/* Functions related to building classes and their related objects. Copyright (C) 1987, 92-97, 1998, 1999 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* High-level class interface. */ #include "config.h" #include "system.h" #include "tree.h" #include "cp-tree.h" #include "flags.h" #include "rtl.h" #include "output.h" #include "toplev.h" #include "splay-tree.h" #include "obstack.h" #define obstack_chunk_alloc xmalloc #define obstack_chunk_free free /* This is how we tell when two virtual member functions are really the same. */ #define SAME_FN(FN1DECL, FN2DECL) (DECL_ASSEMBLER_NAME (FN1DECL) == DECL_ASSEMBLER_NAME (FN2DECL)) extern void set_class_shadows PROTO ((tree)); /* The number of nested classes being processed. If we are not in the scope of any class, this is zero. */ int current_class_depth; /* In order to deal with nested classes, we keep a stack of classes. The topmost entry is the innermost class, and is the entry at index CURRENT_CLASS_DEPTH */ typedef struct class_stack_node { /* The name of the class. */ tree name; /* The _TYPE node for the class. */ tree type; /* The access specifier pending for new declarations in the scope of this class. */ tree access; /* If were defining TYPE, the names used in this class. */ splay_tree names_used; }* class_stack_node_t; /* The stack itself. This is an dynamically resized array. The number of elements allocated is CURRENT_CLASS_STACK_SIZE. */ static int current_class_stack_size; static class_stack_node_t current_class_stack; /* When we're processing a member function, current_class_ptr is the PARM_DECL for the `this' pointer. The current_class_ref is an expression for `*this'. */ tree current_class_ptr, current_class_ref; /* The following two can be derived from the previous one */ tree current_class_name; /* IDENTIFIER_NODE: name of current class */ tree current_class_type; /* _TYPE: the type of the current class */ tree current_access_specifier; tree previous_class_type; /* _TYPE: the previous type that was a class */ tree previous_class_values; /* TREE_LIST: copy of the class_shadowed list when leaving an outermost class scope. */ /* The obstack on which the cached class declarations are kept. */ static struct obstack class_cache_obstack; /* The first object allocated on that obstack. We can use obstack_free with tis value to free the entire obstack. */ char *class_cache_firstobj; struct base_info; static tree get_vfield_name PROTO((tree)); static void finish_struct_anon PROTO((tree)); static tree build_vbase_pointer PROTO((tree, tree)); static tree build_vtable_entry PROTO((tree, tree)); static tree get_vtable_name PROTO((tree)); static tree get_derived_offset PROTO((tree, tree)); static tree get_basefndecls PROTO((tree, tree)); static void set_rtti_entry PROTO((tree, tree, tree)); static tree build_vtable PROTO((tree, tree)); static void prepare_fresh_vtable PROTO((tree, tree)); static void fixup_vtable_deltas1 PROTO((tree, tree)); static void fixup_vtable_deltas PROTO((tree, int, tree)); static void finish_vtbls PROTO((tree, int, tree)); static void modify_vtable_entry PROTO((tree, tree, tree)); static tree get_vtable_entry_n PROTO((tree, unsigned HOST_WIDE_INT)); static void add_virtual_function PROTO((tree *, tree *, int *, tree, tree)); static tree delete_duplicate_fields_1 PROTO((tree, tree)); static void delete_duplicate_fields PROTO((tree)); static void finish_struct_bits PROTO((tree, int)); static int alter_access PROTO((tree, tree, tree, tree)); static void handle_using_decl PROTO((tree, tree, tree, tree)); static int overrides PROTO((tree, tree)); static int strictly_overrides PROTO((tree, tree)); static void merge_overrides PROTO((tree, tree, int, tree)); static void override_one_vtable PROTO((tree, tree, tree)); static void mark_overriders PROTO((tree, tree)); static void check_for_override PROTO((tree, tree)); static tree get_class_offset_1 PROTO((tree, tree, tree, tree, tree)); static tree get_class_offset PROTO((tree, tree, tree, tree)); static void modify_one_vtable PROTO((tree, tree, tree, tree)); static void modify_all_vtables PROTO((tree, tree, tree)); static void modify_all_direct_vtables PROTO((tree, int, tree, tree, tree)); static void modify_all_indirect_vtables PROTO((tree, int, int, tree, tree, tree)); static int finish_base_struct PROTO((tree, struct base_info *)); static void finish_struct_methods PROTO((tree)); static void maybe_warn_about_overly_private_class PROTO ((tree)); static tree make_method_vec PROTO((int)); static void free_method_vec PROTO((tree)); static tree add_implicitly_declared_members PROTO((tree, int, int, int)); static tree fixed_type_or_null PROTO((tree, int *)); static tree resolve_address_of_overloaded_function PROTO((tree, tree, int, int, tree)); static void build_vtable_entry_ref PROTO((tree, tree, tree)); /* Way of stacking language names. */ tree *current_lang_base, *current_lang_stack; int current_lang_stacksize; /* Names of languages we recognize. */ tree lang_name_c, lang_name_cplusplus, lang_name_java; tree current_lang_name; /* When layout out an aggregate type, the size of the basetypes (virtual and non-virtual) is passed to layout_record via this node. */ static tree base_layout_decl; /* Constants used for access control. */ tree access_default_node; /* 0 */ tree access_public_node; /* 1 */ tree access_protected_node; /* 2 */ tree access_private_node; /* 3 */ tree access_default_virtual_node; /* 4 */ tree access_public_virtual_node; /* 5 */ tree access_protected_virtual_node; /* 6 */ tree access_private_virtual_node; /* 7 */ /* Variables shared between class.c and call.c. */ #ifdef GATHER_STATISTICS int n_vtables = 0; int n_vtable_entries = 0; int n_vtable_searches = 0; int n_vtable_elems = 0; int n_convert_harshness = 0; int n_compute_conversion_costs = 0; int n_build_method_call = 0; int n_inner_fields_searched = 0; #endif /* Virtual baseclass things. */ static tree build_vbase_pointer (exp, type) tree exp, type; { char *name; FORMAT_VBASE_NAME (name, type); return build_component_ref (exp, get_identifier (name), NULL_TREE, 0); } #if 0 /* Is the type of the EXPR, the complete type of the object? If we are going to be wrong, we must be conservative, and return 0. */ static int complete_type_p (expr) tree expr; { tree type = TYPE_MAIN_VARIANT (TREE_TYPE (expr)); while (1) { switch (TREE_CODE (expr)) { case SAVE_EXPR: case INDIRECT_REF: case ADDR_EXPR: case NOP_EXPR: case CONVERT_EXPR: expr = TREE_OPERAND (expr, 0); continue; case CALL_EXPR: if (! TREE_HAS_CONSTRUCTOR (expr)) break; /* fall through... */ case VAR_DECL: case FIELD_DECL: if (TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (expr))) && TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type) return 1; /* fall through... */ case TARGET_EXPR: case PARM_DECL: if (IS_AGGR_TYPE (TREE_TYPE (expr)) && TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type) return 1; /* fall through... */ case PLUS_EXPR: default: break; } break; } return 0; } #endif /* Build multi-level access to EXPR using hierarchy path PATH. CODE is PLUS_EXPR if we are going with the grain, and MINUS_EXPR if we are not (in which case, we cannot traverse virtual baseclass links). TYPE is the type we want this path to have on exit. NONNULL is non-zero if we know (for any reason) that EXPR is not, in fact, zero. */ tree build_vbase_path (code, type, expr, path, nonnull) enum tree_code code; tree type, expr, path; int nonnull; { register int changed = 0; tree last = NULL_TREE, last_virtual = NULL_TREE; int fixed_type_p; tree null_expr = 0, nonnull_expr; tree basetype; tree offset = integer_zero_node; if (BINFO_INHERITANCE_CHAIN (path) == NULL_TREE) return build1 (NOP_EXPR, type, expr); /* If -fthis-is-variable, we might have set nonnull incorrectly. We don't care enough to get this right, so just clear it. */ if (flag_this_is_variable > 0) nonnull = 0; /* We could do better if we had additional logic to convert back to the unconverted type (the static type of the complete object), and then convert back to the type we want. Until that is done, we only optimize if the complete type is the same type as expr has. */ fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull); if (!fixed_type_p && TREE_SIDE_EFFECTS (expr)) expr = save_expr (expr); nonnull_expr = expr; if (BINFO_INHERITANCE_CHAIN (path)) path = reverse_path (path); basetype = BINFO_TYPE (path); while (path) { if (TREE_VIA_VIRTUAL (path)) { last_virtual = BINFO_TYPE (path); if (code == PLUS_EXPR) { changed = ! fixed_type_p; if (changed) { tree ind; /* We already check for ambiguous things in the caller, just find a path. */ if (last) { tree binfo = get_binfo (last, TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (nonnull_expr))), 0); nonnull_expr = convert_pointer_to_real (binfo, nonnull_expr); } ind = build_indirect_ref (nonnull_expr, NULL_PTR); nonnull_expr = build_vbase_pointer (ind, last_virtual); if (nonnull == 0 && TREE_CODE (type) == POINTER_TYPE && null_expr == NULL_TREE) { null_expr = build1 (NOP_EXPR, build_pointer_type (last_virtual), integer_zero_node); expr = build (COND_EXPR, build_pointer_type (last_virtual), build (EQ_EXPR, boolean_type_node, expr, integer_zero_node), null_expr, nonnull_expr); } } /* else we'll figure out the offset below. */ /* Happens in the case of parse errors. */ if (nonnull_expr == error_mark_node) return error_mark_node; } else { cp_error ("cannot cast up from virtual baseclass `%T'", last_virtual); return error_mark_node; } } last = path; path = BINFO_INHERITANCE_CHAIN (path); } /* LAST is now the last basetype assoc on the path. */ /* A pointer to a virtual base member of a non-null object is non-null. Therefore, we only need to test for zeroness once. Make EXPR the canonical expression to deal with here. */ if (null_expr) { TREE_OPERAND (expr, 2) = nonnull_expr; TREE_TYPE (expr) = TREE_TYPE (TREE_OPERAND (expr, 1)) = TREE_TYPE (nonnull_expr); } else expr = nonnull_expr; /* If we go through any virtual base pointers, make sure that casts to BASETYPE from the last virtual base class use the right value for BASETYPE. */ if (changed) { tree intype = TREE_TYPE (TREE_TYPE (expr)); if (TYPE_MAIN_VARIANT (intype) != BINFO_TYPE (last)) { tree binfo = get_binfo (last, TYPE_MAIN_VARIANT (intype), 0); offset = BINFO_OFFSET (binfo); } } else { if (last_virtual) { offset = BINFO_OFFSET (binfo_member (last_virtual, CLASSTYPE_VBASECLASSES (basetype))); offset = size_binop (PLUS_EXPR, offset, BINFO_OFFSET (last)); } else offset = BINFO_OFFSET (last); } if (TREE_INT_CST_LOW (offset)) { /* Bash types to make the backend happy. */ offset = cp_convert (type, offset); #if 0 /* This shouldn't be necessary. (mrs) */ expr = build1 (NOP_EXPR, type, expr); #endif /* If expr might be 0, we need to preserve that zeroness. */ if (nonnull == 0) { if (null_expr) TREE_TYPE (null_expr) = type; else null_expr = build1 (NOP_EXPR, type, integer_zero_node); if (TREE_SIDE_EFFECTS (expr)) expr = save_expr (expr); return build (COND_EXPR, type, build (EQ_EXPR, boolean_type_node, expr, integer_zero_node), null_expr, build (code, type, expr, offset)); } else return build (code, type, expr, offset); } /* Cannot change the TREE_TYPE of a NOP_EXPR here, since it may be used multiple times in initialization of multiple inheritance. */ if (null_expr) { TREE_TYPE (expr) = type; return expr; } else return build1 (NOP_EXPR, type, expr); } /* Virtual function things. */ /* Build an entry in the virtual function table. DELTA is the offset for the `this' pointer. PFN is an ADDR_EXPR containing a pointer to the virtual function. Note that the index (DELTA2) in the virtual function table is always 0. */ static tree build_vtable_entry (delta, pfn) tree delta, pfn; { if (flag_vtable_thunks) { HOST_WIDE_INT idelta = TREE_INT_CST_LOW (delta); if (idelta && ! DECL_ABSTRACT_VIRTUAL_P (TREE_OPERAND (pfn, 0))) { pfn = build1 (ADDR_EXPR, vtable_entry_type, make_thunk (pfn, idelta)); TREE_READONLY (pfn) = 1; TREE_CONSTANT (pfn) = 1; } #ifdef GATHER_STATISTICS n_vtable_entries += 1; #endif return pfn; } else { extern int flag_huge_objects; tree elems = expr_tree_cons (NULL_TREE, delta, expr_tree_cons (NULL_TREE, integer_zero_node, build_expr_list (NULL_TREE, pfn))); tree entry = build (CONSTRUCTOR, vtable_entry_type, NULL_TREE, elems); /* DELTA used to be constructed by `size_int' and/or size_binop, which caused overflow problems when it was negative. That should be fixed now. */ if (! int_fits_type_p (delta, delta_type_node)) { if (flag_huge_objects) sorry ("object size exceeds built-in limit for virtual function table implementation"); else sorry ("object size exceeds normal limit for virtual function table implementation, recompile all source and use -fhuge-objects"); } TREE_CONSTANT (entry) = 1; TREE_STATIC (entry) = 1; TREE_READONLY (entry) = 1; #ifdef GATHER_STATISTICS n_vtable_entries += 1; #endif return entry; } } /* We want to give the assembler the vtable identifier as well as the offset to the function pointer. So we generate __asm__ __volatile__ (".vtable_entry %c0, %c1" : : "s"(&class_vtable), "i"((long)&vtbl[idx].pfn - (long)&vtbl[0])); */ static void build_vtable_entry_ref (basetype, vtbl, idx) tree basetype, vtbl, idx; { static char asm_stmt[] = ".vtable_entry %c0, %c1"; tree s, i, i2; s = build_unary_op (ADDR_EXPR, TYPE_BINFO_VTABLE (basetype), 0); s = build_tree_list (build_string (1, "s"), s); i = build_array_ref (vtbl, idx); if (!flag_vtable_thunks) i = build_component_ref (i, pfn_identifier, vtable_entry_type, 0); i = build_c_cast (ptrdiff_type_node, build_unary_op (ADDR_EXPR, i, 0)); i2 = build_array_ref (vtbl, build_int_2(0,0)); i2 = build_c_cast (ptrdiff_type_node, build_unary_op (ADDR_EXPR, i2, 0)); i = build_binary_op (MINUS_EXPR, i, i2); i = build_tree_list (build_string (1, "i"), i); expand_asm_operands (build_string (sizeof(asm_stmt)-1, asm_stmt), NULL_TREE, chainon (s, i), NULL_TREE, 1, NULL, 0); } /* Given an object INSTANCE, return an expression which yields the virtual function vtable element corresponding to INDEX. There are many special cases for INSTANCE which we take care of here, mainly to avoid creating extra tree nodes when we don't have to. */ tree build_vtbl_ref (instance, idx) tree instance, idx; { tree vtbl, aref; tree basetype = TREE_TYPE (instance); if (TREE_CODE (basetype) == REFERENCE_TYPE) basetype = TREE_TYPE (basetype); if (instance == current_class_ref) vtbl = build_vfield_ref (instance, basetype); else { if (optimize) { /* Try to figure out what a reference refers to, and access its virtual function table directly. */ tree ref = NULL_TREE; if (TREE_CODE (instance) == INDIRECT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (instance, 0))) == REFERENCE_TYPE) ref = TREE_OPERAND (instance, 0); else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE) ref = instance; if (ref && TREE_CODE (ref) == VAR_DECL && DECL_INITIAL (ref)) { tree init = DECL_INITIAL (ref); while (TREE_CODE (init) == NOP_EXPR || TREE_CODE (init) == NON_LVALUE_EXPR) init = TREE_OPERAND (init, 0); if (TREE_CODE (init) == ADDR_EXPR) { init = TREE_OPERAND (init, 0); if (IS_AGGR_TYPE (TREE_TYPE (init)) && (TREE_CODE (init) == PARM_DECL || TREE_CODE (init) == VAR_DECL)) instance = init; } } } if (IS_AGGR_TYPE (TREE_TYPE (instance)) && (TREE_CODE (instance) == RESULT_DECL || TREE_CODE (instance) == PARM_DECL || TREE_CODE (instance) == VAR_DECL)) vtbl = TYPE_BINFO_VTABLE (basetype); else vtbl = build_vfield_ref (instance, basetype); } assemble_external (vtbl); if (flag_vtable_gc) build_vtable_entry_ref (basetype, vtbl, idx); aref = build_array_ref (vtbl, idx); return aref; } /* Given an object INSTANCE, return an expression which yields the virtual function corresponding to INDEX. There are many special cases for INSTANCE which we take care of here, mainly to avoid creating extra tree nodes when we don't have to. */ tree build_vfn_ref (ptr_to_instptr, instance, idx) tree *ptr_to_instptr, instance; tree idx; { tree aref = build_vtbl_ref (instance, idx); /* When using thunks, there is no extra delta, and we get the pfn directly. */ if (flag_vtable_thunks) return aref; if (ptr_to_instptr) { /* Save the intermediate result in a SAVE_EXPR so we don't have to compute each component of the virtual function pointer twice. */ if (TREE_CODE (aref) == INDIRECT_REF) TREE_OPERAND (aref, 0) = save_expr (TREE_OPERAND (aref, 0)); *ptr_to_instptr = build (PLUS_EXPR, TREE_TYPE (*ptr_to_instptr), *ptr_to_instptr, cp_convert (ptrdiff_type_node, build_component_ref (aref, delta_identifier, NULL_TREE, 0))); } return build_component_ref (aref, pfn_identifier, NULL_TREE, 0); } /* Return the name of the virtual function table (as an IDENTIFIER_NODE) for the given TYPE. */ static tree get_vtable_name (type) tree type; { tree type_id = build_typename_overload (type); char *buf = (char *) alloca (strlen (VTABLE_NAME_FORMAT) + IDENTIFIER_LENGTH (type_id) + 2); const char *ptr = IDENTIFIER_POINTER (type_id); int i; for (i = 0; ptr[i] == OPERATOR_TYPENAME_FORMAT[i]; i++) ; #if 0 /* We don't take off the numbers; prepare_fresh_vtable uses the DECL_ASSEMBLER_NAME for the type, which includes the number in `3foo'. If we were to pull them off here, we'd end up with something like `_vt.foo.3bar', instead of a uniform definition. */ while (ptr[i] >= '0' && ptr[i] <= '9') i += 1; #endif sprintf (buf, VTABLE_NAME_FORMAT, ptr+i); return get_identifier (buf); } /* Return the offset to the main vtable for a given base BINFO. */ tree get_vfield_offset (binfo) tree binfo; { tree tmp = size_binop (FLOOR_DIV_EXPR, DECL_FIELD_BITPOS (CLASSTYPE_VFIELD (BINFO_TYPE (binfo))), size_int (BITS_PER_UNIT)); tmp = convert (sizetype, tmp); return size_binop (PLUS_EXPR, tmp, BINFO_OFFSET (binfo)); } /* Get the offset to the start of the original binfo that we derived this binfo from. If we find TYPE first, return the offset only that far. The shortened search is useful because the this pointer on method calling is expected to point to a DECL_CONTEXT (fndecl) object, and not a baseclass of it. */ static tree get_derived_offset (binfo, type) tree binfo, type; { tree offset1 = get_vfield_offset (TYPE_BINFO (BINFO_TYPE (binfo))); tree offset2; int i; while (BINFO_BASETYPES (binfo) && (i=CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo))) != -1) { tree binfos = BINFO_BASETYPES (binfo); if (BINFO_TYPE (binfo) == type) break; binfo = TREE_VEC_ELT (binfos, i); } offset2 = get_vfield_offset (TYPE_BINFO (BINFO_TYPE (binfo))); return size_binop (MINUS_EXPR, offset1, offset2); } /* Update the rtti info for this class. */ static void set_rtti_entry (virtuals, offset, type) tree virtuals, offset, type; { tree vfn; if (CLASSTYPE_COM_INTERFACE (type)) return; if (flag_rtti) vfn = build1 (ADDR_EXPR, vfunc_ptr_type_node, get_tinfo_fn (type)); else vfn = build1 (NOP_EXPR, vfunc_ptr_type_node, size_zero_node); TREE_CONSTANT (vfn) = 1; if (! flag_vtable_thunks) TREE_VALUE (virtuals) = build_vtable_entry (offset, vfn); else { tree voff = build1 (NOP_EXPR, vfunc_ptr_type_node, offset); TREE_CONSTANT (voff) = 1; TREE_VALUE (virtuals) = build_vtable_entry (integer_zero_node, voff); /* The second slot is for the tdesc pointer when thunks are used. */ TREE_VALUE (TREE_CHAIN (virtuals)) = build_vtable_entry (integer_zero_node, vfn); } } /* Build a virtual function for type TYPE. If BINFO is non-NULL, build the vtable starting with the initial approximation that it is the same as the one which is the head of the association list. */ static tree build_vtable (binfo, type) tree binfo, type; { tree name = get_vtable_name (type); tree virtuals, decl; if (binfo) { tree offset; virtuals = copy_list (BINFO_VIRTUALS (binfo)); decl = build_lang_decl (VAR_DECL, name, TREE_TYPE (BINFO_VTABLE (binfo))); /* Now do rtti stuff. */ offset = get_derived_offset (TYPE_BINFO (type), NULL_TREE); offset = ssize_binop (MINUS_EXPR, integer_zero_node, offset); set_rtti_entry (virtuals, offset, type); } else { virtuals = NULL_TREE; decl = build_lang_decl (VAR_DECL, name, void_type_node); } #ifdef GATHER_STATISTICS n_vtables += 1; n_vtable_elems += list_length (virtuals); #endif /* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */ import_export_vtable (decl, type, 0); decl = pushdecl_top_level (decl); SET_IDENTIFIER_GLOBAL_VALUE (name, decl); /* Initialize the association list for this type, based on our first approximation. */ TYPE_BINFO_VTABLE (type) = decl; TYPE_BINFO_VIRTUALS (type) = virtuals; DECL_ARTIFICIAL (decl) = 1; TREE_STATIC (decl) = 1; #ifndef WRITABLE_VTABLES /* Make them READONLY by default. (mrs) */ TREE_READONLY (decl) = 1; #endif /* At one time the vtable info was grabbed 2 words at a time. This fails on sparc unless you have 8-byte alignment. (tiemann) */ DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node), DECL_ALIGN (decl)); DECL_VIRTUAL_P (decl) = 1; DECL_CONTEXT (decl) = type; binfo = TYPE_BINFO (type); SET_BINFO_NEW_VTABLE_MARKED (binfo); return decl; } extern tree signed_size_zero_node; /* Give TYPE a new virtual function table which is initialized with a skeleton-copy of its original initialization. The only entry that changes is the `delta' entry, so we can really share a lot of structure. FOR_TYPE is the derived type which caused this table to be needed. BINFO is the type association which provided TYPE for FOR_TYPE. The order in which vtables are built (by calling this function) for an object must remain the same, otherwise a binary incompatibility can result. */ static void prepare_fresh_vtable (binfo, for_type) tree binfo, for_type; { tree basetype; tree orig_decl = BINFO_VTABLE (binfo); tree name; tree new_decl; tree offset; tree path = binfo; char *buf, *buf2; char joiner = '_'; int i; #ifdef JOINER joiner = JOINER; #endif basetype = TYPE_MAIN_VARIANT (BINFO_TYPE (binfo)); buf2 = TYPE_ASSEMBLER_NAME_STRING (basetype); i = TYPE_ASSEMBLER_NAME_LENGTH (basetype) + 1; /* We know that the vtable that we are going to create doesn't exist yet in the global namespace, and when we finish, it will be pushed into the global namespace. In complex MI hierarchies, we have to loop while the name we are thinking of adding is globally defined, adding more name components to the vtable name as we loop, until the name is unique. This is because in complex MI cases, we might have the same base more than once. This means that the order in which this function is called for vtables must remain the same, otherwise binary compatibility can be compromised. */ while (1) { char *buf1 = (char *) alloca (TYPE_ASSEMBLER_NAME_LENGTH (for_type) + 1 + i); char *new_buf2; sprintf (buf1, "%s%c%s", TYPE_ASSEMBLER_NAME_STRING (for_type), joiner, buf2); buf = (char *) alloca (strlen (VTABLE_NAME_FORMAT) + strlen (buf1) + 1); sprintf (buf, VTABLE_NAME_FORMAT, buf1); name = get_identifier (buf); /* If this name doesn't clash, then we can use it, otherwise we add more to the name until it is unique. */ if (! IDENTIFIER_GLOBAL_VALUE (name)) break; /* Set values for next loop through, if the name isn't unique. */ path = BINFO_INHERITANCE_CHAIN (path); /* We better not run out of stuff to make it unique. */ my_friendly_assert (path != NULL_TREE, 368); basetype = TYPE_MAIN_VARIANT (BINFO_TYPE (path)); if (for_type == basetype) { /* If we run out of basetypes in the path, we have already found created a vtable with that name before, we now resort to tacking on _%d to distinguish them. */ int j = 2; i = TYPE_ASSEMBLER_NAME_LENGTH (basetype) + 1 + i + 1 + 3; buf1 = (char *) alloca (i); do { sprintf (buf1, "%s%c%s%c%d", TYPE_ASSEMBLER_NAME_STRING (basetype), joiner, buf2, joiner, j); buf = (char *) alloca (strlen (VTABLE_NAME_FORMAT) + strlen (buf1) + 1); sprintf (buf, VTABLE_NAME_FORMAT, buf1); name = get_identifier (buf); /* If this name doesn't clash, then we can use it, otherwise we add something different to the name until it is unique. */ } while (++j <= 999 && IDENTIFIER_GLOBAL_VALUE (name)); /* Hey, they really like MI don't they? Increase the 3 above to 6, and the 999 to 999999. :-) */ my_friendly_assert (j <= 999, 369); break; } i = TYPE_ASSEMBLER_NAME_LENGTH (basetype) + 1 + i; new_buf2 = (char *) alloca (i); sprintf (new_buf2, "%s%c%s", TYPE_ASSEMBLER_NAME_STRING (basetype), joiner, buf2); buf2 = new_buf2; } new_decl = build_lang_decl (VAR_DECL, name, TREE_TYPE (orig_decl)); /* Remember which class this vtable is really for. */ DECL_CONTEXT (new_decl) = for_type; DECL_ARTIFICIAL (new_decl) = 1; TREE_STATIC (new_decl) = 1; BINFO_VTABLE (binfo) = pushdecl_top_level (new_decl); DECL_VIRTUAL_P (new_decl) = 1; #ifndef WRITABLE_VTABLES /* Make them READONLY by default. (mrs) */ TREE_READONLY (new_decl) = 1; #endif DECL_ALIGN (new_decl) = DECL_ALIGN (orig_decl); /* Make fresh virtual list, so we can smash it later. */ BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo)); if (TREE_VIA_VIRTUAL (binfo)) { tree binfo1 = binfo_member (BINFO_TYPE (binfo), CLASSTYPE_VBASECLASSES (for_type)); /* XXX - This should never happen, if it does, the caller should ensure that the binfo is from for_type's binfos, not from any base type's. We can remove all this code after a while. */ if (binfo1 != binfo) warning ("internal inconsistency: binfo offset error for rtti"); offset = BINFO_OFFSET (binfo1); } else offset = BINFO_OFFSET (binfo); set_rtti_entry (BINFO_VIRTUALS (binfo), ssize_binop (MINUS_EXPR, integer_zero_node, offset), for_type); #ifdef GATHER_STATISTICS n_vtables += 1; n_vtable_elems += list_length (BINFO_VIRTUALS (binfo)); #endif /* Set TREE_PUBLIC and TREE_EXTERN as appropriate. */ import_export_vtable (new_decl, for_type, 0); if (TREE_VIA_VIRTUAL (binfo)) my_friendly_assert (binfo == binfo_member (BINFO_TYPE (binfo), CLASSTYPE_VBASECLASSES (current_class_type)), 170); SET_BINFO_NEW_VTABLE_MARKED (binfo); } #if 0 /* Access the virtual function table entry that logically contains BASE_FNDECL. VIRTUALS is the virtual function table's initializer. We can run off the end, when dealing with virtual destructors in MI situations, return NULL_TREE in that case. */ static tree get_vtable_entry (virtuals, base_fndecl) tree virtuals, base_fndecl; { unsigned HOST_WIDE_INT n = (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD ? (TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl)) & (((unsigned HOST_WIDE_INT)1<<(BITS_PER_WORD-1))-1)) : TREE_INT_CST_LOW (DECL_VINDEX (base_fndecl))); #ifdef GATHER_STATISTICS n_vtable_searches += n; #endif while (n > 0 && virtuals) { --n; virtuals = TREE_CHAIN (virtuals); } return virtuals; } #endif /* Put new entry ENTRY into virtual function table initializer VIRTUALS. Also update DECL_VINDEX (FNDECL). */ static void modify_vtable_entry (old_entry_in_list, new_entry, fndecl) tree old_entry_in_list, new_entry, fndecl; { tree base_fndecl = TREE_OPERAND (FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (old_entry_in_list)), 0); #ifdef NOTQUITE cp_warning ("replaced %D with %D", DECL_ASSEMBLER_NAME (base_fndecl), DECL_ASSEMBLER_NAME (fndecl)); #endif TREE_VALUE (old_entry_in_list) = new_entry; /* Now assign virtual dispatch information, if unset. */ /* We can dispatch this, through any overridden base function. */ if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST) { DECL_VINDEX (fndecl) = DECL_VINDEX (base_fndecl); DECL_CONTEXT (fndecl) = DECL_CONTEXT (base_fndecl); } } /* Access the virtual function table entry N. VIRTUALS is the virtual function table's initializer. */ static tree get_vtable_entry_n (virtuals, n) tree virtuals; unsigned HOST_WIDE_INT n; { while (n > 0) { --n; virtuals = TREE_CHAIN (virtuals); } return virtuals; } /* Add a virtual function to all the appropriate vtables for the class T. DECL_VINDEX(X) should be error_mark_node, if we want to allocate a new slot in our table. If it is error_mark_node, we know that no other function from another vtable is overridden by X. HAS_VIRTUAL keeps track of how many virtuals there are in our main vtable for the type, and we build upon the PENDING_VIRTUALS list and return it. */ static void add_virtual_function (pv, phv, has_virtual, fndecl, t) tree *pv, *phv; int *has_virtual; tree fndecl; tree t; /* Structure type. */ { tree pending_virtuals = *pv; tree pending_hard_virtuals = *phv; /* FUNCTION_TYPEs and OFFSET_TYPEs no longer freely convert to void *. Make such a conversion here. */ tree vfn = build1 (ADDR_EXPR, vfunc_ptr_type_node, fndecl); TREE_CONSTANT (vfn) = 1; #ifndef DUMB_USER if (current_class_type == 0) cp_warning ("internal problem, current_class_type is zero when adding `%D', please report", fndecl); if (current_class_type && t != current_class_type) cp_warning ("internal problem, current_class_type differs when adding `%D', please report", fndecl); #endif /* If the virtual function is a redefinition of a prior one, figure out in which base class the new definition goes, and if necessary, make a fresh virtual function table to hold that entry. */ if (DECL_VINDEX (fndecl) == error_mark_node) { tree entry; /* We remember that this was the base sub-object for rtti. */ CLASSTYPE_RTTI (t) = t; /* If we are using thunks, use two slots at the front, one for the offset pointer, one for the tdesc pointer. For ARM-style vtables, use the same slot for both. */ if (*has_virtual == 0 && ! CLASSTYPE_COM_INTERFACE (t)) { if (flag_vtable_thunks) *has_virtual = 2; else *has_virtual = 1; } /* Build a new INT_CST for this DECL_VINDEX. */ { static tree index_table[256]; tree idx; /* We skip a slot for the offset/tdesc entry. */ int i = (*has_virtual)++; if (i >= 256 || index_table[i] == 0) { idx = build_int_2 (i, 0); if (i < 256) index_table[i] = idx; } else idx = index_table[i]; /* Now assign virtual dispatch information. */ DECL_VINDEX (fndecl) = idx; DECL_CONTEXT (fndecl) = t; } entry = build_vtable_entry (integer_zero_node, vfn); pending_virtuals = tree_cons (DECL_VINDEX (fndecl), entry, pending_virtuals); } /* Might already be INTEGER_CST if declared twice in class. We will give error later or we've already given it. */ else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST) { /* Need an entry in some other virtual function table. Deal with this after we have laid out our virtual base classes. */ pending_hard_virtuals = temp_tree_cons (fndecl, vfn, pending_hard_virtuals); } *pv = pending_virtuals; *phv = pending_hard_virtuals; } /* Obstack on which to build the vector of class methods. */ struct obstack class_obstack; extern struct obstack *current_obstack; /* These are method vectors that were too small for the number of methods in some class, and so were abandoned. */ static tree free_method_vecs; /* Returns a method vector with enough room for N methods. N should be a power of two. */ static tree make_method_vec (n) int n; { tree new_vec; tree* t; for (t = &free_method_vecs; *t; t = &(TREE_CHAIN (*t))) /* Note that we don't use >= n here because we don't want to allocate a very large vector where it isn't needed. */ if (TREE_VEC_LENGTH (*t) == n) { new_vec = *t; *t = TREE_CHAIN (new_vec); TREE_CHAIN (new_vec) = NULL_TREE; bzero ((PTR) &TREE_VEC_ELT (new_vec, 0), n * sizeof (tree)); return new_vec; } new_vec = make_tree_vec (n); return new_vec; } /* Free the method vector VEC. */ static void free_method_vec (vec) tree vec; { TREE_CHAIN (vec) = free_method_vecs; free_method_vecs = vec; } /* Add method METHOD to class TYPE. If non-NULL, FIELDS is the entry in the METHOD_VEC vector entry of the class type where the method should be added. */ void add_method (type, fields, method) tree type, *fields, method; { push_obstacks_nochange (); end_temporary_allocation (); /* Setting the DECL_CONTEXT and DECL_CLASS_CONTEXT here is probably redundant. */ DECL_CONTEXT (method) = type; DECL_CLASS_CONTEXT (method) = type; if (fields && *fields) *fields = build_overload (method, *fields); else { int len; int slot; tree method_vec; if (!CLASSTYPE_METHOD_VEC (type)) /* Make a new method vector. We start with 8 entries. We must allocate at least two (for constructors and destructors), and we're going to end up with an assignment operator at some point as well. We could use a TREE_LIST for now, and convert it to a TREE_VEC in finish_struct, but we would probably waste more memory making the links in the list than we would by over-allocating the size of the vector here. Furthermore, we would complicate all the code that expects this to be a vector. We keep a free list of vectors that we outgrew so that we don't really waste any memory. */ CLASSTYPE_METHOD_VEC (type) = make_method_vec (8); method_vec = CLASSTYPE_METHOD_VEC (type); len = TREE_VEC_LENGTH (method_vec); if (DECL_NAME (method) == constructor_name (type)) /* A new constructor or destructor. Constructors go in slot 0; destructors go in slot 1. */ slot = DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (method)) ? 1 : 0; else { /* See if we already have an entry with this name. */ for (slot = 2; slot < len; ++slot) if (!TREE_VEC_ELT (method_vec, slot) || (DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (method_vec, slot))) == DECL_NAME (method))) break; if (slot == len) { /* We need a bigger method vector. */ tree new_vec = make_method_vec (2 * len); bcopy ((PTR) &TREE_VEC_ELT (method_vec, 0), (PTR) &TREE_VEC_ELT (new_vec, 0), len * sizeof (tree)); free_method_vec (method_vec); len = 2 * len; method_vec = CLASSTYPE_METHOD_VEC (type) = new_vec; } if (DECL_CONV_FN_P (method) && !TREE_VEC_ELT (method_vec, slot)) { /* Type conversion operators have to come before ordinary methods; add_conversions depends on this to speed up looking for conversion operators. So, if necessary, we slide some of the vector elements up. In theory, this makes this algorithm O(N^2) but we don't expect many conversion operators. */ for (slot = 2; slot < len; ++slot) { tree fn = TREE_VEC_ELT (method_vec, slot); if (!fn) /* There are no more entries in the vector, so we can insert the new conversion operator here. */ break; if (!DECL_CONV_FN_P (OVL_CURRENT (fn))) /* We can insert the new function right at the SLOTth position. */ break; } if (!TREE_VEC_ELT (method_vec, slot)) /* There is nothing in the Ith slot, so we can avoid moving anything. */ ; else { /* We know the last slot in the vector is empty because we know that at this point there's room for a new function. */ bcopy ((PTR) &TREE_VEC_ELT (method_vec, slot), (PTR) &TREE_VEC_ELT (method_vec, slot + 1), (len - slot - 1) * sizeof (tree)); TREE_VEC_ELT (method_vec, slot) = NULL_TREE; } } } if (template_class_depth (type)) /* TYPE is a template class. Don't issue any errors now; wait until instantiation time to complain. */ ; else { tree fns; /* Check to see if we've already got this method. */ for (fns = TREE_VEC_ELT (method_vec, slot); fns; fns = OVL_NEXT (fns)) { tree fn = OVL_CURRENT (fns); if (TREE_CODE (fn) != TREE_CODE (method)) continue; if (TREE_CODE (method) != TEMPLATE_DECL) { /* [over.load] Member function declarations with the same name and the same parameter types cannot be overloaded if any of them is a static member function declaration. */ if (DECL_STATIC_FUNCTION_P (fn) != DECL_STATIC_FUNCTION_P (method)) { tree parms1 = TYPE_ARG_TYPES (TREE_TYPE (fn)); tree parms2 = TYPE_ARG_TYPES (TREE_TYPE (method)); if (! DECL_STATIC_FUNCTION_P (fn)) parms1 = TREE_CHAIN (parms1); else parms2 = TREE_CHAIN (parms2); if (compparms (parms1, parms2)) cp_error ("`%#D' and `%#D' cannot be overloaded", fn, method); } /* Since this is an ordinary function in a non-template class, it's mangled name can be used as a unique identifier. This technique is only an optimization; we would get the same results if we just used decls_match here. */ if (DECL_ASSEMBLER_NAME (fn) != DECL_ASSEMBLER_NAME (method)) continue; } else if (!decls_match (fn, method)) continue; /* There has already been a declaration of this method or member template. */ cp_error_at ("`%D' has already been declared in `%T'", method, type); /* We don't call duplicate_decls here to merge the declarations because that will confuse things if the methods have inline definitions. In particular, we will crash while processing the definitions. */ return; } } /* Actually insert the new method. */ TREE_VEC_ELT (method_vec, slot) = build_overload (method, TREE_VEC_ELT (method_vec, slot)); /* Add the new binding. */ if (!DECL_CONSTRUCTOR_P (method) && !DECL_DESTRUCTOR_P (method)) push_class_level_binding (DECL_NAME (method), TREE_VEC_ELT (method_vec, slot)); } pop_obstacks (); } /* Subroutines of finish_struct. */ /* Look through the list of fields for this struct, deleting duplicates as we go. This must be recursive to handle anonymous unions. FIELD is the field which may not appear anywhere in FIELDS. FIELD_PTR, if non-null, is the starting point at which chained deletions may take place. The value returned is the first acceptable entry found in FIELDS. Note that anonymous fields which are not of UNION_TYPE are not duplicates, they are just anonymous fields. This happens when we have unnamed bitfields, for example. */ static tree delete_duplicate_fields_1 (field, fields) tree field, fields; { tree x; tree prev = 0; if (DECL_NAME (field) == 0) { if (TREE_CODE (TREE_TYPE (field)) != UNION_TYPE) return fields; for (x = TYPE_FIELDS (TREE_TYPE (field)); x; x = TREE_CHAIN (x)) fields = delete_duplicate_fields_1 (x, fields); return fields; } else { for (x = fields; x; prev = x, x = TREE_CHAIN (x)) { if (DECL_NAME (x) == 0) { if (TREE_CODE (TREE_TYPE (x)) != UNION_TYPE) continue; TYPE_FIELDS (TREE_TYPE (x)) = delete_duplicate_fields_1 (field, TYPE_FIELDS (TREE_TYPE (x))); if (TYPE_FIELDS (TREE_TYPE (x)) == 0) { if (prev == 0) fields = TREE_CHAIN (fields); else TREE_CHAIN (prev) = TREE_CHAIN (x); } } else { if (DECL_NAME (field) == DECL_NAME (x)) { if (TREE_CODE (field) == CONST_DECL && TREE_CODE (x) == CONST_DECL) cp_error_at ("duplicate enum value `%D'", x); else if (TREE_CODE (field) == CONST_DECL || TREE_CODE (x) == CONST_DECL) cp_error_at ("duplicate field `%D' (as enum and non-enum)", x); else if (DECL_DECLARES_TYPE_P (field) && DECL_DECLARES_TYPE_P (x)) { if (same_type_p (TREE_TYPE (field), TREE_TYPE (x))) continue; cp_error_at ("duplicate nested type `%D'", x); } else if (DECL_DECLARES_TYPE_P (field) || DECL_DECLARES_TYPE_P (x)) { /* Hide tag decls. */ if ((TREE_CODE (field) == TYPE_DECL && DECL_ARTIFICIAL (field)) || (TREE_CODE (x) == TYPE_DECL && DECL_ARTIFICIAL (x))) continue; cp_error_at ("duplicate field `%D' (as type and non-type)", x); } else cp_error_at ("duplicate member `%D'", x); if (prev == 0) fields = TREE_CHAIN (fields); else TREE_CHAIN (prev) = TREE_CHAIN (x); } } } } return fields; } static void delete_duplicate_fields (fields) tree fields; { tree x; for (x = fields; x && TREE_CHAIN (x); x = TREE_CHAIN (x)) TREE_CHAIN (x) = delete_duplicate_fields_1 (x, TREE_CHAIN (x)); } /* Change the access of FDECL to ACCESS in T. The access to FDECL is along the path given by BINFO. Return 1 if change was legit, otherwise return 0. */ static int alter_access (t, binfo, fdecl, access) tree t; tree binfo; tree fdecl; tree access; { tree elem = purpose_member (t, DECL_ACCESS (fdecl)); if (elem) { if (TREE_VALUE (elem) != access) { if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL) cp_error_at ("conflicting access specifications for method `%D', ignored", TREE_TYPE (fdecl)); else error ("conflicting access specifications for field `%s', ignored", IDENTIFIER_POINTER (DECL_NAME (fdecl))); } else { /* They're changing the access to the same thing they changed it to before. That's OK. */ ; } } else { enforce_access (binfo, fdecl); DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl)); return 1; } return 0; } /* Process the USING_DECL, which is a member of T. The METHOD_VEC, if non-NULL, is the methods of T. The FIELDS are the fields of T. */ static void handle_using_decl (using_decl, t, method_vec, fields) tree using_decl; tree t; tree method_vec; tree fields; { tree ctype = DECL_INITIAL (using_decl); tree name = DECL_NAME (using_decl); tree access = TREE_PRIVATE (using_decl) ? access_private_node : TREE_PROTECTED (using_decl) ? access_protected_node : access_public_node; tree fdecl, binfo; tree flist = NULL_TREE; tree tmp; int i; int n_methods; binfo = binfo_or_else (ctype, t); if (! binfo) return; if (name == constructor_name (ctype) || name == constructor_name_full (ctype)) { cp_error_at ("using-declaration for constructor", using_decl); return; } fdecl = lookup_member (binfo, name, 0, 0); if (!fdecl) { cp_error_at ("no members matching `%D' in `%#T'", using_decl, ctype); return; } /* Functions are represented as TREE_LIST, with the purpose being the type and the value the functions. Other members come as themselves. */ if (TREE_CODE (fdecl) == TREE_LIST) /* Ignore base type this came from. */ fdecl = TREE_VALUE (fdecl); if (TREE_CODE (fdecl) == OVERLOAD) { /* We later iterate over all functions. */ flist = fdecl; fdecl = OVL_FUNCTION (flist); } name = DECL_NAME (fdecl); n_methods = method_vec ? TREE_VEC_LENGTH (method_vec) : 0; for (i = 2; i < n_methods && TREE_VEC_ELT (method_vec, i); i++) if (DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (method_vec, i))) == name) { cp_error ("cannot adjust access to `%#D' in `%#T'", fdecl, t); cp_error_at (" because of local method `%#D' with same name", OVL_CURRENT (TREE_VEC_ELT (method_vec, i))); return; } if (! DECL_LANG_SPECIFIC (fdecl)) /* We don't currently handle DECL_ACCESS for TYPE_DECLs; just return. */ return; for (tmp = fields; tmp; tmp = TREE_CHAIN (tmp)) if (DECL_NAME (tmp) == name) { cp_error ("cannot adjust access to `%#D' in `%#T'", fdecl, t); cp_error_at (" because of local field `%#D' with same name", tmp); return; } /* Make type T see field decl FDECL with access ACCESS.*/ if (flist) { while (flist) { if (alter_access (t, binfo, OVL_FUNCTION (flist), access) == 0) return; flist = OVL_CHAIN (flist); } } else alter_access (t, binfo, fdecl, access); } struct base_info { int has_virtual; int max_has_virtual; tree vfield; tree vfields; tree rtti; char cant_have_default_ctor; char cant_have_const_ctor; char no_const_asn_ref; }; /* Record information about type T derived from its base classes. Store most of that information in T itself, and place the remaining information in the struct BASE_INFO. Propagate basetype offsets throughout the lattice. Note that the lattice topped by T is really a pair: it's a DAG that gives the structure of the derivation hierarchy, and it's a list of the virtual baseclasses that appear anywhere in the DAG. When a vbase type appears in the DAG, it's offset is 0, and it's children start their offsets from that point. When a vbase type appears in the list, its offset is the offset it has in the hierarchy, and its children's offsets include that offset in theirs. Returns the index of the first base class to have virtual functions, or -1 if no such base class. */ static int finish_base_struct (t, b) tree t; struct base_info *b; { tree binfos = TYPE_BINFO_BASETYPES (t); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; int first_vfn_base_index = -1; bzero ((char *) b, sizeof (struct base_info)); for (i = 0; i < n_baseclasses; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree basetype = BINFO_TYPE (base_binfo); /* Effective C++ rule 14. We only need to check TYPE_VIRTUAL_P here because the case of virtual functions but non-virtual dtor is handled in finish_struct_1. */ if (warn_ecpp && ! TYPE_VIRTUAL_P (basetype) && TYPE_HAS_DESTRUCTOR (basetype)) cp_warning ("base class `%#T' has a non-virtual destructor", basetype); /* If the type of basetype is incomplete, then we already complained about that fact (and we should have fixed it up as well). */ if (TYPE_SIZE (basetype) == 0) { int j; /* The base type is of incomplete type. It is probably best to pretend that it does not exist. */ if (i == n_baseclasses-1) TREE_VEC_ELT (binfos, i) = NULL_TREE; TREE_VEC_LENGTH (binfos) -= 1; n_baseclasses -= 1; for (j = i; j+1 < n_baseclasses; j++) TREE_VEC_ELT (binfos, j) = TREE_VEC_ELT (binfos, j+1); } if (! TYPE_HAS_CONST_INIT_REF (basetype)) b->cant_have_const_ctor = 1; if (TYPE_HAS_CONSTRUCTOR (basetype) && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)) { b->cant_have_default_ctor = 1; if (! TYPE_HAS_CONSTRUCTOR (t)) { cp_pedwarn ("base `%T' with only non-default constructor", basetype); cp_pedwarn ("in class without a constructor"); } } if (TYPE_HAS_ASSIGN_REF (basetype) && !TYPE_HAS_CONST_ASSIGN_REF (basetype)) b->no_const_asn_ref = 1; TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype); TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_NEEDS_DESTRUCTOR (basetype); TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype); TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype); TYPE_OVERLOADS_CALL_EXPR (t) |= TYPE_OVERLOADS_CALL_EXPR (basetype); TYPE_OVERLOADS_ARRAY_REF (t) |= TYPE_OVERLOADS_ARRAY_REF (basetype); TYPE_OVERLOADS_ARROW (t) |= TYPE_OVERLOADS_ARROW (basetype); if (CLASSTYPE_COM_INTERFACE (basetype)) { CLASSTYPE_COM_INTERFACE (t) = 1; if (i > 0) cp_error ("COM interface type `%T' must be the leftmost base class", basetype); } else if (CLASSTYPE_COM_INTERFACE (t)) { cp_error ("COM interface type `%T' with non-COM base class `%T'", t, basetype); CLASSTYPE_COM_INTERFACE (t) = 0; } if (TYPE_VIRTUAL_P (basetype)) { /* Ensure that this is set from at least a virtual base class. */ if (b->rtti == NULL_TREE) b->rtti = CLASSTYPE_RTTI (basetype); /* Don't borrow virtuals from virtual baseclasses. */ if (TREE_VIA_VIRTUAL (base_binfo)) continue; if (first_vfn_base_index < 0) { tree vfields; first_vfn_base_index = i; /* Update these two, now that we know what vtable we are going to extend. This is so that we can add virtual functions, and override them properly. */ TYPE_BINFO_VTABLE (t) = TYPE_BINFO_VTABLE (basetype); TYPE_BINFO_VIRTUALS (t) = TYPE_BINFO_VIRTUALS (basetype); b->has_virtual = CLASSTYPE_VSIZE (basetype); b->vfield = CLASSTYPE_VFIELD (basetype); b->vfields = copy_list (CLASSTYPE_VFIELDS (basetype)); vfields = b->vfields; while (vfields) { if (VF_BINFO_VALUE (vfields) == NULL_TREE || ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields))) { tree value = VF_BASETYPE_VALUE (vfields); if (DECL_NAME (CLASSTYPE_VFIELD (value)) == DECL_NAME (CLASSTYPE_VFIELD (basetype))) VF_NORMAL_VALUE (b->vfields) = basetype; else VF_NORMAL_VALUE (b->vfields) = VF_NORMAL_VALUE (vfields); } vfields = TREE_CHAIN (vfields); } CLASSTYPE_VFIELD (t) = b->vfield; } else { /* Only add unique vfields, and flatten them out as we go. */ tree vfields = CLASSTYPE_VFIELDS (basetype); while (vfields) { if (VF_BINFO_VALUE (vfields) == NULL_TREE || ! TREE_VIA_VIRTUAL (VF_BINFO_VALUE (vfields))) { tree value = VF_BASETYPE_VALUE (vfields); b->vfields = tree_cons (base_binfo, value, b->vfields); if (DECL_NAME (CLASSTYPE_VFIELD (value)) == DECL_NAME (CLASSTYPE_VFIELD (basetype))) VF_NORMAL_VALUE (b->vfields) = basetype; else VF_NORMAL_VALUE (b->vfields) = VF_NORMAL_VALUE (vfields); } vfields = TREE_CHAIN (vfields); } if (b->has_virtual == 0) { first_vfn_base_index = i; /* Update these two, now that we know what vtable we are going to extend. This is so that we can add virtual functions, and override them properly. */ TYPE_BINFO_VTABLE (t) = TYPE_BINFO_VTABLE (basetype); TYPE_BINFO_VIRTUALS (t) = TYPE_BINFO_VIRTUALS (basetype); b->has_virtual = CLASSTYPE_VSIZE (basetype); b->vfield = CLASSTYPE_VFIELD (basetype); CLASSTYPE_VFIELD (t) = b->vfield; /* When we install the first one, set the VF_NORMAL_VALUE to be the current class, as this it is the most derived class. Hopefully, this is not set to something else later. (mrs) */ vfields = b->vfields; while (vfields) { if (DECL_NAME (CLASSTYPE_VFIELD (t)) == DECL_NAME (CLASSTYPE_VFIELD (basetype))) { VF_NORMAL_VALUE (vfields) = t; /* There should only be one of them! And it should always be found, if we get into here. (mrs) */ break; } vfields = TREE_CHAIN (vfields); } } } } } { tree vfields; /* Find the base class with the largest number of virtual functions. */ for (vfields = b->vfields; vfields; vfields = TREE_CHAIN (vfields)) { if (CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields)) > b->max_has_virtual) b->max_has_virtual = CLASSTYPE_VSIZE (VF_BASETYPE_VALUE (vfields)); if (VF_DERIVED_VALUE (vfields) && CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields)) > b->max_has_virtual) b->max_has_virtual = CLASSTYPE_VSIZE (VF_DERIVED_VALUE (vfields)); } } if (b->vfield == 0) /* If all virtual functions come only from virtual baseclasses. */ return -1; /* Update the rtti base if we have a non-virtual base class version of it. */ b->rtti = CLASSTYPE_RTTI (BINFO_TYPE (TREE_VEC_ELT (binfos, first_vfn_base_index))); return first_vfn_base_index; } /* Set memoizing fields and bits of T (and its variants) for later use. MAX_HAS_VIRTUAL is the largest size of any T's virtual function tables. */ static void finish_struct_bits (t, max_has_virtual) tree t; int max_has_virtual; { int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (t); /* Fix up variants (if any). */ tree variants = TYPE_NEXT_VARIANT (t); while (variants) { /* These fields are in the _TYPE part of the node, not in the TYPE_LANG_SPECIFIC component, so they are not shared. */ TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t); TYPE_HAS_DESTRUCTOR (variants) = TYPE_HAS_DESTRUCTOR (t); TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t); TYPE_NEEDS_DESTRUCTOR (variants) = TYPE_NEEDS_DESTRUCTOR (t); TYPE_USES_COMPLEX_INHERITANCE (variants) = TYPE_USES_COMPLEX_INHERITANCE (t); TYPE_VIRTUAL_P (variants) = TYPE_VIRTUAL_P (t); TYPE_USES_VIRTUAL_BASECLASSES (variants) = TYPE_USES_VIRTUAL_BASECLASSES (t); /* Copy whatever these are holding today. */ TYPE_MIN_VALUE (variants) = TYPE_MIN_VALUE (t); TYPE_MAX_VALUE (variants) = TYPE_MAX_VALUE (t); TYPE_FIELDS (variants) = TYPE_FIELDS (t); TYPE_SIZE (variants) = TYPE_SIZE (t); TYPE_SIZE_UNIT (variants) = TYPE_SIZE_UNIT (t); variants = TYPE_NEXT_VARIANT (variants); } if (n_baseclasses && max_has_virtual) { /* For a class w/o baseclasses, `finish_struct' has set CLASS_TYPE_ABSTRACT_VIRTUALS correctly (by definition). Similarly for a class who's base classes do not have vtables. When neither of these is true, we might have removed abstract virtuals (by providing a definition), added some (by declaring new ones), or redeclared ones from a base class. We need to recalculate what's really an abstract virtual at this point (by looking in the vtables). */ CLASSTYPE_ABSTRACT_VIRTUALS (t) = get_abstract_virtuals (t); } if (n_baseclasses) { /* Notice whether this class has type conversion functions defined. */ tree binfo = TYPE_BINFO (t); tree binfos = BINFO_BASETYPES (binfo); tree basetype; for (i = n_baseclasses-1; i >= 0; i--) { basetype = BINFO_TYPE (TREE_VEC_ELT (binfos, i)); TYPE_HAS_CONVERSION (t) |= TYPE_HAS_CONVERSION (basetype); } } /* If this type has a copy constructor, force its mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be nonzero. This will cause it to be passed by invisible reference and prevent it from being returned in a register. Also do this if the class has BLKmode but can still be returned in registers, since function_cannot_inline_p won't let us inline functions returning such a type. This affects the HP-PA. */ if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || (TYPE_MODE (t) == BLKmode && ! aggregate_value_p (t) && CLASSTYPE_NON_AGGREGATE (t))) { tree variants; DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode; for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants)) { TYPE_MODE (variants) = BLKmode; TREE_ADDRESSABLE (variants) = 1; } } } /* Issue warnings about T having private constructors, but no friends, and so forth. HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any non-private static member functions. */ static void maybe_warn_about_overly_private_class (t) tree t; { int has_member_fn = 0; int has_nonprivate_method = 0; tree fn; if (!warn_ctor_dtor_privacy /* If the class has friends, those entities might create and access instances, so we should not warn. */ || (CLASSTYPE_FRIEND_CLASSES (t) || DECL_FRIENDLIST (TYPE_MAIN_DECL (t))) /* We will have warned when the template was declared; there's no need to warn on every instantiation. */ || CLASSTYPE_TEMPLATE_INSTANTIATION (t)) /* There's no reason to even consider warning about this class. */ return; /* We only issue one warning, if more than one applies, because otherwise, on code like: class A { // Oops - forgot `public:' A(); A(const A&); ~A(); }; we warn several times about essentially the same problem. */ /* Check to see if all (non-constructor, non-destructor) member functions are private. (Since there are no friends or non-private statics, we can't ever call any of the private member functions.) */ for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn)) /* We're not interested in compiler-generated methods; they don't provide any way to call private members. */ if (!DECL_ARTIFICIAL (fn)) { if (!TREE_PRIVATE (fn)) { if (DECL_STATIC_FUNCTION_P (fn)) /* A non-private static member function is just like a friend; it can create and invoke private member functions, and be accessed without a class instance. */ return; has_nonprivate_method = 1; break; } else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn)) has_member_fn = 1; } if (!has_nonprivate_method && has_member_fn) { /* There are no non-private methods, and there's at least one private member function that isn't a constructor or destructor. (If all the private members are constructors/destructors we want to use the code below that issues error messages specifically referring to constructors/destructors.) */ int i; tree binfos = BINFO_BASETYPES (TYPE_BINFO (t)); for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); i++) if (TREE_VIA_PUBLIC (TREE_VEC_ELT (binfos, i)) || TREE_VIA_PROTECTED (TREE_VEC_ELT (binfos, i))) { has_nonprivate_method = 1; break; } if (!has_nonprivate_method) { cp_warning ("all member functions in class `%T' are private", t); return; } } /* Even if some of the member functions are non-private, the class won't be useful for much if all the constructors or destructors are private: such an object can never be created or destroyed. */ if (TYPE_HAS_DESTRUCTOR (t)) { tree dtor = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (t), 1); if (TREE_PRIVATE (dtor)) { cp_warning ("`%#T' only defines a private destructor and has no friends", t); return; } } if (TYPE_HAS_CONSTRUCTOR (t)) { int nonprivate_ctor = 0; /* If a non-template class does not define a copy constructor, one is defined for it, enabling it to avoid this warning. For a template class, this does not happen, and so we would normally get a warning on: template class C { private: C(); }; To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All complete non-template or fully instantiated classes have this flag set. */ if (!TYPE_HAS_INIT_REF (t)) nonprivate_ctor = 1; else for (fn = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (t), 0); fn; fn = OVL_NEXT (fn)) { tree ctor = OVL_CURRENT (fn); /* Ideally, we wouldn't count copy constructors (or, in fact, any constructor that takes an argument of the class type as a parameter) because such things cannot be used to construct an instance of the class unless you already have one. But, for now at least, we're more generous. */ if (! TREE_PRIVATE (ctor)) { nonprivate_ctor = 1; break; } } if (nonprivate_ctor == 0) { cp_warning ("`%#T' only defines private constructors and has no friends", t); return; } } } /* Warn about duplicate methods in fn_fields. Also compact method lists so that lookup can be made faster. Data Structure: List of method lists. The outer list is a TREE_LIST, whose TREE_PURPOSE field is the field name and the TREE_VALUE is the DECL_CHAIN of the FUNCTION_DECLs. TREE_CHAIN links the entire list of methods for TYPE_METHODS. Friends are chained in the same way as member functions (? TREE_CHAIN or DECL_CHAIN), but they live in the TREE_TYPE field of the outer list. That allows them to be quickly deleted, and requires no extra storage. If there are any constructors/destructors, they are moved to the front of the list. This makes pushclass more efficient. We also link each field which has shares a name with its baseclass to the head of the list of fields for that base class. This allows us to reduce search time in places like `build_method_call' to consider only reasonably likely functions. */ static void finish_struct_methods (t) tree t; { tree fn_fields; tree method_vec = CLASSTYPE_METHOD_VEC (t); tree ctor_name = constructor_name (t); /* First fill in entry 0 with the constructors, entry 1 with destructors, and the next few with type conversion operators (if any). */ for (fn_fields = TYPE_METHODS (t); fn_fields; fn_fields = TREE_CHAIN (fn_fields)) { tree fn_name = DECL_NAME (fn_fields); /* Clear out this flag. @@ Doug may figure out how to break @@ this with nested classes and friends. */ DECL_IN_AGGR_P (fn_fields) = 0; /* Note here that a copy ctor is private, so we don't dare generate a default copy constructor for a class that has a member of this type without making sure they have access to it. */ if (fn_name == ctor_name) { tree parmtypes = FUNCTION_ARG_CHAIN (fn_fields); tree parmtype = parmtypes ? TREE_VALUE (parmtypes) : void_type_node; if (TREE_CODE (parmtype) == REFERENCE_TYPE && TYPE_MAIN_VARIANT (TREE_TYPE (parmtype)) == t) { if (TREE_CHAIN (parmtypes) == NULL_TREE || TREE_CHAIN (parmtypes) == void_list_node || TREE_PURPOSE (TREE_CHAIN (parmtypes))) { if (TREE_PROTECTED (fn_fields)) TYPE_HAS_NONPUBLIC_CTOR (t) = 1; else if (TREE_PRIVATE (fn_fields)) TYPE_HAS_NONPUBLIC_CTOR (t) = 2; } } } else if (fn_name == ansi_opname[(int) MODIFY_EXPR]) { tree parmtype = TREE_VALUE (FUNCTION_ARG_CHAIN (fn_fields)); if (copy_assignment_arg_p (parmtype, DECL_VIRTUAL_P (fn_fields))) { if (TREE_PROTECTED (fn_fields)) TYPE_HAS_NONPUBLIC_ASSIGN_REF (t) = 1; else if (TREE_PRIVATE (fn_fields)) TYPE_HAS_NONPUBLIC_ASSIGN_REF (t) = 2; } } } if (TYPE_HAS_DESTRUCTOR (t) && !TREE_VEC_ELT (method_vec, 1)) /* We thought there was a destructor, but there wasn't. Some parse errors cause this anomalous situation. */ TYPE_HAS_DESTRUCTOR (t) = 0; /* Issue warnings about private constructors and such. If there are no methods, then some public defaults are generated. */ maybe_warn_about_overly_private_class (t); } /* Emit error when a duplicate definition of a type is seen. Patch up. */ void duplicate_tag_error (t) tree t; { cp_error ("redefinition of `%#T'", t); cp_error_at ("previous definition here", t); /* Pretend we haven't defined this type. */ /* All of the component_decl's were TREE_CHAINed together in the parser. finish_struct_methods walks these chains and assembles all methods with the same base name into DECL_CHAINs. Now we don't need the parser chains anymore, so we unravel them. */ /* This used to be in finish_struct, but it turns out that the TREE_CHAIN is used by dbxout_type_methods and perhaps some other things... */ if (CLASSTYPE_METHOD_VEC (t)) { tree method_vec = CLASSTYPE_METHOD_VEC (t); int i, len = TREE_VEC_LENGTH (method_vec); for (i = 0; i < len; i++) { tree unchain = TREE_VEC_ELT (method_vec, i); while (unchain != NULL_TREE) { TREE_CHAIN (OVL_CURRENT (unchain)) = NULL_TREE; unchain = OVL_NEXT (unchain); } } } if (TYPE_LANG_SPECIFIC (t)) { tree binfo = TYPE_BINFO (t); int interface_only = CLASSTYPE_INTERFACE_ONLY (t); int interface_unknown = CLASSTYPE_INTERFACE_UNKNOWN (t); bzero ((char *) TYPE_LANG_SPECIFIC (t), sizeof (struct lang_type)); BINFO_BASETYPES(binfo) = NULL_TREE; TYPE_BINFO (t) = binfo; CLASSTYPE_INTERFACE_ONLY (t) = interface_only; SET_CLASSTYPE_INTERFACE_UNKNOWN_X (t, interface_unknown); TYPE_REDEFINED (t) = 1; } TYPE_SIZE (t) = NULL_TREE; TYPE_MODE (t) = VOIDmode; TYPE_FIELDS (t) = NULL_TREE; TYPE_METHODS (t) = NULL_TREE; TYPE_VFIELD (t) = NULL_TREE; TYPE_CONTEXT (t) = NULL_TREE; } /* finish up all new vtables. */ static void finish_vtbls (binfo, do_self, t) tree binfo; int do_self; tree t; { tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; /* Should we use something besides CLASSTYPE_VFIELDS? */ if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo))) { if (BINFO_NEW_VTABLE_MARKED (binfo)) { tree decl, context; decl = BINFO_VTABLE (binfo); context = DECL_CONTEXT (decl); DECL_CONTEXT (decl) = 0; if (DECL_INITIAL (decl) != BINFO_VIRTUALS (binfo)) DECL_INITIAL (decl) = build_nt (CONSTRUCTOR, NULL_TREE, BINFO_VIRTUALS (binfo)); cp_finish_decl (decl, DECL_INITIAL (decl), NULL_TREE, 0, 0); DECL_CONTEXT (decl) = context; } CLEAR_BINFO_NEW_VTABLE_MARKED (binfo); } for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo)); if (TREE_VIA_VIRTUAL (base_binfo)) { base_binfo = binfo_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t)); } finish_vtbls (base_binfo, is_not_base_vtable, t); } } /* True if we should override the given BASE_FNDECL with the given FNDECL. */ static int overrides (fndecl, base_fndecl) tree fndecl, base_fndecl; { /* Destructors have special names. */ if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (base_fndecl)) && DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fndecl))) return 1; if (DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (base_fndecl)) || DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (fndecl))) return 0; if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)) { tree types, base_types; #if 0 retypes = TREE_TYPE (TREE_TYPE (fndecl)); base_retypes = TREE_TYPE (TREE_TYPE (base_fndecl)); #endif types = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl)); if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types))) == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types)))) && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types))) return 1; } return 0; } static tree get_class_offset_1 (parent, binfo, context, t, fndecl) tree parent, binfo, context, t, fndecl; { tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; tree rval = NULL_TREE; if (binfo == parent) return error_mark_node; for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree nrval; if (TREE_VIA_VIRTUAL (base_binfo)) base_binfo = binfo_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t)); nrval = get_class_offset_1 (parent, base_binfo, context, t, fndecl); /* See if we have a new value */ if (nrval && (nrval != error_mark_node || rval==0)) { /* Only compare if we have two offsets */ if (rval && rval != error_mark_node && ! tree_int_cst_equal (nrval, rval)) { /* Only give error if the two offsets are different */ error ("every virtual function must have a unique final overrider"); cp_error (" found two (or more) `%T' class subobjects in `%T'", context, t); cp_error (" with virtual `%D' from virtual base class", fndecl); return rval; } rval = nrval; } if (rval && BINFO_TYPE (binfo) == context) { my_friendly_assert (rval == error_mark_node || tree_int_cst_equal (rval, BINFO_OFFSET (binfo)), 999); rval = BINFO_OFFSET (binfo); } } return rval; } /* Get the offset to the CONTEXT subobject that is related to the given BINFO. */ static tree get_class_offset (context, t, binfo, fndecl) tree context, t, binfo, fndecl; { tree first_binfo = binfo; tree offset; int i; if (context == t) return integer_zero_node; if (BINFO_TYPE (binfo) == context) return BINFO_OFFSET (binfo); /* Check less derived binfos first. */ while (BINFO_BASETYPES (binfo) && (i=CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo))) != -1) { tree binfos = BINFO_BASETYPES (binfo); binfo = TREE_VEC_ELT (binfos, i); if (BINFO_TYPE (binfo) == context) return BINFO_OFFSET (binfo); } /* Ok, not found in the less derived binfos, now check the more derived binfos. */ offset = get_class_offset_1 (first_binfo, TYPE_BINFO (t), context, t, fndecl); if (offset==0 || TREE_CODE (offset) != INTEGER_CST) my_friendly_abort (999); /* we have to find it. */ return offset; } /* Skip RTTI information at the front of the virtual list. */ unsigned HOST_WIDE_INT skip_rtti_stuff (virtuals, t) tree *virtuals, t; { int n; if (CLASSTYPE_COM_INTERFACE (t)) return 0; n = 0; if (*virtuals) { /* We always reserve a slot for the offset/tdesc entry. */ ++n; *virtuals = TREE_CHAIN (*virtuals); } if (flag_vtable_thunks && *virtuals) { /* The second slot is reserved for the tdesc pointer when thunks are used. */ ++n; *virtuals = TREE_CHAIN (*virtuals); } return n; } static void modify_one_vtable (binfo, t, fndecl, pfn) tree binfo, t, fndecl, pfn; { tree virtuals = BINFO_VIRTUALS (binfo); unsigned HOST_WIDE_INT n; /* update rtti entry */ if (flag_rtti) { if (binfo == TYPE_BINFO (t)) { if (! BINFO_NEW_VTABLE_MARKED (binfo)) build_vtable (TYPE_BINFO (DECL_CONTEXT (CLASSTYPE_VFIELD (t))), t); } else { if (! BINFO_NEW_VTABLE_MARKED (binfo)) prepare_fresh_vtable (binfo, t); } } if (fndecl == NULL_TREE) return; n = skip_rtti_stuff (&virtuals, t); while (virtuals) { tree current_fndecl = TREE_VALUE (virtuals); current_fndecl = FNADDR_FROM_VTABLE_ENTRY (current_fndecl); current_fndecl = TREE_OPERAND (current_fndecl, 0); if (current_fndecl && overrides (fndecl, current_fndecl)) { tree base_offset, offset; tree context = DECL_CLASS_CONTEXT (fndecl); tree vfield = CLASSTYPE_VFIELD (t); tree this_offset; offset = get_class_offset (context, t, binfo, fndecl); /* Find the right offset for the this pointer based on the base class we just found. We have to take into consideration the virtual base class pointers that we stick in before the virtual function table pointer. Also, we want just the delta between the most base class that we derived this vfield from and us. */ base_offset = size_binop (PLUS_EXPR, get_derived_offset (binfo, DECL_CONTEXT (current_fndecl)), BINFO_OFFSET (binfo)); this_offset = ssize_binop (MINUS_EXPR, offset, base_offset); if (binfo == TYPE_BINFO (t)) { /* In this case, it is *type*'s vtable we are modifying. We start with the approximation that it's vtable is that of the immediate base class. */ if (! BINFO_NEW_VTABLE_MARKED (binfo)) build_vtable (TYPE_BINFO (DECL_CONTEXT (vfield)), t); } else { /* This is our very own copy of `basetype' to play with. Later, we will fill in all the virtual functions that override the virtual functions in these base classes which are not defined by the current type. */ if (! BINFO_NEW_VTABLE_MARKED (binfo)) prepare_fresh_vtable (binfo, t); } #ifdef NOTQUITE cp_warning ("in %D", DECL_NAME (BINFO_VTABLE (binfo))); #endif modify_vtable_entry (get_vtable_entry_n (BINFO_VIRTUALS (binfo), n), build_vtable_entry (this_offset, pfn), fndecl); } ++n; virtuals = TREE_CHAIN (virtuals); } } /* These are the ones that are not through virtual base classes. */ static void modify_all_direct_vtables (binfo, do_self, t, fndecl, pfn) tree binfo; int do_self; tree t, fndecl, pfn; { tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; /* Should we use something besides CLASSTYPE_VFIELDS? */ if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo))) { modify_one_vtable (binfo, t, fndecl, pfn); } for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo)); if (! TREE_VIA_VIRTUAL (base_binfo)) modify_all_direct_vtables (base_binfo, is_not_base_vtable, t, fndecl, pfn); } } /* Fixup all the delta entries in this one vtable that need updating. */ static void fixup_vtable_deltas1 (binfo, t) tree binfo, t; { tree virtuals = BINFO_VIRTUALS (binfo); unsigned HOST_WIDE_INT n; n = skip_rtti_stuff (&virtuals, t); while (virtuals) { tree fndecl = TREE_VALUE (virtuals); tree pfn = FNADDR_FROM_VTABLE_ENTRY (fndecl); tree delta = DELTA_FROM_VTABLE_ENTRY (fndecl); fndecl = TREE_OPERAND (pfn, 0); if (fndecl) { tree base_offset, offset; tree context = DECL_CLASS_CONTEXT (fndecl); tree vfield = CLASSTYPE_VFIELD (t); tree this_offset; offset = get_class_offset (context, t, binfo, fndecl); /* Find the right offset for the this pointer based on the base class we just found. We have to take into consideration the virtual base class pointers that we stick in before the virtual function table pointer. Also, we want just the delta between the most base class that we derived this vfield from and us. */ base_offset = size_binop (PLUS_EXPR, get_derived_offset (binfo, DECL_CONTEXT (fndecl)), BINFO_OFFSET (binfo)); this_offset = ssize_binop (MINUS_EXPR, offset, base_offset); if (! tree_int_cst_equal (this_offset, delta)) { /* Make sure we can modify the derived association with immunity. */ if (binfo == TYPE_BINFO (t)) { /* In this case, it is *type*'s vtable we are modifying. We start with the approximation that it's vtable is that of the immediate base class. */ if (! BINFO_NEW_VTABLE_MARKED (binfo)) build_vtable (TYPE_BINFO (DECL_CONTEXT (vfield)), t); } else { /* This is our very own copy of `basetype' to play with. Later, we will fill in all the virtual functions that override the virtual functions in these base classes which are not defined by the current type. */ if (! BINFO_NEW_VTABLE_MARKED (binfo)) prepare_fresh_vtable (binfo, t); } modify_vtable_entry (get_vtable_entry_n (BINFO_VIRTUALS (binfo), n), build_vtable_entry (this_offset, pfn), fndecl); } } ++n; virtuals = TREE_CHAIN (virtuals); } } /* Fixup all the delta entries in all the direct vtables that need updating. This happens when we have non-overridden virtual functions from a virtual base class, that are at a different offset, in the new hierarchy, because the layout of the virtual bases has changed. */ static void fixup_vtable_deltas (binfo, init_self, t) tree binfo; int init_self; tree t; { tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo)); if (! TREE_VIA_VIRTUAL (base_binfo)) fixup_vtable_deltas (base_binfo, is_not_base_vtable, t); } /* Should we use something besides CLASSTYPE_VFIELDS? */ if (init_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo))) { fixup_vtable_deltas1 (binfo, t); } } /* These are the ones that are through virtual base classes. */ static void modify_all_indirect_vtables (binfo, do_self, via_virtual, t, fndecl, pfn) tree binfo; int do_self, via_virtual; tree t, fndecl, pfn; { tree binfos = BINFO_BASETYPES (binfo); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; /* Should we use something besides CLASSTYPE_VFIELDS? */ if (do_self && via_virtual && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo))) { modify_one_vtable (binfo, t, fndecl, pfn); } for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo)); if (TREE_VIA_VIRTUAL (base_binfo)) { via_virtual = 1; base_binfo = binfo_member (BINFO_TYPE (base_binfo), CLASSTYPE_VBASECLASSES (t)); } modify_all_indirect_vtables (base_binfo, is_not_base_vtable, via_virtual, t, fndecl, pfn); } } static void modify_all_vtables (t, fndecl, vfn) tree t, fndecl, vfn; { /* Do these first, so that we will make use of any non-virtual class's vtable, over a virtual classes vtable. */ modify_all_direct_vtables (TYPE_BINFO (t), 1, t, fndecl, vfn); if (TYPE_USES_VIRTUAL_BASECLASSES (t)) modify_all_indirect_vtables (TYPE_BINFO (t), 1, 0, t, fndecl, vfn); } /* Here, we already know that they match in every respect. All we have to check is where they had their declarations. */ static int strictly_overrides (fndecl1, fndecl2) tree fndecl1, fndecl2; { int distance = get_base_distance (DECL_CLASS_CONTEXT (fndecl2), DECL_CLASS_CONTEXT (fndecl1), 0, (tree *)0); if (distance == -2 || distance > 0) return 1; return 0; } /* Merge overrides for one vtable. If we want to merge in same function, we are fine. else if one has a DECL_CLASS_CONTEXT that is a parent of the other, than choose the more derived one else potentially ill-formed (see 10.3 [class.virtual]) we have to check later to see if there was an override in this class. If there was ok, if not then it is ill-formed. (mrs) We take special care to reuse a vtable, if we can. */ static void override_one_vtable (binfo, old, t) tree binfo, old, t; { tree virtuals = BINFO_VIRTUALS (binfo); tree old_virtuals = BINFO_VIRTUALS (old); enum { REUSE_NEW, REUSE_OLD, UNDECIDED, NEITHER } choose = UNDECIDED; /* If we have already committed to modifying it, then don't try and reuse another vtable. */ if (BINFO_NEW_VTABLE_MARKED (binfo)) choose = NEITHER; skip_rtti_stuff (&virtuals, t); skip_rtti_stuff (&old_virtuals, t); while (virtuals) { tree fndecl = TREE_VALUE (virtuals); tree old_fndecl = TREE_VALUE (old_virtuals); fndecl = FNADDR_FROM_VTABLE_ENTRY (fndecl); old_fndecl = FNADDR_FROM_VTABLE_ENTRY (old_fndecl); fndecl = TREE_OPERAND (fndecl, 0); old_fndecl = TREE_OPERAND (old_fndecl, 0); /* First check to see if they are the same. */ if (DECL_ASSEMBLER_NAME (fndecl) == DECL_ASSEMBLER_NAME (old_fndecl)) { /* No need to do anything. */ } else if (strictly_overrides (fndecl, old_fndecl)) { if (choose == UNDECIDED) choose = REUSE_NEW; else if (choose == REUSE_OLD) { choose = NEITHER; if (! BINFO_NEW_VTABLE_MARKED (binfo)) { prepare_fresh_vtable (binfo, t); override_one_vtable (binfo, old, t); return; } } } else if (strictly_overrides (old_fndecl, fndecl)) { if (choose == UNDECIDED) choose = REUSE_OLD; else if (choose == REUSE_NEW) { choose = NEITHER; if (! BINFO_NEW_VTABLE_MARKED (binfo)) { prepare_fresh_vtable (binfo, t); override_one_vtable (binfo, old, t); return; } TREE_VALUE (virtuals) = TREE_VALUE (old_virtuals); } else if (choose == NEITHER) { TREE_VALUE (virtuals) = TREE_VALUE (old_virtuals); } } else { choose = NEITHER; if (! BINFO_NEW_VTABLE_MARKED (binfo)) { prepare_fresh_vtable (binfo, t); override_one_vtable (binfo, old, t); return; } { /* This MUST be overridden, or the class is ill-formed. */ tree fndecl = TREE_OPERAND (FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (virtuals)), 0); tree vfn; fndecl = copy_node (fndecl); copy_lang_decl (fndecl); DECL_NEEDS_FINAL_OVERRIDER_P (fndecl) = 1; /* Make sure we search for it later. */ if (! CLASSTYPE_ABSTRACT_VIRTUALS (t)) CLASSTYPE_ABSTRACT_VIRTUALS (t) = error_mark_node; vfn = build1 (ADDR_EXPR, vfunc_ptr_type_node, fndecl); TREE_CONSTANT (vfn) = 1; /* We can use integer_zero_node, as we will core dump if this is used anyway. */ TREE_VALUE (virtuals) = build_vtable_entry (integer_zero_node, vfn); } } virtuals = TREE_CHAIN (virtuals); old_virtuals = TREE_CHAIN (old_virtuals); } /* Let's reuse the old vtable. */ if (choose == REUSE_OLD) { BINFO_VTABLE (binfo) = BINFO_VTABLE (old); BINFO_VIRTUALS (binfo) = BINFO_VIRTUALS (old); } } /* Merge in overrides for virtual bases. BINFO is the hierarchy we want to modify, and OLD has the potential overrides. */ static void merge_overrides (binfo, old, do_self, t) tree binfo, old; int do_self; tree t; { tree binfos = BINFO_BASETYPES (binfo); tree old_binfos = BINFO_BASETYPES (old); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; /* Should we use something besides CLASSTYPE_VFIELDS? */ if (do_self && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo))) { override_one_vtable (binfo, old, t); } for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree old_base_binfo = TREE_VEC_ELT (old_binfos, i); int is_not_base_vtable = i != CLASSTYPE_VFIELD_PARENT (BINFO_TYPE (binfo)); if (! TREE_VIA_VIRTUAL (base_binfo)) merge_overrides (base_binfo, old_base_binfo, is_not_base_vtable, t); } } /* Get the base virtual function declarations in T that are either overridden or hidden by FNDECL as a list. We set TREE_PURPOSE with the overrider/hider. */ static tree get_basefndecls (fndecl, t) tree fndecl, t; { tree methods = TYPE_METHODS (t); tree base_fndecls = NULL_TREE; tree binfos = BINFO_BASETYPES (TYPE_BINFO (t)); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; while (methods) { if (TREE_CODE (methods) == FUNCTION_DECL && DECL_VINDEX (methods) != NULL_TREE && DECL_NAME (fndecl) == DECL_NAME (methods)) base_fndecls = temp_tree_cons (fndecl, methods, base_fndecls); methods = TREE_CHAIN (methods); } if (base_fndecls) return base_fndecls; for (i = 0; i < n_baseclasses; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree basetype = BINFO_TYPE (base_binfo); base_fndecls = chainon (get_basefndecls (fndecl, basetype), base_fndecls); } return base_fndecls; } /* Mark the functions that have been hidden with their overriders. Since we start out with all functions already marked with a hider, no need to mark functions that are just hidden. Subroutine of warn_hidden. */ static void mark_overriders (fndecl, base_fndecls) tree fndecl, base_fndecls; { for (; base_fndecls; base_fndecls = TREE_CHAIN (base_fndecls)) { if (overrides (fndecl, TREE_VALUE (base_fndecls))) TREE_PURPOSE (base_fndecls) = fndecl; } } /* If this declaration supersedes the declaration of a method declared virtual in the base class, then mark this field as being virtual as well. */ static void check_for_override (decl, ctype) tree decl, ctype; { tree binfos = BINFO_BASETYPES (TYPE_BINFO (ctype)); int i, n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0; int virtualp = DECL_VIRTUAL_P (decl); int found_overriden_fn = 0; for (i = 0; i < n_baselinks; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); if (TYPE_VIRTUAL_P (BINFO_TYPE (base_binfo))) { tree tmp = get_matching_virtual (base_binfo, decl, DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (decl))); if (tmp && !found_overriden_fn) { /* If this function overrides some virtual in some base class, then the function itself is also necessarily virtual, even if the user didn't explicitly say so. */ DECL_VIRTUAL_P (decl) = 1; /* The TMP we really want is the one from the deepest baseclass on this path, taking care not to duplicate if we have already found it (via another path to its virtual baseclass. */ if (TREE_CODE (TREE_TYPE (decl)) == FUNCTION_TYPE) { cp_error_at ("method `%D' may not be declared static", decl); cp_error_at ("(since `%D' declared virtual in base class.)", tmp); break; } virtualp = 1; DECL_VINDEX (decl) = tree_cons (NULL_TREE, tmp, DECL_VINDEX (decl)); /* We now know that DECL overrides something, which is all that is important. But, we must continue to iterate through all the base-classes in order to allow get_matching_virtual to check for various illegal overrides. */ found_overriden_fn = 1; } } } if (virtualp) { if (DECL_VINDEX (decl) == NULL_TREE) DECL_VINDEX (decl) = error_mark_node; IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1; } } /* Warn about hidden virtual functions that are not overridden in t. We know that constructors and destructors don't apply. */ void warn_hidden (t) tree t; { tree method_vec = CLASSTYPE_METHOD_VEC (t); int n_methods = method_vec ? TREE_VEC_LENGTH (method_vec) : 0; int i; /* We go through each separately named virtual function. */ for (i = 2; i < n_methods && TREE_VEC_ELT (method_vec, i); ++i) { tree fns = TREE_VEC_ELT (method_vec, i); tree fndecl; tree base_fndecls = NULL_TREE; tree binfos = BINFO_BASETYPES (TYPE_BINFO (t)); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; /* First see if we have any virtual functions in this batch. */ for (; fns; fns = OVL_NEXT (fns)) { fndecl = OVL_CURRENT (fns); if (DECL_VINDEX (fndecl)) break; } if (fns == NULL_TREE) continue; /* First we get a list of all possible functions that might be hidden from each base class. */ for (i = 0; i < n_baseclasses; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree basetype = BINFO_TYPE (base_binfo); base_fndecls = chainon (get_basefndecls (fndecl, basetype), base_fndecls); } fns = OVL_NEXT (fns); /* ...then mark up all the base functions with overriders, preferring overriders to hiders. */ if (base_fndecls) for (; fns; fns = OVL_NEXT (fns)) { fndecl = OVL_CURRENT (fns); if (DECL_VINDEX (fndecl)) mark_overriders (fndecl, base_fndecls); } /* Now give a warning for all base functions without overriders, as they are hidden. */ for (; base_fndecls; base_fndecls = TREE_CHAIN (base_fndecls)) { if (! overrides (TREE_PURPOSE (base_fndecls), TREE_VALUE (base_fndecls))) { /* Here we know it is a hider, and no overrider exists. */ cp_warning_at ("`%D' was hidden", TREE_VALUE (base_fndecls)); cp_warning_at (" by `%D'", TREE_PURPOSE (base_fndecls)); } } } } /* Check for things that are invalid. There are probably plenty of other things we should check for also. */ static void finish_struct_anon (t) tree t; { tree field; for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field)) { if (TREE_STATIC (field)) continue; if (TREE_CODE (field) != FIELD_DECL) continue; if (DECL_NAME (field) == NULL_TREE && TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) { tree* uelt = &TYPE_FIELDS (TREE_TYPE (field)); for (; *uelt; uelt = &TREE_CHAIN (*uelt)) { if (DECL_ARTIFICIAL (*uelt)) continue; if (DECL_NAME (*uelt) == constructor_name (t)) cp_pedwarn_at ("ANSI C++ forbids member `%D' with same name as enclosing class", *uelt); if (TREE_CODE (*uelt) != FIELD_DECL) { cp_pedwarn_at ("`%#D' invalid; an anonymous union can only have non-static data members", *uelt); continue; } if (TREE_PRIVATE (*uelt)) cp_pedwarn_at ("private member `%#D' in anonymous union", *uelt); else if (TREE_PROTECTED (*uelt)) cp_pedwarn_at ("protected member `%#D' in anonymous union", *uelt); TREE_PRIVATE (*uelt) = TREE_PRIVATE (field); TREE_PROTECTED (*uelt) = TREE_PROTECTED (field); } } } } extern int interface_only, interface_unknown; /* Create default constructors, assignment operators, and so forth for the type indicated by T, if they are needed. CANT_HAVE_DEFAULT_CTOR, CANT_HAVE_CONST_CTOR, and CANT_HAVE_ASSIGNMENT are nonzero if, for whatever reason, the class cannot have a default constructor, copy constructor taking a const reference argument, or an assignment operator, respectively. If a virtual destructor is created, its DECL is returned; otherwise the return value is NULL_TREE. */ static tree add_implicitly_declared_members (t, cant_have_default_ctor, cant_have_const_cctor, cant_have_assignment) tree t; int cant_have_default_ctor; int cant_have_const_cctor; int cant_have_assignment; { tree default_fn; tree implicit_fns = NULL_TREE; tree name = TYPE_IDENTIFIER (t); tree virtual_dtor = NULL_TREE; tree *f; /* Destructor. */ if (TYPE_NEEDS_DESTRUCTOR (t) && !TYPE_HAS_DESTRUCTOR (t) && !IS_SIGNATURE (t)) { default_fn = cons_up_default_function (t, name, 0); check_for_override (default_fn, t); /* If we couldn't make it work, then pretend we didn't need it. */ if (default_fn == void_type_node) TYPE_NEEDS_DESTRUCTOR (t) = 0; else { TREE_CHAIN (default_fn) = implicit_fns; implicit_fns = default_fn; if (DECL_VINDEX (default_fn)) virtual_dtor = default_fn; } } TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_HAS_DESTRUCTOR (t); /* Default constructor. */ if (! TYPE_HAS_CONSTRUCTOR (t) && ! cant_have_default_ctor && ! IS_SIGNATURE (t)) { default_fn = cons_up_default_function (t, name, 2); TREE_CHAIN (default_fn) = implicit_fns; implicit_fns = default_fn; } /* Copy constructor. */ if (! TYPE_HAS_INIT_REF (t) && ! IS_SIGNATURE (t) && ! TYPE_FOR_JAVA (t)) { /* ARM 12.18: You get either X(X&) or X(const X&), but not both. --Chip */ default_fn = cons_up_default_function (t, name, 3 + cant_have_const_cctor); TREE_CHAIN (default_fn) = implicit_fns; implicit_fns = default_fn; } /* Assignment operator. */ if (! TYPE_HAS_ASSIGN_REF (t) && ! IS_SIGNATURE (t) && ! TYPE_FOR_JAVA (t)) { default_fn = cons_up_default_function (t, name, 5 + cant_have_assignment); TREE_CHAIN (default_fn) = implicit_fns; implicit_fns = default_fn; } /* Now, hook all of the new functions on to TYPE_METHODS, and add them to the CLASSTYPE_METHOD_VEC. */ for (f = &implicit_fns; *f; f = &TREE_CHAIN (*f)) add_method (t, 0, *f); *f = TYPE_METHODS (t); TYPE_METHODS (t) = implicit_fns; return virtual_dtor; } /* Create a RECORD_TYPE or UNION_TYPE node for a C struct or union declaration (or C++ class declaration). For C++, we must handle the building of derived classes. Also, C++ allows static class members. The way that this is handled is to keep the field name where it is (as the DECL_NAME of the field), and place the overloaded decl in the DECL_FIELD_BITPOS of the field. layout_record and layout_union will know about this. More C++ hair: inline functions have text in their DECL_PENDING_INLINE_INFO nodes which must somehow be parsed into meaningful tree structure. After the struct has been laid out, set things up so that this can happen. And still more: virtual functions. In the case of single inheritance, when a new virtual function is seen which redefines a virtual function from the base class, the new virtual function is placed into the virtual function table at exactly the same address that it had in the base class. When this is extended to multiple inheritance, the same thing happens, except that multiple virtual function tables must be maintained. The first virtual function table is treated in exactly the same way as in the case of single inheritance. Additional virtual function tables have different DELTAs, which tell how to adjust `this' to point to the right thing. ATTRIBUTES is the set of decl attributes to be applied, if any. */ void finish_struct_1 (t, warn_anon) tree t; int warn_anon; { int old; enum tree_code code = TREE_CODE (t); tree fields = TYPE_FIELDS (t); tree x, last_x, method_vec; int has_virtual; int max_has_virtual; tree pending_virtuals = NULL_TREE; tree pending_hard_virtuals = NULL_TREE; tree abstract_virtuals = NULL_TREE; tree vfield; tree vfields; tree virtual_dtor; int cant_have_default_ctor; int cant_have_const_ctor; int no_const_asn_ref; int has_mutable = 0; /* The index of the first base class which has virtual functions. Only applied to non-virtual baseclasses. */ int first_vfn_base_index; int n_baseclasses; int any_default_members = 0; int const_sans_init = 0; int ref_sans_init = 0; tree access_decls = NULL_TREE; int aggregate = 1; int empty = 1; int has_pointers = 0; tree inline_friends; if (warn_anon && code != UNION_TYPE && ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))) pedwarn ("anonymous class type not used to declare any objects"); if (TYPE_SIZE (t)) { if (IS_AGGR_TYPE (t)) cp_error ("redefinition of `%#T'", t); else my_friendly_abort (172); popclass (); return; } GNU_xref_decl (current_function_decl, t); /* If this type was previously laid out as a forward reference, make sure we lay it out again. */ TYPE_SIZE (t) = NULL_TREE; CLASSTYPE_GOT_SEMICOLON (t) = 0; #if 0 /* This is in general too late to do this. I moved the main case up to left_curly, what else needs to move? */ if (! IS_SIGNATURE (t)) { my_friendly_assert (CLASSTYPE_INTERFACE_ONLY (t) == interface_only, 999); my_friendly_assert (CLASSTYPE_INTERFACE_KNOWN (t) == ! interface_unknown, 999); } #endif old = suspend_momentary (); /* Install struct as DECL_FIELD_CONTEXT of each field decl. Also process specified field sizes. Set DECL_FIELD_SIZE to the specified size, or 0 if none specified. The specified size is found in the DECL_INITIAL. Store 0 there, except for ": 0" fields (so we can find them and delete them, below). */ if (TYPE_BINFO_BASETYPES (t)) n_baseclasses = TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (t)); else n_baseclasses = 0; if (n_baseclasses > 0) { struct base_info base_info; first_vfn_base_index = finish_base_struct (t, &base_info); /* Remember where we got our vfield from. */ CLASSTYPE_VFIELD_PARENT (t) = first_vfn_base_index; has_virtual = base_info.has_virtual; max_has_virtual = base_info.max_has_virtual; vfield = base_info.vfield; vfields = base_info.vfields; CLASSTYPE_RTTI (t) = base_info.rtti; cant_have_default_ctor = base_info.cant_have_default_ctor; cant_have_const_ctor = base_info.cant_have_const_ctor; no_const_asn_ref = base_info.no_const_asn_ref; aggregate = 0; } else { first_vfn_base_index = -1; has_virtual = 0; max_has_virtual = has_virtual; vfield = NULL_TREE; vfields = NULL_TREE; CLASSTYPE_RTTI (t) = NULL_TREE; cant_have_default_ctor = 0; cant_have_const_ctor = 0; no_const_asn_ref = 0; } #if 0 /* Both of these should be done before now. */ if (write_virtuals == 3 && CLASSTYPE_INTERFACE_KNOWN (t) && ! IS_SIGNATURE (t)) { my_friendly_assert (CLASSTYPE_INTERFACE_ONLY (t) == interface_only, 999); my_friendly_assert (CLASSTYPE_VTABLE_NEEDS_WRITING (t) == ! interface_only, 999); } #endif /* The three of these are approximations which may later be modified. Needed at this point to make add_virtual_function and modify_vtable_entries work. */ CLASSTYPE_VFIELDS (t) = vfields; CLASSTYPE_VFIELD (t) = vfield; for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x)) { GNU_xref_member (current_class_name, x); /* If this was an evil function, don't keep it in class. */ if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (x))) continue; /* Do both of these, even though they're in the same union; if the insn `r' member and the size `i' member are different sizes, as on the alpha, the larger of the two will end up with garbage in it. */ DECL_SAVED_INSNS (x) = NULL_RTX; DECL_FIELD_SIZE (x) = 0; check_for_override (x, t); if (DECL_ABSTRACT_VIRTUAL_P (x) && ! DECL_VINDEX (x)) cp_error_at ("initializer specified for non-virtual method `%D'", x); /* The name of the field is the original field name Save this in auxiliary field for later overloading. */ if (DECL_VINDEX (x)) { add_virtual_function (&pending_virtuals, &pending_hard_virtuals, &has_virtual, x, t); if (DECL_ABSTRACT_VIRTUAL_P (x)) abstract_virtuals = tree_cons (NULL_TREE, x, abstract_virtuals); #if 0 /* XXX Why did I comment this out? (jason) */ else TREE_USED (x) = 1; #endif } } if (n_baseclasses) fields = chainon (build_vbase_pointer_fields (t), fields); last_x = NULL_TREE; for (x = fields; x; x = TREE_CHAIN (x)) { GNU_xref_member (current_class_name, x); if (TREE_CODE (x) == FIELD_DECL) { DECL_PACKED (x) |= TYPE_PACKED (t); if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x))) /* A zero-width bitfield doesn't do the trick. */; else empty = 0; } if (TREE_CODE (x) == USING_DECL) { /* Save access declarations for later. */ if (last_x) TREE_CHAIN (last_x) = TREE_CHAIN (x); else fields = TREE_CHAIN (x); access_decls = scratch_tree_cons (NULL_TREE, x, access_decls); continue; } last_x = x; if (TREE_CODE (x) == TYPE_DECL || TREE_CODE (x) == TEMPLATE_DECL) continue; /* If we've gotten this far, it's a data member, possibly static, or an enumerator. */ DECL_FIELD_CONTEXT (x) = t; /* ``A local class cannot have static data members.'' ARM 9.4 */ if (current_function_decl && TREE_STATIC (x)) cp_error_at ("field `%D' in local class cannot be static", x); /* Perform error checking that did not get done in grokdeclarator. */ if (TREE_CODE (TREE_TYPE (x)) == FUNCTION_TYPE) { cp_error_at ("field `%D' invalidly declared function type", x); TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x)); } else if (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE) { cp_error_at ("field `%D' invalidly declared method type", x); TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x)); } else if (TREE_CODE (TREE_TYPE (x)) == OFFSET_TYPE) { cp_error_at ("field `%D' invalidly declared offset type", x); TREE_TYPE (x) = build_pointer_type (TREE_TYPE (x)); } #if 0 if (DECL_NAME (x) == constructor_name (t)) cant_have_default_ctor = 1; #endif if (TREE_TYPE (x) == error_mark_node) continue; DECL_SAVED_INSNS (x) = NULL_RTX; DECL_FIELD_SIZE (x) = 0; /* When this goes into scope, it will be a non-local reference. */ DECL_NONLOCAL (x) = 1; if (TREE_CODE (x) == CONST_DECL) continue; if (TREE_CODE (x) == VAR_DECL) { if (TREE_CODE (t) == UNION_TYPE) /* Unions cannot have static members. */ cp_error_at ("field `%D' declared static in union", x); continue; } /* Now it can only be a FIELD_DECL. */ if (TREE_PRIVATE (x) || TREE_PROTECTED (x)) aggregate = 0; /* If this is of reference type, check if it needs an init. Also do a little ANSI jig if necessary. */ if (TREE_CODE (TREE_TYPE (x)) == REFERENCE_TYPE) { if (DECL_INITIAL (x) == NULL_TREE) ref_sans_init = 1; /* ARM $12.6.2: [A member initializer list] (or, for an aggregate, initialization by a brace-enclosed list) is the only way to initialize nonstatic const and reference members. */ cant_have_default_ctor = 1; TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1; if (! TYPE_HAS_CONSTRUCTOR (t) && extra_warnings) { if (DECL_NAME (x)) cp_warning_at ("non-static reference `%#D' in class without a constructor", x); else cp_warning_at ("non-static reference in class without a constructor", x); } } if (TREE_CODE (TREE_TYPE (x)) == POINTER_TYPE) has_pointers = 1; if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (TREE_TYPE (x))) has_mutable = 1; /* If any field is const, the structure type is pseudo-const. */ if (CP_TYPE_CONST_P (TREE_TYPE (x))) { C_TYPE_FIELDS_READONLY (t) = 1; if (DECL_INITIAL (x) == NULL_TREE) const_sans_init = 1; /* ARM $12.6.2: [A member initializer list] (or, for an aggregate, initialization by a brace-enclosed list) is the only way to initialize nonstatic const and reference members. */ cant_have_default_ctor = 1; TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1; if (! TYPE_HAS_CONSTRUCTOR (t) && !IS_SIGNATURE (t) && extra_warnings) { if (DECL_NAME (x)) cp_warning_at ("non-static const member `%#D' in class without a constructor", x); else cp_warning_at ("non-static const member in class without a constructor", x); } } else { /* A field that is pseudo-const makes the structure likewise. */ tree t1 = TREE_TYPE (x); while (TREE_CODE (t1) == ARRAY_TYPE) t1 = TREE_TYPE (t1); if (IS_AGGR_TYPE (t1)) { if (C_TYPE_FIELDS_READONLY (t1)) C_TYPE_FIELDS_READONLY (t) = 1; if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (t1)) const_sans_init = 1; } } /* We set DECL_C_BIT_FIELD in grokbitfield. If the type and width are valid, we'll also set DECL_BIT_FIELD. */ if (DECL_C_BIT_FIELD (x)) { /* Invalid bit-field size done by grokfield. */ /* Detect invalid bit-field type. */ if (DECL_INITIAL (x) && ! INTEGRAL_TYPE_P (TREE_TYPE (x))) { cp_error_at ("bit-field `%#D' with non-integral type", x); DECL_INITIAL (x) = NULL; } /* Detect and ignore out of range field width. */ if (DECL_INITIAL (x)) { tree w = DECL_INITIAL (x); register int width = 0; /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */ STRIP_NOPS (w); /* detect invalid field size. */ if (TREE_CODE (w) == CONST_DECL) w = DECL_INITIAL (w); else if (TREE_READONLY_DECL_P (w)) w = decl_constant_value (w); if (TREE_CODE (w) != INTEGER_CST) { cp_error_at ("bit-field `%D' width not an integer constant", x); DECL_INITIAL (x) = NULL_TREE; } else if (width = TREE_INT_CST_LOW (w), width < 0) { DECL_INITIAL (x) = NULL; cp_error_at ("negative width in bit-field `%D'", x); } else if (width == 0 && DECL_NAME (x) != 0) { DECL_INITIAL (x) = NULL; cp_error_at ("zero width for bit-field `%D'", x); } else if (width > TYPE_PRECISION (long_long_unsigned_type_node)) { /* The backend will dump if you try to use something too big; avoid that. */ DECL_INITIAL (x) = NULL; sorry ("bit-fields larger than %d bits", TYPE_PRECISION (long_long_unsigned_type_node)); cp_error_at (" in declaration of `%D'", x); } else if (width > TYPE_PRECISION (TREE_TYPE (x)) && TREE_CODE (TREE_TYPE (x)) != ENUMERAL_TYPE && TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE) { cp_warning_at ("width of `%D' exceeds its type", x); } else if (TREE_CODE (TREE_TYPE (x)) == ENUMERAL_TYPE && ((min_precision (TYPE_MIN_VALUE (TREE_TYPE (x)), TREE_UNSIGNED (TREE_TYPE (x))) > width) || (min_precision (TYPE_MAX_VALUE (TREE_TYPE (x)), TREE_UNSIGNED (TREE_TYPE (x))) > width))) { cp_warning_at ("`%D' is too small to hold all values of `%#T'", x, TREE_TYPE (x)); } if (DECL_INITIAL (x)) { DECL_INITIAL (x) = NULL_TREE; DECL_FIELD_SIZE (x) = width; DECL_BIT_FIELD (x) = 1; if (width == 0) { #ifdef EMPTY_FIELD_BOUNDARY DECL_ALIGN (x) = MAX (DECL_ALIGN (x), EMPTY_FIELD_BOUNDARY); #endif #ifdef PCC_BITFIELD_TYPE_MATTERS if (PCC_BITFIELD_TYPE_MATTERS) DECL_ALIGN (x) = MAX (DECL_ALIGN (x), TYPE_ALIGN (TREE_TYPE (x))); #endif } } } else /* Non-bit-fields are aligned for their type. */ DECL_ALIGN (x) = MAX (DECL_ALIGN (x), TYPE_ALIGN (TREE_TYPE (x))); } else { tree type = TREE_TYPE (x); while (TREE_CODE (type) == ARRAY_TYPE) type = TREE_TYPE (type); if (TYPE_LANG_SPECIFIC (type) && ! ANON_UNION_P (x) && ! TYPE_PTRMEMFUNC_P (type)) { /* Never let anything with uninheritable virtuals make it through without complaint. */ if (CLASSTYPE_ABSTRACT_VIRTUALS (type)) abstract_virtuals_error (x, type); /* Don't let signatures make it through either. */ if (IS_SIGNATURE (type)) signature_error (x, type); if (code == UNION_TYPE) { const char *fie = NULL; if (TYPE_NEEDS_CONSTRUCTING (type)) fie = "constructor"; else if (TYPE_NEEDS_DESTRUCTOR (type)) fie = "destructor"; else if (TYPE_HAS_COMPLEX_ASSIGN_REF (type)) fie = "copy assignment operator"; if (fie) cp_error_at ("member `%#D' with %s not allowed in union", x, fie); } else { TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type); TYPE_NEEDS_DESTRUCTOR (t) |= TYPE_NEEDS_DESTRUCTOR (type); TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type); TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type); } if (!TYPE_HAS_CONST_INIT_REF (type)) cant_have_const_ctor = 1; if (!TYPE_HAS_CONST_ASSIGN_REF (type)) no_const_asn_ref = 1; if (TYPE_HAS_CONSTRUCTOR (type) && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type)) { cant_have_default_ctor = 1; #if 0 /* This is wrong for aggregates. */ if (! TYPE_HAS_CONSTRUCTOR (t)) { if (DECL_NAME (x)) cp_pedwarn_at ("member `%#D' with only non-default constructor", x); else cp_pedwarn_at ("member with only non-default constructor", x); cp_pedwarn_at ("in class without a constructor", x); } #endif } } if (DECL_INITIAL (x) != NULL_TREE) { /* `build_class_init_list' does not recognize non-FIELD_DECLs. */ if (code == UNION_TYPE && any_default_members != 0) cp_error_at ("multiple fields in union `%T' initialized"); any_default_members = 1; } } } /* If this type has any constant members which did not come with their own initialization, mark that fact here. It is not an error here, since such types can be saved either by their constructors, or by fortuitous initialization. */ CLASSTYPE_READONLY_FIELDS_NEED_INIT (t) = const_sans_init; CLASSTYPE_REF_FIELDS_NEED_INIT (t) = ref_sans_init; CLASSTYPE_ABSTRACT_VIRTUALS (t) = abstract_virtuals; CLASSTYPE_HAS_MUTABLE (t) = has_mutable; /* Effective C++ rule 11. */ if (has_pointers && warn_ecpp && TYPE_HAS_CONSTRUCTOR (t) && ! (TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t))) { cp_warning ("`%#T' has pointer data members", t); if (! TYPE_HAS_INIT_REF (t)) { cp_warning (" but does not override `%T(const %T&)'", t, t); if (! TYPE_HAS_ASSIGN_REF (t)) cp_warning (" or `operator=(const %T&)'", t); } else if (! TYPE_HAS_ASSIGN_REF (t)) cp_warning (" but does not override `operator=(const %T&)'", t); } /* Do some bookkeeping that will guide the generation of implicitly declared member functions. */ TYPE_HAS_COMPLEX_INIT_REF (t) |= (TYPE_HAS_INIT_REF (t) || TYPE_USES_VIRTUAL_BASECLASSES (t) || has_virtual || any_default_members); TYPE_NEEDS_CONSTRUCTING (t) |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_USES_VIRTUAL_BASECLASSES (t) || has_virtual || any_default_members); if (! IS_SIGNATURE (t)) CLASSTYPE_NON_AGGREGATE (t) = ! aggregate || has_virtual || TYPE_HAS_CONSTRUCTOR (t); TYPE_HAS_REAL_ASSIGN_REF (t) |= TYPE_HAS_ASSIGN_REF (t); TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_ASSIGN_REF (t) || TYPE_USES_VIRTUAL_BASECLASSES (t); /* Synthesize any needed methods. Note that methods will be synthesized for anonymous unions; grok_x_components undoes that. */ virtual_dtor = add_implicitly_declared_members (t, cant_have_default_ctor, cant_have_const_ctor, no_const_asn_ref); if (virtual_dtor) add_virtual_function (&pending_virtuals, &pending_hard_virtuals, &has_virtual, virtual_dtor, t); if (TYPE_METHODS (t)) { finish_struct_methods (t); method_vec = CLASSTYPE_METHOD_VEC (t); } else { method_vec = 0; /* Just in case these got accidentally filled in by syntax errors. */ TYPE_HAS_CONSTRUCTOR (t) = 0; TYPE_HAS_DESTRUCTOR (t) = 0; } for (access_decls = nreverse (access_decls); access_decls; access_decls = TREE_CHAIN (access_decls)) handle_using_decl (TREE_VALUE (access_decls), t, method_vec, fields); if (vfield == NULL_TREE && has_virtual) { /* We build this decl with vtbl_ptr_type_node, which is a `vtable_entry_type*'. It might seem more precise to use `vtable_entry_type (*)[N]' where N is the number of firtual functions. However, that would require the vtable pointer in base classes to have a different type than the vtable pointer in derived classes. We could make that happen, but that still wouldn't solve all the problems. In particular, the type-based alias analysis code would decide that assignments to the base class vtable pointer can't alias assignments to the derived class vtable pointer, since they have different types. Thus, in an derived class destructor, where the base class constructor was inlined, we could generate bad code for setting up the vtable pointer. Therefore, we use one type for all vtable pointers. We still use a type-correct type; it's just doesn't indicate the array bounds. That's better than using `void*' or some such; it's cleaner, and it let's the alias analysis code know that these stores cannot alias stores to void*! */ vfield = build_lang_field_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node); /* If you change any of the below, take a look at all the other VFIELD_BASEs and VTABLE_BASEs in the code, and change them too. */ DECL_ASSEMBLER_NAME (vfield) = get_identifier (VFIELD_BASE); CLASSTYPE_VFIELD (t) = vfield; DECL_VIRTUAL_P (vfield) = 1; DECL_ARTIFICIAL (vfield) = 1; DECL_FIELD_CONTEXT (vfield) = t; DECL_CLASS_CONTEXT (vfield) = t; DECL_FCONTEXT (vfield) = t; DECL_SAVED_INSNS (vfield) = NULL_RTX; DECL_FIELD_SIZE (vfield) = 0; DECL_ALIGN (vfield) = TYPE_ALIGN (ptr_type_node); #if 0 /* This is more efficient, but breaks binary compatibility, turn it on sometime when we don't care. If we turn it on, we also have to enable the code in dfs_init_vbase_pointers. */ /* vfield is always first entry in structure. */ TREE_CHAIN (vfield) = fields; fields = vfield; #else if (last_x) { my_friendly_assert (TREE_CHAIN (last_x) == NULL_TREE, 175); TREE_CHAIN (last_x) = vfield; last_x = vfield; } else fields = vfield; #endif empty = 0; vfields = chainon (vfields, build_tree_list (NULL_TREE, t)); } /* Now DECL_INITIAL is null on all members except for zero-width bit-fields. C++: maybe we will support default field initialization some day... */ /* Delete all duplicate fields from the fields */ delete_duplicate_fields (fields); /* Now we have the nearly final fieldlist for the data fields. Record it, then lay out the structure or union (including the fields). */ TYPE_FIELDS (t) = fields; if (n_baseclasses) { last_x = build_base_fields (t); /* If all our bases are empty, we can be empty too. */ for (x = last_x; empty && x; x = TREE_CHAIN (x)) if (DECL_SIZE (x) != integer_zero_node) empty = 0; } /* CLASSTYPE_INLINE_FRIENDS is really TYPE_NONCOPIED_PARTS. Thus, we have to save this before we start modifying TYPE_NONCOPIED_PARTS. */ inline_friends = CLASSTYPE_INLINE_FRIENDS (t); CLASSTYPE_INLINE_FRIENDS (t) = NULL_TREE; if (empty) { /* C++: do not let empty structures exist. */ tree decl = build_lang_field_decl (FIELD_DECL, NULL_TREE, char_type_node); TREE_CHAIN (decl) = fields; TYPE_FIELDS (t) = decl; TYPE_NONCOPIED_PARTS (t) = tree_cons (NULL_TREE, decl, TYPE_NONCOPIED_PARTS (t)); TREE_STATIC (TYPE_NONCOPIED_PARTS (t)) = 1; } if (n_baseclasses) TYPE_FIELDS (t) = chainon (last_x, TYPE_FIELDS (t)); layout_type (t); /* Remember the size and alignment of the class before adding the virtual bases. */ if (empty && flag_new_abi) CLASSTYPE_SIZE (t) = integer_zero_node; else if (flag_new_abi && TYPE_HAS_COMPLEX_INIT_REF (t) && TYPE_HAS_COMPLEX_ASSIGN_REF (t)) CLASSTYPE_SIZE (t) = TYPE_BINFO_SIZE (t); else CLASSTYPE_SIZE (t) = TYPE_SIZE (t); CLASSTYPE_ALIGN (t) = TYPE_ALIGN (t); finish_struct_anon (t); /* Set the TYPE_DECL for this type to contain the right value for DECL_OFFSET, so that we can use it as part of a COMPONENT_REF for multiple inheritance. */ layout_decl (TYPE_MAIN_DECL (t), 0); /* Now fix up any virtual base class types that we left lying around. We must get these done before we try to lay out the virtual function table. */ pending_hard_virtuals = nreverse (pending_hard_virtuals); if (n_baseclasses) /* layout_basetypes will remove the base subobject fields. */ max_has_virtual = layout_basetypes (t, max_has_virtual); if (empty) TYPE_FIELDS (t) = fields; my_friendly_assert (TYPE_FIELDS (t) == fields, 981117); /* Delete all zero-width bit-fields from the front of the fieldlist */ while (fields && DECL_C_BIT_FIELD (fields) && DECL_INITIAL (fields)) fields = TREE_CHAIN (fields); /* Delete all such fields from the rest of the fields. */ for (x = fields; x;) { if (TREE_CHAIN (x) && DECL_C_BIT_FIELD (TREE_CHAIN (x)) && DECL_INITIAL (TREE_CHAIN (x))) TREE_CHAIN (x) = TREE_CHAIN (TREE_CHAIN (x)); else x = TREE_CHAIN (x); } TYPE_FIELDS (t) = fields; if (TYPE_USES_VIRTUAL_BASECLASSES (t)) { tree vbases; vbases = CLASSTYPE_VBASECLASSES (t); { /* Now fixup overrides of all functions in vtables from all direct or indirect virtual base classes. */ tree binfos = BINFO_BASETYPES (TYPE_BINFO (t)); int i, n_baseclasses = binfos ? TREE_VEC_LENGTH (binfos) : 0; for (i = 0; i < n_baseclasses; i++) { tree base_binfo = TREE_VEC_ELT (binfos, i); tree basetype = BINFO_TYPE (base_binfo); tree vbases; vbases = CLASSTYPE_VBASECLASSES (basetype); while (vbases) { merge_overrides (binfo_member (BINFO_TYPE (vbases), CLASSTYPE_VBASECLASSES (t)), vbases, 1, t); vbases = TREE_CHAIN (vbases); } } } } /* Set up the DECL_FIELD_BITPOS of the vfield if we need to, as we might need to know it for setting up the offsets in the vtable (or in thunks) below. */ if (vfield != NULL_TREE && DECL_FIELD_CONTEXT (vfield) != t) { tree binfo = get_binfo (DECL_FIELD_CONTEXT (vfield), t, 0); tree offset = BINFO_OFFSET (binfo); vfield = copy_node (vfield); copy_lang_decl (vfield); if (! integer_zerop (offset)) offset = size_binop (MULT_EXPR, offset, size_int (BITS_PER_UNIT)); DECL_FIELD_CONTEXT (vfield) = t; DECL_CLASS_CONTEXT (vfield) = t; DECL_FIELD_BITPOS (vfield) = size_binop (PLUS_EXPR, offset, DECL_FIELD_BITPOS (vfield)); CLASSTYPE_VFIELD (t) = vfield; } #ifdef NOTQUITE cp_warning ("Doing hard virtuals for %T...", t); #endif if (has_virtual > max_has_virtual) max_has_virtual = has_virtual; if (max_has_virtual > 0) TYPE_VIRTUAL_P (t) = 1; if (flag_rtti && TYPE_VIRTUAL_P (t) && !pending_hard_virtuals) modify_all_vtables (t, NULL_TREE, NULL_TREE); while (pending_hard_virtuals) { modify_all_vtables (t, TREE_PURPOSE (pending_hard_virtuals), TREE_VALUE (pending_hard_virtuals)); pending_hard_virtuals = TREE_CHAIN (pending_hard_virtuals); } if (TYPE_USES_VIRTUAL_BASECLASSES (t)) { tree vbases; /* Now fixup any virtual function entries from virtual bases that have different deltas. This has to come after we do the pending hard virtuals, as we might have a function that comes from multiple virtual base instances that is only overridden by a hard virtual above. */ vbases = CLASSTYPE_VBASECLASSES (t); while (vbases) { /* We might be able to shorten the amount of work we do by only doing this for vtables that come from virtual bases that have differing offsets, but don't want to miss any entries. */ fixup_vtable_deltas (vbases, 1, t); vbases = TREE_CHAIN (vbases); } } /* Under our model of GC, every C++ class gets its own virtual function table, at least virtually. */ if (pending_virtuals) { pending_virtuals = nreverse (pending_virtuals); /* We must enter these virtuals into the table. */ if (first_vfn_base_index < 0) { if (! CLASSTYPE_COM_INTERFACE (t)) { /* The second slot is for the tdesc pointer when thunks are used. */ if (flag_vtable_thunks) pending_virtuals = tree_cons (NULL_TREE, NULL_TREE, pending_virtuals); /* The first slot is for the rtti offset. */ pending_virtuals = tree_cons (NULL_TREE, NULL_TREE, pending_virtuals); set_rtti_entry (pending_virtuals, convert (ssizetype, integer_zero_node), t); } build_vtable (NULL_TREE, t); } else { /* Here we know enough to change the type of our virtual function table, but we will wait until later this function. */ if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t))) build_vtable (TREE_VEC_ELT (TYPE_BINFO_BASETYPES (t), first_vfn_base_index), t); } /* If this type has basetypes with constructors, then those constructors might clobber the virtual function table. But they don't if the derived class shares the exact vtable of the base class. */ CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1; } else if (first_vfn_base_index >= 0) { tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (t), first_vfn_base_index); /* This class contributes nothing new to the virtual function table. However, it may have declared functions which went into the virtual function table "inherited" from the base class. If so, we grab a copy of those updated functions, and pretend they are ours. */ /* See if we should steal the virtual info from base class. */ if (TYPE_BINFO_VTABLE (t) == NULL_TREE) TYPE_BINFO_VTABLE (t) = BINFO_VTABLE (binfo); if (TYPE_BINFO_VIRTUALS (t) == NULL_TREE) TYPE_BINFO_VIRTUALS (t) = BINFO_VIRTUALS (binfo); if (TYPE_BINFO_VTABLE (t) != BINFO_VTABLE (binfo)) CLASSTYPE_NEEDS_VIRTUAL_REINIT (t) = 1; } if (max_has_virtual || first_vfn_base_index >= 0) { CLASSTYPE_VSIZE (t) = has_virtual; if (first_vfn_base_index >= 0) { if (pending_virtuals) TYPE_BINFO_VIRTUALS (t) = chainon (TYPE_BINFO_VIRTUALS (t), pending_virtuals); } else if (has_virtual) { TYPE_BINFO_VIRTUALS (t) = pending_virtuals; DECL_VIRTUAL_P (TYPE_BINFO_VTABLE (t)) = 1; } } /* Now lay out the virtual function table. */ if (has_virtual) { /* Use size_int so values are memoized in common cases. */ tree itype = build_index_type (size_int (has_virtual)); tree atype = build_cplus_array_type (vtable_entry_type, itype); layout_type (atype); CLASSTYPE_VFIELD (t) = vfield; /* We may have to grow the vtable. */ if (TREE_TYPE (TYPE_BINFO_VTABLE (t)) != atype) { TREE_TYPE (TYPE_BINFO_VTABLE (t)) = atype; DECL_SIZE (TYPE_BINFO_VTABLE (t)) = 0; layout_decl (TYPE_BINFO_VTABLE (t), 0); /* At one time the vtable info was grabbed 2 words at a time. This fails on sparc unless you have 8-byte alignment. (tiemann) */ DECL_ALIGN (TYPE_BINFO_VTABLE (t)) = MAX (TYPE_ALIGN (double_type_node), DECL_ALIGN (TYPE_BINFO_VTABLE (t))); } } else if (first_vfn_base_index >= 0) CLASSTYPE_VFIELD (t) = vfield; CLASSTYPE_VFIELDS (t) = vfields; finish_struct_bits (t, max_has_virtual); /* Complete the rtl for any static member objects of the type we're working on. */ for (x = fields; x; x = TREE_CHAIN (x)) { if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x) && TREE_TYPE (x) == t) { DECL_MODE (x) = TYPE_MODE (t); make_decl_rtl (x, NULL, 0); } } if (TYPE_HAS_CONSTRUCTOR (t)) { tree vfields = CLASSTYPE_VFIELDS (t); while (vfields) { /* Mark the fact that constructor for T could affect anybody inheriting from T who wants to initialize vtables for VFIELDS's type. */ if (VF_DERIVED_VALUE (vfields)) TREE_ADDRESSABLE (vfields) = 1; vfields = TREE_CHAIN (vfields); } } /* Write out inline function definitions. */ do_inline_function_hair (t, inline_friends); if (CLASSTYPE_VSIZE (t) != 0) { #if 0 /* This is now done above. */ if (DECL_FIELD_CONTEXT (vfield) != t) { tree binfo = get_binfo (DECL_FIELD_CONTEXT (vfield), t, 0); tree offset = BINFO_OFFSET (binfo); vfield = copy_node (vfield); copy_lang_decl (vfield); if (! integer_zerop (offset)) offset = size_binop (MULT_EXPR, offset, size_int (BITS_PER_UNIT)); DECL_FIELD_CONTEXT (vfield) = t; DECL_CLASS_CONTEXT (vfield) = t; DECL_FIELD_BITPOS (vfield) = size_binop (PLUS_EXPR, offset, DECL_FIELD_BITPOS (vfield)); CLASSTYPE_VFIELD (t) = vfield; } #endif /* In addition to this one, all the other vfields should be listed. */ /* Before that can be done, we have to have FIELD_DECLs for them, and a place to find them. */ TYPE_NONCOPIED_PARTS (t) = tree_cons (default_conversion (TYPE_BINFO_VTABLE (t)), vfield, TYPE_NONCOPIED_PARTS (t)); if (warn_nonvdtor && TYPE_HAS_DESTRUCTOR (t) && DECL_VINDEX (TREE_VEC_ELT (method_vec, 1)) == NULL_TREE) cp_warning ("`%#T' has virtual functions but non-virtual destructor", t); } /* Make the rtl for any new vtables we have created, and unmark the base types we marked. */ finish_vtbls (TYPE_BINFO (t), 1, t); hack_incomplete_structures (t); #if 0 if (TYPE_NAME (t) && TYPE_IDENTIFIER (t)) undo_template_name_overload (TYPE_IDENTIFIER (t), 1); #endif resume_momentary (old); if (warn_overloaded_virtual) warn_hidden (t); #if 0 /* This has to be done after we have sorted out what to do with the enclosing type. */ if (write_symbols != DWARF_DEBUG) { /* Be smarter about nested classes here. If a type is nested, only output it if we would output the enclosing type. */ if (DECL_CLASS_SCOPE_P (TYPE_MAIN_DECL (t))) DECL_IGNORED_P (TYPE_MAIN_DECL (t)) = TREE_ASM_WRITTEN (TYPE_MAIN_DECL (t)); } #endif if (write_symbols != DWARF_DEBUG && write_symbols != DWARF2_DEBUG) { /* If the type has methods, we want to think about cutting down the amount of symbol table stuff we output. The value stored in the TYPE_DECL's DECL_IGNORED_P slot is a first approximation. For example, if a member function is seen and we decide to write out that member function, then we can change the value of the DECL_IGNORED_P slot, and the type will be output when that member function's debug info is written out. We can't do this with DWARF, which does not support name references between translation units. */ if (CLASSTYPE_METHOD_VEC (t)) { /* Don't output full info about any type which does not have its implementation defined here. */ if (CLASSTYPE_INTERFACE_ONLY (t)) TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; #if 0 /* XXX do something about this. */ else if (CLASSTYPE_INTERFACE_UNKNOWN (t)) /* Only a first approximation! */ TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; #endif } else if (CLASSTYPE_INTERFACE_ONLY (t)) TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1; } /* Finish debugging output for this type. */ rest_of_type_compilation (t, toplevel_bindings_p ()); return; } /* When T was built up, the member declarations were added in reverse order. Rearrange them to declaration order. */ void unreverse_member_declarations (t) tree t; { tree next; tree prev; tree x; /* The TYPE_FIELDS, TYPE_METHODS, and CLASSTYPE_TAGS are all in reverse order. Put them in declaration order now. */ TYPE_METHODS (t) = nreverse (TYPE_METHODS (t)); CLASSTYPE_TAGS (t) = nreverse (CLASSTYPE_TAGS (t)); /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in reverse order, so we can't just use nreverse. */ prev = NULL_TREE; for (x = TYPE_FIELDS (t); x && TREE_CODE (x) != TYPE_DECL; x = next) { next = TREE_CHAIN (x); TREE_CHAIN (x) = prev; prev = x; } if (prev) { TREE_CHAIN (TYPE_FIELDS (t)) = x; if (prev) TYPE_FIELDS (t) = prev; } } tree finish_struct (t, attributes, warn_anon) tree t, attributes; int warn_anon; { tree name = TYPE_NAME (t); if (TREE_CODE (name) == TYPE_DECL) { extern int lineno; DECL_SOURCE_FILE (name) = input_filename; /* For TYPE_DECL that are not typedefs (those marked with a line number of zero, we don't want to mark them as real typedefs. If this fails one needs to make sure real typedefs have a previous line number, even if it is wrong, that way the below will fill in the right line number. (mrs) */ if (DECL_SOURCE_LINE (name)) DECL_SOURCE_LINE (name) = lineno; name = DECL_NAME (name); } /* Append the fields we need for constructing signature tables. */ if (IS_SIGNATURE (t)) append_signature_fields (t); /* Now that we've got all the field declarations, reverse everything as necessary. */ unreverse_member_declarations (t); cplus_decl_attributes (t, attributes, NULL_TREE); if (processing_template_decl) { tree d = getdecls (); for (; d; d = TREE_CHAIN (d)) { /* If this is the decl for the class or one of the template parms, we've seen all the injected decls. */ if ((TREE_CODE (d) == TYPE_DECL && (TREE_TYPE (d) == t || TREE_CODE (TREE_TYPE (d)) == TEMPLATE_TYPE_PARM || TREE_CODE (TREE_TYPE (d)) == TEMPLATE_TEMPLATE_PARM)) || TREE_CODE (d) == CONST_DECL) break; /* Don't inject cache decls. */ else if (IDENTIFIER_TEMPLATE (DECL_NAME (d))) continue; DECL_TEMPLATE_INJECT (CLASSTYPE_TI_TEMPLATE (t)) = tree_cons (NULL_TREE, d, DECL_TEMPLATE_INJECT (CLASSTYPE_TI_TEMPLATE (t))); } finish_struct_methods (t); TYPE_SIZE (t) = integer_zero_node; } else finish_struct_1 (t, warn_anon); TYPE_BEING_DEFINED (t) = 0; if (current_class_type) popclass (); else error ("trying to finish struct, but kicked out due to previous parse errors."); return t; } /* Return the dynamic type of INSTANCE, if known. Used to determine whether the virtual function table is needed or not. *NONNULL is set iff INSTANCE can be known to be nonnull, regardless of our knowledge of its type. */ static tree fixed_type_or_null (instance, nonnull) tree instance; int *nonnull; { switch (TREE_CODE (instance)) { case INDIRECT_REF: /* Check that we are not going through a cast of some sort. */ if (TREE_TYPE (instance) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (instance, 0)))) instance = TREE_OPERAND (instance, 0); /* fall through... */ case CALL_EXPR: /* This is a call to a constructor, hence it's never zero. */ if (TREE_HAS_CONSTRUCTOR (instance)) { if (nonnull) *nonnull = 1; return TREE_TYPE (instance); } return NULL_TREE; case SAVE_EXPR: /* This is a call to a constructor, hence it's never zero. */ if (TREE_HAS_CONSTRUCTOR (instance)) { if (nonnull) *nonnull = 1; return TREE_TYPE (instance); } return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull); case RTL_EXPR: return NULL_TREE; case PLUS_EXPR: case MINUS_EXPR: if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST) /* Propagate nonnull. */ fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull); if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR) return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull); return NULL_TREE; case NOP_EXPR: case CONVERT_EXPR: return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull); case ADDR_EXPR: if (nonnull) *nonnull = 1; return fixed_type_or_null (TREE_OPERAND (instance, 0), nonnull); case COMPONENT_REF: return fixed_type_or_null (TREE_OPERAND (instance, 1), nonnull); case VAR_DECL: case FIELD_DECL: if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance)))) { if (nonnull) *nonnull = 1; return TREE_TYPE (TREE_TYPE (instance)); } /* fall through... */ case TARGET_EXPR: case PARM_DECL: if (IS_AGGR_TYPE (TREE_TYPE (instance))) { if (nonnull) *nonnull = 1; return TREE_TYPE (instance); } else if (nonnull) { if (instance == current_class_ptr && flag_this_is_variable <= 0) { /* Normally, 'this' must be non-null. */ if (flag_this_is_variable == 0) *nonnull = 1; /* <0 means we're in a constructor and we know our type. */ if (flag_this_is_variable < 0) return TREE_TYPE (TREE_TYPE (instance)); } else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE) /* Reference variables should be references to objects. */ *nonnull = 1; } return NULL_TREE; default: return NULL_TREE; } } /* Return non-zero if the dynamic type of INSTANCE is known, and equivalent to the static type. We also handle the case where INSTANCE is really a pointer. Used to determine whether the virtual function table is needed or not. *NONNULL is set iff INSTANCE can be known to be nonnull, regardless of our knowledge of its type. */ int resolves_to_fixed_type_p (instance, nonnull) tree instance; int *nonnull; { tree t = TREE_TYPE (instance); tree fixed = fixed_type_or_null (instance, nonnull); if (fixed == NULL_TREE) return 0; if (POINTER_TYPE_P (t)) t = TREE_TYPE (t); return same_type_p (TYPE_MAIN_VARIANT (t), TYPE_MAIN_VARIANT (fixed)); } void init_class_processing () { current_class_depth = 0; current_class_stack_size = 10; current_class_stack = (class_stack_node_t) xmalloc (current_class_stack_size * sizeof (struct class_stack_node)); current_lang_stacksize = 10; current_lang_base = (tree *)xmalloc(current_lang_stacksize * sizeof (tree)); current_lang_stack = current_lang_base; access_default_node = build_int_2 (0, 0); access_public_node = build_int_2 (1, 0); access_protected_node = build_int_2 (2, 0); access_private_node = build_int_2 (3, 0); access_default_virtual_node = build_int_2 (4, 0); access_public_virtual_node = build_int_2 (5, 0); access_protected_virtual_node = build_int_2 (6, 0); access_private_virtual_node = build_int_2 (7, 0); /* Keep these values lying around. */ base_layout_decl = build_lang_field_decl (FIELD_DECL, NULL_TREE, error_mark_node); TREE_TYPE (base_layout_decl) = make_node (RECORD_TYPE); gcc_obstack_init (&class_obstack); } /* Set current scope to NAME. CODE tells us if this is a STRUCT, UNION, or ENUM environment. NAME may end up being NULL_TREE if this is an anonymous or late-bound struct (as in "struct { ... } foo;") */ /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE to appropriate values, found by looking up the type definition of NAME (as a CODE). If MODIFY is 1, we set IDENTIFIER_CLASS_VALUE's of names which can be seen locally to the class. They are shadowed by any subsequent local declaration (including parameter names). If MODIFY is 2, we set IDENTIFIER_CLASS_VALUE's of names which have static meaning (i.e., static members, static member functions, enum declarations, etc). If MODIFY is 3, we set IDENTIFIER_CLASS_VALUE of names which can be seen locally to the class (as in 1), but know that we are doing this for declaration purposes (i.e. friend foo::bar (int)). So that we may avoid calls to lookup_name, we cache the _TYPE nodes of local TYPE_DECLs in the TREE_TYPE field of the name. For multiple inheritance, we perform a two-pass depth-first search of the type lattice. The first pass performs a pre-order search, marking types after the type has had its fields installed in the appropriate IDENTIFIER_CLASS_VALUE slot. The second pass merely unmarks the marked types. If a field or member function name appears in an ambiguous way, the IDENTIFIER_CLASS_VALUE of that name becomes `error_mark_node'. */ void pushclass (type, modify) tree type; int modify; { type = TYPE_MAIN_VARIANT (type); /* Make sure there is enough room for the new entry on the stack. */ if (current_class_depth + 1 >= current_class_stack_size) { current_class_stack_size *= 2; current_class_stack = (class_stack_node_t) xrealloc (current_class_stack, current_class_stack_size * sizeof (struct class_stack_node)); } /* Insert a new entry on the class stack. */ current_class_stack[current_class_depth].name = current_class_name; current_class_stack[current_class_depth].type = current_class_type; current_class_stack[current_class_depth].access = current_access_specifier; current_class_stack[current_class_depth].names_used = 0; current_class_depth++; /* Now set up the new type. */ current_class_name = TYPE_NAME (type); if (TREE_CODE (current_class_name) == TYPE_DECL) current_class_name = DECL_NAME (current_class_name); current_class_type = type; /* By default, things in classes are private, while things in structures or unions are public. */ current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type) ? access_private_node : access_public_node); if (previous_class_type != NULL_TREE && (type != previous_class_type || TYPE_SIZE (previous_class_type) == NULL_TREE) && current_class_depth == 1) { /* Forcibly remove any old class remnants. */ invalidate_class_lookup_cache (); /* Now, free the obstack on which we cached all the values. */ if (class_cache_firstobj) obstack_free (&class_cache_obstack, class_cache_firstobj); class_cache_firstobj = (char*) obstack_finish (&class_cache_obstack); } /* If we're about to enter a nested class, clear IDENTIFIER_CLASS_VALUE for the enclosing classes. */ if (modify && current_class_depth > 1) clear_identifier_class_values (); pushlevel_class (); #if 0 if (CLASSTYPE_TEMPLATE_INFO (type)) overload_template_name (type); #endif if (modify) { if (type != previous_class_type || current_class_depth > 1) push_class_decls (type); else { tree item; /* We are re-entering the same class we just left, so we don't have to search the whole inheritance matrix to find all the decls to bind again. Instead, we install the cached class_shadowed list, and walk through it binding names and setting up IDENTIFIER_TYPE_VALUEs. */ set_class_shadows (previous_class_values); for (item = previous_class_values; item; item = TREE_CHAIN (item)) { tree id = TREE_PURPOSE (item); tree decl = TREE_TYPE (item); push_class_binding (id, decl); if (TREE_CODE (decl) == TYPE_DECL) set_identifier_type_value (id, TREE_TYPE (decl)); } unuse_fields (type); } storetags (CLASSTYPE_TAGS (type)); } } /* When we exit a toplevel class scope, we save the IDENTIFIER_CLASS_VALUEs so that we can restore them quickly if we reenter the class. Here, we've entered some other class, so we must invalidate our cache. */ void invalidate_class_lookup_cache () { tree t; /* This code can be seen as a cache miss. When we've cached a class' scope's bindings and we can't use them, we need to reset them. This is it! */ for (t = previous_class_values; t; t = TREE_CHAIN (t)) IDENTIFIER_CLASS_VALUE (TREE_PURPOSE (t)) = NULL_TREE; previous_class_type = NULL_TREE; } /* Get out of the current class scope. If we were in a class scope previously, that is the one popped to. */ void popclass () { poplevel (1, 0, 0); /* Since poplevel_class does the popping of class decls nowadays, this really only frees the obstack used for these decls. */ pop_class_decls (); current_class_depth--; current_class_name = current_class_stack[current_class_depth].name; current_class_type = current_class_stack[current_class_depth].type; current_access_specifier = current_class_stack[current_class_depth].access; if (current_class_stack[current_class_depth].names_used) splay_tree_delete (current_class_stack[current_class_depth].names_used); } /* Returns 1 if current_class_type is either T or a nested type of T. */ int currently_open_class (t) tree t; { int i; if (t == current_class_type) return 1; for (i = 0; i < current_class_depth; ++i) if (current_class_stack [i].type == t) return 1; return 0; } /* When entering a class scope, all enclosing class scopes' names with static meaning (static variables, static functions, types and enumerators) have to be visible. This recursive function calls pushclass for all enclosing class contexts until global or a local scope is reached. TYPE is the enclosed class and MODIFY is equivalent with the pushclass formal of the same name. */ void push_nested_class (type, modify) tree type; int modify; { tree context; /* A namespace might be passed in error cases, like A::B:C. */ if (type == NULL_TREE || type == error_mark_node || ! IS_AGGR_TYPE (type) || TREE_CODE (type) == NAMESPACE_DECL || TREE_CODE (type) == TEMPLATE_TYPE_PARM || TREE_CODE (type) == TEMPLATE_TEMPLATE_PARM) return; context = DECL_CONTEXT (TYPE_MAIN_DECL (type)); if (context && CLASS_TYPE_P (context)) push_nested_class (context, 2); pushclass (type, modify); } /* Undoes a push_nested_class call. MODIFY is passed on to popclass. */ void pop_nested_class () { tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type)); popclass (); if (context && CLASS_TYPE_P (context)) pop_nested_class (); } /* Set global variables CURRENT_LANG_NAME to appropriate value so that behavior of name-mangling machinery is correct. */ void push_lang_context (name) tree name; { *current_lang_stack++ = current_lang_name; if (current_lang_stack >= current_lang_base + current_lang_stacksize) { current_lang_base = (tree *)xrealloc (current_lang_base, sizeof (tree) * (current_lang_stacksize + 10)); current_lang_stack = current_lang_base + current_lang_stacksize; current_lang_stacksize += 10; } if (name == lang_name_cplusplus) { strict_prototype = strict_prototypes_lang_cplusplus; current_lang_name = name; } else if (name == lang_name_java) { strict_prototype = strict_prototypes_lang_cplusplus; current_lang_name = name; /* DECL_IGNORED_P is initially set for these types, to avoid clutter. (See record_builtin_java_type in decl.c.) However, that causes incorrect debug entries if these types are actually used. So we re-enable debug output after extern "Java". */ DECL_IGNORED_P (java_byte_type_node) = 0; DECL_IGNORED_P (java_short_type_node) = 0; DECL_IGNORED_P (java_int_type_node) = 0; DECL_IGNORED_P (java_long_type_node) = 0; DECL_IGNORED_P (java_float_type_node) = 0; DECL_IGNORED_P (java_double_type_node) = 0; DECL_IGNORED_P (java_char_type_node) = 0; DECL_IGNORED_P (java_boolean_type_node) = 0; } else if (name == lang_name_c) { strict_prototype = strict_prototypes_lang_c; current_lang_name = name; } else error ("language string `\"%s\"' not recognized", IDENTIFIER_POINTER (name)); } /* Get out of the current language scope. */ void pop_lang_context () { current_lang_name = *--current_lang_stack; if (current_lang_name == lang_name_cplusplus || current_lang_name == lang_name_java) strict_prototype = strict_prototypes_lang_cplusplus; else if (current_lang_name == lang_name_c) strict_prototype = strict_prototypes_lang_c; } /* Type instantiation routines. */ /* Given an OVERLOAD and a TARGET_TYPE, return the function that matches the TARGET_TYPE. If there is no satisfactory match, return error_mark_node, and issue an error message if COMPLAIN is non-zero. If TEMPLATE_ONLY, the name of the overloaded function was a template-id, and EXPLICIT_TARGS are the explicitly provided template arguments. */ static tree resolve_address_of_overloaded_function (target_type, overload, complain, template_only, explicit_targs) tree target_type; tree overload; int complain; int template_only; tree explicit_targs; { /* Here's what the standard says: [over.over] If the name is a function template, template argument deduction is done, and if the argument deduction succeeds, the deduced arguments are used to generate a single template function, which is added to the set of overloaded functions considered. Non-member functions and static member functions match targets of type "pointer-to-function" or "reference-to-function." Nonstatic member functions match targets of type "pointer-to-member function;" the function type of the pointer to member is used to select the member function from the set of overloaded member functions. If a nonstatic member function is selected, the reference to the overloaded function name is required to have the form of a pointer to member as described in 5.3.1. If more than one function is selected, any template functions in the set are eliminated if the set also contains a non-template function, and any given template function is eliminated if the set contains a second template function that is more specialized than the first according to the partial ordering rules 14.5.5.2. After such eliminations, if any, there shall remain exactly one selected function. */ int is_ptrmem = 0; int is_reference = 0; /* We store the matches in a TREE_LIST rooted here. The functions are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy interoperability with most_specialized_instantiation. */ tree matches = NULL_TREE; tree fn; /* By the time we get here, we should be seeing only real pointer-to-member types, not the internal POINTER_TYPE to METHOD_TYPE representation. */ my_friendly_assert (!(TREE_CODE (target_type) == POINTER_TYPE && (TREE_CODE (TREE_TYPE (target_type)) == METHOD_TYPE)), 0); /* Check that the TARGET_TYPE is reasonable. */ if (TYPE_PTRFN_P (target_type)) /* This is OK. */ ; else if (TYPE_PTRMEMFUNC_P (target_type)) /* This is OK, too. */ is_ptrmem = 1; else if (TREE_CODE (target_type) == FUNCTION_TYPE) { /* This is OK, too. This comes from a conversion to reference type. */ target_type = build_reference_type (target_type); is_reference = 1; } else { if (complain) cp_error("cannot resolve overloaded function `%D' based on conversion to type `%T'", DECL_NAME (OVL_FUNCTION (overload)), target_type); return error_mark_node; } /* If we can find a non-template function that matches, we can just use it. There's no point in generating template instantiations if we're just going to throw them out anyhow. But, of course, we can only do this when we don't *need* a template function. */ if (!template_only) { tree fns; for (fns = overload; fns; fns = OVL_CHAIN (fns)) { tree fn = OVL_FUNCTION (fns); tree fntype; if (TREE_CODE (fn) == TEMPLATE_DECL) /* We're not looking for templates just yet. */ continue; if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) != is_ptrmem) /* We're looking for a non-static member, and this isn't one, or vice versa. */ continue; /* See if there's a match. */ fntype = TREE_TYPE (fn); if (is_ptrmem) fntype = build_ptrmemfunc_type (build_pointer_type (fntype)); else if (!is_reference) fntype = build_pointer_type (fntype); if (can_convert_arg (target_type, fntype, fn)) matches = scratch_tree_cons (fn, NULL_TREE, matches); } } /* Now, if we've already got a match (or matches), there's no need to proceed to the template functions. But, if we don't have a match we need to look at them, too. */ if (!matches) { tree target_fn_type; tree target_arg_types; tree fns; if (is_ptrmem) target_fn_type = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type)); else target_fn_type = TREE_TYPE (target_type); target_arg_types = TYPE_ARG_TYPES (target_fn_type); for (fns = overload; fns; fns = OVL_CHAIN (fns)) { tree fn = OVL_FUNCTION (fns); tree instantiation; tree instantiation_type; tree targs; if (TREE_CODE (fn) != TEMPLATE_DECL) /* We're only looking for templates. */ continue; if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) != is_ptrmem) /* We're not looking for a non-static member, and this is one, or vice versa. */ continue; /* Try to do argument deduction. */ targs = make_scratch_vec (DECL_NTPARMS (fn)); if (fn_type_unification (fn, explicit_targs, targs, target_arg_types, NULL_TREE, DEDUCE_EXACT) != 0) /* Argument deduction failed. */ continue; /* Instantiate the template. */ instantiation = instantiate_template (fn, targs); if (instantiation == error_mark_node) /* Instantiation failed. */ continue; /* See if there's a match. */ instantiation_type = TREE_TYPE (instantiation); if (is_ptrmem) instantiation_type = build_ptrmemfunc_type (build_pointer_type (instantiation_type)); else if (!is_reference) instantiation_type = build_pointer_type (instantiation_type); if (can_convert_arg (target_type, instantiation_type, instantiation)) matches = scratch_tree_cons (instantiation, fn, matches); } /* Now, remove all but the most specialized of the matches. */ if (matches) { tree match = most_specialized_instantiation (matches, explicit_targs); if (match != error_mark_node) matches = scratch_tree_cons (match, NULL_TREE, NULL_TREE); } } /* Now we should have exactly one function in MATCHES. */ if (matches == NULL_TREE) { /* There were *no* matches. */ if (complain) { cp_error ("no matches converting function `%D' to type `%#T'", DECL_NAME (OVL_FUNCTION (overload)), target_type); /* print_candidates expects a chain with the functions in TREE_VALUE slots, so we cons one up here (we're losing anyway, so why be clever?). */ for (; overload; overload = OVL_NEXT (overload)) matches = scratch_tree_cons (NULL_TREE, OVL_CURRENT (overload), matches); print_candidates (matches); } return error_mark_node; } else if (TREE_CHAIN (matches)) { /* There were too many matches. */ if (complain) { tree match; cp_error ("converting overloaded function `%D' to type `%#T' is ambiguous", DECL_NAME (OVL_FUNCTION (overload)), target_type); /* Since print_candidates expects the functions in the TREE_VALUE slot, we flip them here. */ for (match = matches; match; match = TREE_CHAIN (match)) TREE_VALUE (match) = TREE_PURPOSE (match); print_candidates (matches); } return error_mark_node; } /* Good, exactly one match. Now, convert it to the correct type. */ fn = TREE_PURPOSE (matches); mark_used (fn); if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type)) return build_unary_op (ADDR_EXPR, fn, 0); else { /* The target must be a REFERENCE_TYPE. Above, build_unary_op will mark the function as addressed, but here we must do it explicitly. */ mark_addressable (fn); return fn; } } /* This function will instantiate the type of the expression given in RHS to match the type of LHSTYPE. If errors exist, then return error_mark_node. We only complain is COMPLAIN is set. If we are not complaining, never modify rhs, as overload resolution wants to try many possible instantiations, in hopes that at least one will work. FLAGS is a bitmask, as we see at the top of the function. For non-recursive calls, LHSTYPE should be a function, pointer to function, or a pointer to member function. */ tree instantiate_type (lhstype, rhs, flags) tree lhstype, rhs; int flags; { int complain = (flags & 1); int strict = (flags & 2) ? COMPARE_NO_ATTRIBUTES : COMPARE_STRICT; if (TREE_CODE (lhstype) == UNKNOWN_TYPE) { if (complain) error ("not enough type information"); return error_mark_node; } if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs))) { if (comptypes (lhstype, TREE_TYPE (rhs), strict)) return rhs; if (complain) cp_error ("argument of type `%T' does not match `%T'", TREE_TYPE (rhs), lhstype); return error_mark_node; } /* We don't overwrite rhs if it is an overloaded function. Copying it would destroy the tree link. */ if (TREE_CODE (rhs) != OVERLOAD) rhs = copy_node (rhs); /* This should really only be used when attempting to distinguish what sort of a pointer to function we have. For now, any arithmetic operation which is not supported on pointers is rejected as an error. */ switch (TREE_CODE (rhs)) { case TYPE_EXPR: case CONVERT_EXPR: case SAVE_EXPR: case CONSTRUCTOR: case BUFFER_REF: my_friendly_abort (177); return error_mark_node; case INDIRECT_REF: case ARRAY_REF: { tree new_rhs; new_rhs = instantiate_type (build_pointer_type (lhstype), TREE_OPERAND (rhs, 0), flags); if (new_rhs == error_mark_node) return error_mark_node; TREE_TYPE (rhs) = lhstype; TREE_OPERAND (rhs, 0) = new_rhs; return rhs; } case NOP_EXPR: rhs = copy_node (TREE_OPERAND (rhs, 0)); TREE_TYPE (rhs) = unknown_type_node; return instantiate_type (lhstype, rhs, flags); case COMPONENT_REF: { tree field = TREE_OPERAND (rhs, 1); tree r; r = instantiate_type (lhstype, field, flags); if (r != error_mark_node && TYPE_PTRMEMFUNC_P (lhstype)) { if (complain) { tree t = TYPE_PTRMEMFUNC_OBJECT_TYPE (lhstype); if (TREE_CODE (field) == OVERLOAD) field = OVL_FUNCTION (field); if (TREE_CODE (field) == FUNCTION_DECL) { cp_pedwarn ("object-dependent reference `%E' can only be used in a call", DECL_NAME (field)); cp_pedwarn (" to form a pointer to member function, say `&%T::%E'", t, DECL_NAME (field)); } else cp_pedwarn ("object-dependent reference can only be used in a call"); } return r; } return r; } case OFFSET_REF: rhs = TREE_OPERAND (rhs, 1); if (BASELINK_P (rhs)) return instantiate_type (lhstype, TREE_VALUE (rhs), flags); /* This can happen if we are forming a pointer-to-member for a member template. */ my_friendly_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR, 0); /* Fall through. */ case TEMPLATE_ID_EXPR: return resolve_address_of_overloaded_function (lhstype, TREE_OPERAND (rhs, 0), complain, /*template_only=*/1, TREE_OPERAND (rhs, 1)); case OVERLOAD: return resolve_address_of_overloaded_function (lhstype, rhs, complain, /*template_only=*/0, /*explicit_targs=*/NULL_TREE); case TREE_LIST: /* Now we should have a baselink. */ my_friendly_assert (BASELINK_P (rhs), 990412); return instantiate_type (lhstype, TREE_VALUE (rhs), flags); case CALL_EXPR: /* This is too hard for now. */ my_friendly_abort (183); return error_mark_node; case PLUS_EXPR: case MINUS_EXPR: case COMPOUND_EXPR: TREE_OPERAND (rhs, 0) = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags); if (TREE_OPERAND (rhs, 0) == error_mark_node) return error_mark_node; TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags); if (TREE_OPERAND (rhs, 1) == error_mark_node) return error_mark_node; TREE_TYPE (rhs) = lhstype; return rhs; case MULT_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR: case ROUND_DIV_EXPR: case RDIV_EXPR: case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR: case ROUND_MOD_EXPR: case FIX_ROUND_EXPR: case FIX_FLOOR_EXPR: case FIX_CEIL_EXPR: case FIX_TRUNC_EXPR: case FLOAT_EXPR: case NEGATE_EXPR: case ABS_EXPR: case MAX_EXPR: case MIN_EXPR: case FFS_EXPR: case BIT_AND_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case LSHIFT_EXPR: case RSHIFT_EXPR: case LROTATE_EXPR: case RROTATE_EXPR: case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: case POSTINCREMENT_EXPR: case POSTDECREMENT_EXPR: if (complain) error ("invalid operation on uninstantiated type"); return error_mark_node; case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case TRUTH_XOR_EXPR: case LT_EXPR: case LE_EXPR: case GT_EXPR: case GE_EXPR: case EQ_EXPR: case NE_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_NOT_EXPR: if (complain) error ("not enough type information"); return error_mark_node; case COND_EXPR: if (type_unknown_p (TREE_OPERAND (rhs, 0))) { if (complain) error ("not enough type information"); return error_mark_node; } TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags); if (TREE_OPERAND (rhs, 1) == error_mark_node) return error_mark_node; TREE_OPERAND (rhs, 2) = instantiate_type (lhstype, TREE_OPERAND (rhs, 2), flags); if (TREE_OPERAND (rhs, 2) == error_mark_node) return error_mark_node; TREE_TYPE (rhs) = lhstype; return rhs; case MODIFY_EXPR: TREE_OPERAND (rhs, 1) = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags); if (TREE_OPERAND (rhs, 1) == error_mark_node) return error_mark_node; TREE_TYPE (rhs) = lhstype; return rhs; case ADDR_EXPR: return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags); case ENTRY_VALUE_EXPR: my_friendly_abort (184); return error_mark_node; case ERROR_MARK: return error_mark_node; default: my_friendly_abort (185); return error_mark_node; } } /* Return the name of the virtual function pointer field (as an IDENTIFIER_NODE) for the given TYPE. Note that this may have to look back through base types to find the ultimate field name. (For single inheritance, these could all be the same name. Who knows for multiple inheritance). */ static tree get_vfield_name (type) tree type; { tree binfo = TYPE_BINFO (type); char *buf; while (BINFO_BASETYPES (binfo) && TYPE_VIRTUAL_P (BINFO_TYPE (BINFO_BASETYPE (binfo, 0))) && ! TREE_VIA_VIRTUAL (BINFO_BASETYPE (binfo, 0))) binfo = BINFO_BASETYPE (binfo, 0); type = BINFO_TYPE (binfo); buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT) + TYPE_NAME_LENGTH (type) + 2); sprintf (buf, VFIELD_NAME_FORMAT, TYPE_NAME_STRING (type)); return get_identifier (buf); } void print_class_statistics () { #ifdef GATHER_STATISTICS fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness); fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs); fprintf (stderr, "build_method_call = %d (inner = %d)\n", n_build_method_call, n_inner_fields_searched); if (n_vtables) { fprintf (stderr, "vtables = %d; vtable searches = %d\n", n_vtables, n_vtable_searches); fprintf (stderr, "vtable entries = %d; vtable elems = %d\n", n_vtable_entries, n_vtable_elems); } #endif } /* Push an obstack which is sufficiently long-lived to hold such class decls that may be cached in the previous_class_values list. The effect is undone by pop_obstacks. */ void push_cache_obstack () { static int cache_obstack_initialized; if (!cache_obstack_initialized) { gcc_obstack_init (&class_cache_obstack); class_cache_firstobj = (char*) obstack_finish (&class_cache_obstack); cache_obstack_initialized = 1; } push_obstacks_nochange (); current_obstack = &class_cache_obstack; } /* Build a dummy reference to ourselves so Derived::Base (and A::A) works, according to [class]: The class-name is also inserted into the scope of the class itself. For purposes of access checking, the inserted class name is treated as if it were a public member name. */ void build_self_reference () { tree name = constructor_name (current_class_type); tree value = build_lang_decl (TYPE_DECL, name, current_class_type); tree saved_cas; DECL_NONLOCAL (value) = 1; DECL_CONTEXT (value) = current_class_type; DECL_CLASS_CONTEXT (value) = current_class_type; DECL_ARTIFICIAL (value) = 1; saved_cas = current_access_specifier; current_access_specifier = access_public_node; finish_member_declaration (value); current_access_specifier = saved_cas; } /* Returns 1 if TYPE contains only padding bytes. */ int is_empty_class (type) tree type; { tree t; if (type == error_mark_node) return 0; if (! IS_AGGR_TYPE (type)) return 0; if (flag_new_abi) return CLASSTYPE_SIZE (type) == integer_zero_node; if (TYPE_BINFO_BASETYPES (type)) return 0; t = TYPE_FIELDS (type); while (t && TREE_CODE (t) != FIELD_DECL) t = TREE_CHAIN (t); return (t == NULL_TREE); } /* Find the enclosing class of the given NODE. NODE can be a *_DECL or a *_TYPE node. NODE can also be a local class. */ tree get_enclosing_class (type) tree type; { tree node = type; while (node && TREE_CODE (node) != NAMESPACE_DECL) { switch (TREE_CODE_CLASS (TREE_CODE (node))) { case 'd': node = DECL_CONTEXT (node); break; case 't': if (node != type) return node; node = TYPE_CONTEXT (node); break; default: my_friendly_abort (0); } } return NULL_TREE; } /* Return 1 if TYPE or one of its enclosing classes is derived from BASE. */ int is_base_of_enclosing_class (base, type) tree base, type; { while (type) { if (get_binfo (base, type, 0)) return 1; type = get_enclosing_class (type); } return 0; } /* Note that NAME was looked up while the current class was being defined and that the result of that lookup was DECL. */ void maybe_note_name_used_in_class (name, decl) tree name; tree decl; { splay_tree names_used; /* If we're not defining a class, there's nothing to do. */ if (!current_class_type || !TYPE_BEING_DEFINED (current_class_type)) return; /* If there's already a binding for this NAME, then we don't have anything to worry about. */ if (IDENTIFIER_CLASS_VALUE (name)) return; if (!current_class_stack[current_class_depth - 1].names_used) current_class_stack[current_class_depth - 1].names_used = splay_tree_new (splay_tree_compare_pointers, 0, 0); names_used = current_class_stack[current_class_depth - 1].names_used; splay_tree_insert (names_used, (splay_tree_key) name, (splay_tree_value) decl); } /* Note that NAME was declared (as DECL) in the current class. Check to see that the declaration is legal. */ void note_name_declared_in_class (name, decl) tree name; tree decl; { splay_tree names_used; splay_tree_node n; /* Look to see if we ever used this name. */ names_used = current_class_stack[current_class_depth - 1].names_used; if (!names_used) return; n = splay_tree_lookup (names_used, (splay_tree_key) name); if (n) { /* [basic.scope.class] A name N used in a class S shall refer to the same declaration in its context and when re-evaluated in the completed scope of S. */ cp_error ("declaration of `%#D'", decl); cp_error_at ("changes meaning of `%s' from `%+#D'", IDENTIFIER_POINTER (DECL_NAME (decl)), (tree) n->value); } }