 2, RANDOM_INTERRUPT); } KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name)); /* * Set it_need to tell the thread to keep running if it is already * running. Then, lock the thread and see if we actually need to * put it on the runqueue. */ atomic_store_rel_int(&it->it_need, 1); thread_lock(td); if (TD_AWAITING_INTR(td)) { CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid, td->td_name); TD_CLR_IWAIT(td); sched_add(td, SRQ_INTR); } else { CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", __func__, p->p_pid, td->td_name, it->it_need, td->td_state); } thread_unlock(td); return (0); } #endif /* * Allow interrupt event binding for software interrupt handlers -- a no-op, * since interrupts are generated in software rather than being directed by * a PIC. */ static int swi_assign_cpu(void *arg, int cpu) { return (0); } /* * Add a software interrupt handler to a specified event. If a given event * is not specified, then a new event is created. */ int swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler, void *arg, int pri, enum intr_type flags, void **cookiep) { struct intr_event *ie; int error; if (flags & INTR_ENTROPY) return (EINVAL); ie = (eventp != NULL) ? *eventp : NULL; if (ie != NULL) { if (!(ie->ie_flags & IE_SOFT)) return (EINVAL); } else { error = intr_event_create(&ie, NULL, IE_SOFT, 0, NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri); if (error) return (error); if (eventp != NULL) *eventp = ie; } error = intr_event_add_handler(ie, name, NULL, handler, arg, PI_SWI(pri), flags, cookiep); return (error); } /* * Schedule a software interrupt thread. */ void swi_sched(void *cookie, int flags) { struct intr_handler *ih = (struct intr_handler *)cookie; struct intr_event *ie = ih->ih_event; struct intr_entropy entropy; int error; CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name, ih->ih_need); entropy.event = (uintptr_t)ih; entropy.td = curthread; random_harvest(&entropy, sizeof(entropy), 1, RANDOM_SWI); /* * Set ih_need for this handler so that if the ithread is already * running it will execute this handler on the next pass. Otherwise, * it will execute it the next time it runs. */ atomic_store_rel_int(&ih->ih_need, 1); if (!(flags & SWI_DELAY)) { PCPU_INC(cnt.v_soft); #ifdef INTR_FILTER error = intr_event_schedule_thread(ie, ie->ie_thread); #else error = intr_event_schedule_thread(ie); #endif KASSERT(error == 0, ("stray software interrupt")); } } /* * Remove a software interrupt handler. Currently this code does not * remove the associated interrupt event if it becomes empty. Calling code * may do so manually via intr_event_destroy(), but that's not really * an optimal interface. */ int swi_remove(void *cookie) { return (intr_event_remove_handler(cookie)); } #ifdef INTR_FILTER static void priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih) { struct intr_event *ie; ie = ih->ih_event; /* * If this handler is marked for death, remove it from * the list of handlers and wake up the sleeper. */ if (ih->ih_flags & IH_DEAD) { mtx_lock(&ie->ie_lock); TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next); ih->ih_flags &= ~IH_DEAD; wakeup(ih); mtx_unlock(&ie->ie_lock); return; } /* Execute this handler. */ CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument, ih->ih_name, ih->ih_flags); if (!(ih->ih_flags & IH_MPSAFE)) mtx_lock(&Giant); ih->ih_handler(ih->ih_argument); if (!(ih->ih_flags & IH_MPSAFE)) mtx_unlock(&Giant); } #endif /* * This is a public function for use by drivers that mux interrupt * handlers for child devices from their interrupt handler. */ void intr_event_execute_handlers(struct proc *p, struct intr_event *ie) { struct intr_handler *ih, *ihn; TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) { /* * If this handler is marked for death, remove it from * the list of handlers and wake up the sleeper. */ if (ih->ih_flags & IH_DEAD) { mtx_lock(&ie->ie_lock); TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next); ih->ih_flags &= ~IH_DEAD; wakeup(ih); mtx_unlock(&ie->ie_lock); continue; } /* Skip filter only handlers */ if (ih->ih_handler == NULL) continue; /* * For software interrupt threads, we only execute * handlers that have their need flag set. Hardware * interrupt threads always invoke all of their handlers. */ if (ie->ie_flags & IE_SOFT) { if (atomic_load_acq_int(&ih->ih_need) == 0) continue; else atomic_store_rel_int(&ih->ih_need, 0); } /* Execute this handler. */ CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument, ih->ih_name, ih->ih_flags); if (!(ih->ih_flags & IH_MPSAFE)) mtx_lock(&Giant); ih->ih_handler(ih->ih_argument); if (!(ih->ih_flags & IH_MPSAFE)) mtx_unlock(&Giant); } } static void ithread_execute_handlers(struct proc *p, struct intr_event *ie) { /* Interrupt handlers should not sleep. */ if (!(ie->ie_flags & IE_SOFT)) THREAD_NO_SLEEPING(); intr_event_execute_handlers(p, ie); if (!(ie->ie_flags & IE_SOFT)) THREAD_SLEEPING_OK(); /* * Interrupt storm handling: * * If this interrupt source is currently storming, then throttle * it to only fire the handler once per clock tick. * * If this interrupt source is not currently storming, but the * number of back to back interrupts exceeds the storm threshold, * then enter storming mode. */ if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold && !(ie->ie_flags & IE_SOFT)) { /* Report the message only once every second. */ if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) { printf( "interrupt storm detected on \"%s\"; throttling interrupt source\n", ie->ie_name); } pause("istorm", 1); } else ie->ie_count++; /* * Now that all the handlers have had a chance to run, reenable * the interrupt source. */ if (ie->ie_post_ithread != NULL) ie->ie_post_ithread(ie->ie_source); } #ifndef INTR_FILTER /* * This is the main code for interrupt threads. */ static void ithread_loop(void *arg) { struct intr_thread *ithd; struct intr_event *ie; struct thread *td; struct proc *p; int wake; td = curthread; p = td->td_proc; ithd = (struct intr_thread *)arg; KASSERT(ithd->it_thread == td, ("%s: ithread and proc linkage out of sync", __func__)); ie = ithd->it_event; ie->ie_count = 0; wake = 0; /* * As long as we have interrupts outstanding, go through the * list of handlers, giving each one a go at it. */ for (;;) { /* * If we are an orphaned thread, then just die. */ if (ithd->it_flags & IT_DEAD) { CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, p->p_pid, td->td_name); free(ithd, M_ITHREAD); kthread_exit(); } /* * Service interrupts. If another interrupt arrives while * we are running, it will set it_need to note that we * should make another pass. */ while (atomic_load_acq_int(&ithd->it_need) != 0) { /* * This might need a full read and write barrier * to make sure that this write posts before any * of the memory or device accesses in the * handlers. */ atomic_store_rel_int(&ithd->it_need, 0); ithread_execute_handlers(p, ie); } WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); mtx_assert(&Giant, MA_NOTOWNED); /* * Processed all our interrupts. Now get the sched * lock. This may take a while and it_need may get * set again, so we have to check it again. */ thread_lock(td); if ((atomic_load_acq_int(&ithd->it_need) == 0) && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) { TD_SET_IWAIT(td); ie->ie_count = 0; mi_switch(SW_VOL | SWT_IWAIT, NULL); } if (ithd->it_flags & IT_WAIT) { wake = 1; ithd->it_flags &= ~IT_WAIT; } thread_unlock(td); if (wake) { wakeup(ithd); wake = 0; } } } /* * Main interrupt handling body. * * Input: * o ie: the event connected to this interrupt. * o frame: some archs (i.e. i386) pass a frame to some. * handlers as their main argument. * Return value: * o 0: everything ok. * o EINVAL: stray interrupt. */ int intr_event_handle(struct intr_event *ie, struct trapframe *frame) { struct intr_handler *ih; struct trapframe *oldframe; struct thread *td; int error, ret, thread; td = curthread; #ifdef KSTACK_USAGE_PROF intr_prof_stack_use(td, frame); #endif /* An interrupt with no event or handlers is a stray interrupt. */ if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers)) return (EINVAL); /* * Execute fast interrupt handlers directly. * To support clock handlers, if a handler registers * with a NULL argument, then we pass it a pointer to * a trapframe as its argument. */ td->td_intr_nesting_level++; thread = 0; ret = 0; critical_enter(); oldframe = td->td_intr_frame; td->td_intr_frame = frame; TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { if (ih->ih_filter == NULL) { thread = 1; continue; } CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__, ih->ih_filter, ih->ih_argument == NULL ? frame : ih->ih_argument, ih->ih_name); if (ih->ih_argument == NULL) ret = ih->ih_filter(frame); else ret = ih->ih_filter(ih->ih_argument); KASSERT(ret == FILTER_STRAY || ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), ("%s: incorrect return value %#x from %s", __func__, ret, ih->ih_name)); /* * Wrapper handler special handling: * * in some particular cases (like pccard and pccbb), * the _real_ device handler is wrapped in a couple of * functions - a filter wrapper and an ithread wrapper. * In this case (and just in this case), the filter wrapper * could ask the system to schedule the ithread and mask * the interrupt source if the wrapped handler is composed * of just an ithread handler. * * TODO: write a generic wrapper to avoid people rolling * their own */ if (!thread) { if (ret == FILTER_SCHEDULE_THREAD) thread = 1; } } td->td_intr_frame = oldframe; if (thread) { if (ie->ie_pre_ithread != NULL) ie->ie_pre_ithread(ie->ie_source); } else { if (ie->ie_post_filter != NULL) ie->ie_post_filter(ie->ie_source); } /* Schedule the ithread if needed. */ if (thread) { error = intr_event_schedule_thread(ie); #ifndef XEN KASSERT(error == 0, ("bad stray interrupt")); #else if (error != 0) log(LOG_WARNING, "bad stray interrupt"); #endif } critical_exit(); td->td_intr_nesting_level--; return (0); } #else /* * This is the main code for interrupt threads. */ static void ithread_loop(void *arg) { struct intr_thread *ithd; struct intr_handler *ih; struct intr_event *ie; struct thread *td; struct proc *p; int priv; int wake; td = curthread; p = td->td_proc; ih = (struct intr_handler *)arg; priv = (ih->ih_thread != NULL) ? 1 : 0; ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread; KASSERT(ithd->it_thread == td, ("%s: ithread and proc linkage out of sync", __func__)); ie = ithd->it_event; ie->ie_count = 0; wake = 0; /* * As long as we have interrupts outstanding, go through the * list of handlers, giving each one a go at it. */ for (;;) { /* * If we are an orphaned thread, then just die. */ if (ithd->it_flags & IT_DEAD) { CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, p->p_pid, td->td_name); free(ithd, M_ITHREAD); kthread_exit(); } /* * Service interrupts. If another interrupt arrives while * we are running, it will set it_need to note that we * should make another pass. */ while (atomic_load_acq_int(&ithd->it_need) != 0) { /* * This might need a full read and write barrier * to make sure that this write posts before any * of the memory or device accesses in the * handlers. */ atomic_store_rel_int(&ithd->it_need, 0); if (priv) priv_ithread_execute_handler(p, ih); else ithread_execute_handlers(p, ie); } WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); mtx_assert(&Giant, MA_NOTOWNED); /* * Processed all our interrupts. Now get the sched * lock. This may take a while and it_need may get * set again, so we have to check it again. */ thread_lock(td); if ((atomic_load_acq_int(&ithd->it_need) == 0) && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) { TD_SET_IWAIT(td); ie->ie_count = 0; mi_switch(SW_VOL | SWT_IWAIT, NULL); } if (ithd->it_flags & IT_WAIT) { wake = 1; ithd->it_flags &= ~IT_WAIT; } thread_unlock(td); if (wake) { wakeup(ithd); wake = 0; } } } /* * Main loop for interrupt filter. * * Some architectures (i386, amd64 and arm) require the optional frame * parameter, and use it as the main argument for fast handler execution * when ih_argument == NULL. * * Return value: * o FILTER_STRAY: No filter recognized the event, and no * filter-less handler is registered on this * line. * o FILTER_HANDLED: A filter claimed the event and served it. * o FILTER_SCHEDULE_THREAD: No filter claimed the event, but there's at * least one filter-less handler on this line. * o FILTER_HANDLED | * FILTER_SCHEDULE_THREAD: A filter claimed the event, and asked for * scheduling the per-handler ithread. * * In case an ithread has to be scheduled, in *ithd there will be a * pointer to a struct intr_thread containing the thread to be * scheduled. */ static int intr_filter_loop(struct intr_event *ie, struct trapframe *frame, struct intr_thread **ithd) { struct intr_handler *ih; void *arg; int ret, thread_only; ret = 0; thread_only = 0; TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { /* * Execute fast interrupt handlers directly. * To support clock handlers, if a handler registers * with a NULL argument, then we pass it a pointer to * a trapframe as its argument. */ arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument); CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__, ih->ih_filter, ih->ih_handler, arg, ih->ih_name); if (ih->ih_filter != NULL) ret = ih->ih_filter(arg); else { thread_only = 1; continue; } KASSERT(ret == FILTER_STRAY || ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), ("%s: incorrect return value %#x from %s", __func__, ret, ih->ih_name)); if (ret & FILTER_STRAY) continue; else { *ithd = ih->ih_thread; return (ret); } } /* * No filters handled the interrupt and we have at least * one handler without a filter. In this case, we schedule * all of the filter-less handlers to run in the ithread. */ if (thread_only) { *ithd = ie->ie_thread; return (FILTER_SCHEDULE_THREAD); } return (FILTER_STRAY); } /* * Main interrupt handling body. * * Input: * o ie: the event connected to this interrupt. * o frame: some archs (i.e. i386) pass a frame to some. * handlers as their main argument. * Return value: * o 0: everything ok. * o EINVAL: stray interrupt. */ int intr_event_handle(struct intr_event *ie, struct trapframe *frame) { struct intr_thread *ithd; struct trapframe *oldframe; struct thread *td; int thread; ithd = NULL; td = curthread; if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers)) return (EINVAL); td->td_intr_nesting_level++; thread = 0; critical_enter(); oldframe = td->td_intr_frame; td->td_intr_frame = frame; thread = intr_filter_loop(ie, frame, &ithd); if (thread & FILTER_HANDLED) { if (ie->ie_post_filter != NULL) ie->ie_post_filter(ie->ie_source); } else { if (ie->ie_pre_ithread != NULL) ie->ie_pre_ithread(ie->ie_source); } td->td_intr_frame = oldframe; critical_exit(); /* Interrupt storm logic */ if (thread & FILTER_STRAY) { ie->ie_count++; if (ie->ie_count < intr_storm_threshold) printf("Interrupt stray detection not present\n"); } /* Schedule an ithread if needed. */ if (thread & FILTER_SCHEDULE_THREAD) { if (intr_event_schedule_thread(ie, ithd) != 0) panic("%s: impossible stray interrupt", __func__); } td->td_intr_nesting_level--; return (0); } #endif #ifdef DDB /* * Dump details about an interrupt handler */ static void db_dump_intrhand(struct intr_handler *ih) { int comma; db_printf("\t%-10s ", ih->ih_name); switch (ih->ih_pri) { case PI_REALTIME: db_printf("CLK "); break; case PI_AV: db_printf("AV "); break; case PI_TTY: db_printf("TTY "); break; case PI_NET: db_printf("NET "); break; case PI_DISK: db_printf("DISK"); break; case PI_DULL: db_printf("DULL"); break; default: if (ih->ih_pri >= PI_SOFT) db_printf("SWI "); else db_printf("%4u", ih->ih_pri); break; } db_printf(" "); if (ih->ih_filter != NULL) { db_printf("[F]"); db_printsym((uintptr_t)ih->ih_filter, DB_STGY_PROC); } if (ih->ih_handler != NULL) { if (ih->ih_filter != NULL) db_printf(","); db_printf("[H]"); db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC); } db_printf("(%p)", ih->ih_argument); if (ih->ih_need || (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD | IH_MPSAFE)) != 0) { db_printf(" {"); comma = 0; if (ih->ih_flags & IH_EXCLUSIVE) { if (comma) db_printf(", "); db_printf("EXCL"); comma = 1; } if (ih->ih_flags & IH_ENTROPY) { if (comma) db_printf(", "); db_printf("ENTROPY"); comma = 1; } if (ih->ih_flags & IH_DEAD) { if (comma) db_printf(", "); db_printf("DEAD"); comma = 1; } if (ih->ih_flags & IH_MPSAFE) { if (comma) db_printf(", "); db_printf("MPSAFE"); comma = 1; } if (ih->ih_need) { if (comma) db_printf(", "); db_printf("NEED"); } db_printf("}"); } db_printf("\n"); } /* * Dump details about a event. */ void db_dump_intr_event(struct intr_event *ie, int handlers) { struct intr_handler *ih; struct intr_thread *it; int comma; db_printf("%s ", ie->ie_fullname); it = ie->ie_thread; if (it != NULL) db_printf("(pid %d)", it->it_thread->td_proc->p_pid); else db_printf("(no thread)"); if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 || (it != NULL && it->it_need)) { db_printf(" {"); comma = 0; if (ie->ie_flags & IE_SOFT) { db_printf("SOFT"); comma = 1; } if (ie->ie_flags & IE_ENTROPY) { if (comma) db_printf(", "); db_printf("ENTROPY"); comma = 1; } if (ie->ie_flags & IE_ADDING_THREAD) { if (comma) db_printf(", "); db_printf("ADDING_THREAD"); comma = 1; } if (it != NULL && it->it_need) { if (comma) db_printf(", "); db_printf("NEED"); } db_printf("}"); } db_printf("\n"); if (handlers) TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) db_dump_intrhand(ih); } /* * Dump data about interrupt handlers */ DB_SHOW_COMMAND(intr, db_show_intr) { struct intr_event *ie; int all, verbose; verbose = strchr(modif, 'v') != NULL; all = strchr(modif, 'a') != NULL; TAILQ_FOREACH(ie, &event_list, ie_list) { if (!all && TAILQ_EMPTY(&ie->ie_handlers)) continue; db_dump_intr_event(ie, verbose); if (db_pager_quit) break; } } #endif /* DDB */ /* * Start standard software interrupt threads */ static void start_softintr(void *dummy) { if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih)) panic("died while creating vm swi ithread"); } SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, NULL); /* * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. * The data for this machine dependent, and the declarations are in machine * dependent code. The layout of intrnames and intrcnt however is machine * independent. * * We do not know the length of intrcnt and intrnames at compile time, so * calculate things at run time. */ static int sysctl_intrnames(SYSCTL_HANDLER_ARGS) { return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req)); } SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, sysctl_intrnames, "", "Interrupt Names"); static int sysctl_intrcnt(SYSCTL_HANDLER_ARGS) { #ifdef SCTL_MASK32 uint32_t *intrcnt32; unsigned i; int error; if (req->flags & SCTL_MASK32) { if (!req->oldptr) return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req)); intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT); if (intrcnt32 == NULL) return (ENOMEM); for (i = 0; i < sintrcnt / sizeof (u_long); i++) intrcnt32[i] = intrcnt[i]; error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req); free(intrcnt32, M_TEMP); return (error); } #endif return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req)); } SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); #ifdef DDB /* * DDB command to dump the interrupt statistics. */ DB_SHOW_COMMAND(intrcnt, db_show_intrcnt) { u_long *i; char *cp; u_int j; cp = intrnames; j = 0; for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit; i++, j++) { if (*cp == '\0') break; if (*i != 0) db_printf("%s\t%lu\n", cp, *i); cp += strlen(cp) + 1; } } #endif