/*- * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Berkeley Software Design Inc's name may not be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ * $FreeBSD$ */ /* * Machine independent bits of mutex implementation and implementation of * `witness' structure & related debugging routines. */ /* * Main Entry: witness * Pronunciation: 'wit-n&s * Function: noun * Etymology: Middle English witnesse, from Old English witnes knowledge, * testimony, witness, from 2wit * Date: before 12th century * 1 : attestation of a fact or event : TESTIMONY * 2 : one that gives evidence; specifically : one who testifies in * a cause or before a judicial tribunal * 3 : one asked to be present at a transaction so as to be able to * testify to its having taken place * 4 : one who has personal knowledge of something * 5 a : something serving as evidence or proof : SIGN * b : public affirmation by word or example of usually * religious faith or conviction * 6 capitalized : a member of the Jehovah's Witnesses */ #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Internal utility macros. */ #define mtx_unowned(m) ((m)->mtx_lock == MTX_UNOWNED) #define mtx_owner(m) (mtx_unowned((m)) ? NULL \ : (struct proc *)((m)->mtx_lock & MTX_FLAGMASK)) #define SET_PRIO(p, pri) (p)->p_pri.pri_level = (pri) /* * Lock classes for sleep and spin mutexes. */ struct lock_class lock_class_mtx_sleep = { "sleep mutex", LC_SLEEPLOCK | LC_RECURSABLE }; struct lock_class lock_class_mtx_spin = { "spin mutex", LC_SPINLOCK | LC_RECURSABLE }; /* * Prototypes for non-exported routines. */ static void propagate_priority(struct proc *); static void propagate_priority(struct proc *p) { int pri = p->p_pri.pri_level; struct mtx *m = p->p_blocked; mtx_assert(&sched_lock, MA_OWNED); for (;;) { struct proc *p1; p = mtx_owner(m); if (p == NULL) { /* * This really isn't quite right. Really * ought to bump priority of process that * next acquires the mutex. */ MPASS(m->mtx_lock == MTX_CONTESTED); return; } MPASS(p->p_magic == P_MAGIC); KASSERT(p->p_stat != SSLEEP, ("sleeping process owns a mutex")); if (p->p_pri.pri_level <= pri) return; /* * Bump this process' priority. */ SET_PRIO(p, pri); /* * If lock holder is actually running, just bump priority. */ if (p->p_oncpu != NOCPU) { MPASS(p->p_stat == SRUN || p->p_stat == SZOMB); return; } #ifndef SMP /* * For UP, we check to see if p is curproc (this shouldn't * ever happen however as it would mean we are in a deadlock.) */ KASSERT(p != curproc, ("Deadlock detected")); #endif /* * If on run queue move to new run queue, and * quit. */ if (p->p_stat == SRUN) { MPASS(p->p_blocked == NULL); remrunqueue(p); setrunqueue(p); return; } /* * If we aren't blocked on a mutex, we should be. */ KASSERT(p->p_stat == SMTX, ( "process %d(%s):%d holds %s but isn't blocked on a mutex\n", p->p_pid, p->p_comm, p->p_stat, m->mtx_object.lo_name)); /* * Pick up the mutex that p is blocked on. */ m = p->p_blocked; MPASS(m != NULL); /* * Check if the proc needs to be moved up on * the blocked chain */ if (p == TAILQ_FIRST(&m->mtx_blocked)) { continue; } p1 = TAILQ_PREV(p, procqueue, p_procq); if (p1->p_pri.pri_level <= pri) { continue; } /* * Remove proc from blocked chain and determine where * it should be moved up to. Since we know that p1 has * a lower priority than p, we know that at least one * process in the chain has a lower priority and that * p1 will thus not be NULL after the loop. */ TAILQ_REMOVE(&m->mtx_blocked, p, p_procq); TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) { MPASS(p1->p_magic == P_MAGIC); if (p1->p_pri.pri_level > pri) break; } MPASS(p1 != NULL); TAILQ_INSERT_BEFORE(p1, p, p_procq); CTR4(KTR_LOCK, "propagate_priority: p %p moved before %p on [%p] %s", p, p1, m, m->mtx_object.lo_name); } } /* * Function versions of the inlined __mtx_* macros. These are used by * modules and can also be called from assembly language if needed. */ void _mtx_lock_flags(struct mtx *m, int opts, const char *file, int line) { __mtx_lock_flags(m, opts, file, line); } void _mtx_unlock_flags(struct mtx *m, int opts, const char *file, int line) { __mtx_unlock_flags(m, opts, file, line); } void _mtx_lock_spin_flags(struct mtx *m, int opts, const char *file, int line) { __mtx_lock_spin_flags(m, opts, file, line); } void _mtx_unlock_spin_flags(struct mtx *m, int opts, const char *file, int line) { __mtx_unlock_spin_flags(m, opts, file, line); } /* * The important part of mtx_trylock{,_flags}() * Tries to acquire lock `m.' We do NOT handle recursion here; we assume that * if we're called, it's because we know we don't already own this lock. */ int _mtx_trylock(struct mtx *m, int opts, const char *file, int line) { int rval; MPASS(curproc != NULL); /* * _mtx_trylock does not accept MTX_NOSWITCH option. */ KASSERT((opts & MTX_NOSWITCH) == 0, ("mtx_trylock() called with invalid option flag(s) %d", opts)); rval = _obtain_lock(m, curproc); LOCK_LOG_TRY("LOCK", &m->mtx_object, opts, rval, file, line); if (rval) { /* * We do not handle recursion in _mtx_trylock; see the * note at the top of the routine. */ KASSERT(!mtx_recursed(m), ("mtx_trylock() called on a recursed mutex")); mtx_update_flags(m, 1); WITNESS_LOCK(&m->mtx_object, opts | LOP_TRYLOCK, file, line); } return (rval); } /* * _mtx_lock_sleep: the tougher part of acquiring an MTX_DEF lock. * * We call this if the lock is either contested (i.e. we need to go to * sleep waiting for it), or if we need to recurse on it. */ void _mtx_lock_sleep(struct mtx *m, int opts, const char *file, int line) { struct proc *p = curproc; if ((m->mtx_lock & MTX_FLAGMASK) == (uintptr_t)p) { m->mtx_recurse++; atomic_set_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_sleep: %p recursing", m); return; } if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR4(KTR_LOCK, "_mtx_lock_sleep: %s contested (lock=%p) at %s:%d", m->mtx_object.lo_name, (void *)m->mtx_lock, file, line); while (!_obtain_lock(m, p)) { uintptr_t v; struct proc *p1; mtx_lock_spin(&sched_lock); /* * Check if the lock has been released while spinning for * the sched_lock. */ if ((v = m->mtx_lock) == MTX_UNOWNED) { mtx_unlock_spin(&sched_lock); continue; } /* * The mutex was marked contested on release. This means that * there are processes blocked on it. */ if (v == MTX_CONTESTED) { p1 = TAILQ_FIRST(&m->mtx_blocked); MPASS(p1 != NULL); m->mtx_lock = (uintptr_t)p | MTX_CONTESTED; if (p1->p_pri.pri_level < p->p_pri.pri_level) SET_PRIO(p, p1->p_pri.pri_level); mtx_unlock_spin(&sched_lock); return; } /* * If the mutex isn't already contested and a failure occurs * setting the contested bit, the mutex was either released * or the state of the MTX_RECURSED bit changed. */ if ((v & MTX_CONTESTED) == 0 && !atomic_cmpset_ptr(&m->mtx_lock, (void *)v, (void *)(v | MTX_CONTESTED))) { mtx_unlock_spin(&sched_lock); continue; } /* * We deffinately must sleep for this lock. */ mtx_assert(m, MA_NOTOWNED); #ifdef notyet /* * If we're borrowing an interrupted thread's VM context, we * must clean up before going to sleep. */ if (p->p_ithd != NULL) { struct ithd *it = p->p_ithd; if (it->it_interrupted) { if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR2(KTR_LOCK, "_mtx_lock_sleep: %p interrupted %p", it, it->it_interrupted); intr_thd_fixup(it); } } #endif /* * Put us on the list of threads blocked on this mutex. */ if (TAILQ_EMPTY(&m->mtx_blocked)) { p1 = (struct proc *)(m->mtx_lock & MTX_FLAGMASK); LIST_INSERT_HEAD(&p1->p_contested, m, mtx_contested); TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq); } else { TAILQ_FOREACH(p1, &m->mtx_blocked, p_procq) if (p1->p_pri.pri_level > p->p_pri.pri_level) break; if (p1) TAILQ_INSERT_BEFORE(p1, p, p_procq); else TAILQ_INSERT_TAIL(&m->mtx_blocked, p, p_procq); } /* * Save who we're blocked on. */ p->p_blocked = m; p->p_mtxname = m->mtx_object.lo_name; p->p_stat = SMTX; propagate_priority(p); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR3(KTR_LOCK, "_mtx_lock_sleep: p %p blocked on [%p] %s", p, m, m->mtx_object.lo_name); mi_switch(); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR3(KTR_LOCK, "_mtx_lock_sleep: p %p free from blocked on [%p] %s", p, m, m->mtx_object.lo_name); mtx_unlock_spin(&sched_lock); } return; } /* * _mtx_lock_spin: the tougher part of acquiring an MTX_SPIN lock. * * This is only called if we need to actually spin for the lock. Recursion * is handled inline. */ void _mtx_lock_spin(struct mtx *m, int opts, critical_t mtx_crit, const char *file, int line) { int i = 0; if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spinning", m); for (;;) { if (_obtain_lock(m, curproc)) break; while (m->mtx_lock != MTX_UNOWNED) { if (i++ < 1000000) continue; if (i++ < 6000000) DELAY(1); #ifdef DDB else if (!db_active) #else else #endif panic("spin lock %s held by %p for > 5 seconds", m->mtx_object.lo_name, (void *)m->mtx_lock); } } m->mtx_savecrit = mtx_crit; if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_lock_spin: %p spin done", m); return; } /* * _mtx_unlock_sleep: the tougher part of releasing an MTX_DEF lock. * * We are only called here if the lock is recursed or contested (i.e. we * need to wake up a blocked thread). */ void _mtx_unlock_sleep(struct mtx *m, int opts, const char *file, int line) { struct proc *p, *p1; struct mtx *m1; int pri; p = curproc; if (mtx_recursed(m)) { if (--(m->mtx_recurse) == 0) atomic_clear_ptr(&m->mtx_lock, MTX_RECURSED); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p unrecurse", m); return; } mtx_lock_spin(&sched_lock); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p contested", m); p1 = TAILQ_FIRST(&m->mtx_blocked); MPASS(p->p_magic == P_MAGIC); MPASS(p1->p_magic == P_MAGIC); TAILQ_REMOVE(&m->mtx_blocked, p1, p_procq); if (TAILQ_EMPTY(&m->mtx_blocked)) { LIST_REMOVE(m, mtx_contested); _release_lock_quick(m); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR1(KTR_LOCK, "_mtx_unlock_sleep: %p not held", m); } else atomic_store_rel_ptr(&m->mtx_lock, (void *)MTX_CONTESTED); pri = PRI_MAX; LIST_FOREACH(m1, &p->p_contested, mtx_contested) { int cp = TAILQ_FIRST(&m1->mtx_blocked)->p_pri.pri_level; if (cp < pri) pri = cp; } if (pri > p->p_pri.pri_native) pri = p->p_pri.pri_native; SET_PRIO(p, pri); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p contested setrunqueue %p", m, p1); p1->p_blocked = NULL; p1->p_stat = SRUN; setrunqueue(p1); if ((opts & MTX_NOSWITCH) == 0 && p1->p_pri.pri_level < pri) { #ifdef notyet if (p->p_ithd != NULL) { struct ithd *it = p->p_ithd; if (it->it_interrupted) { if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p interrupted %p", it, it->it_interrupted); intr_thd_fixup(it); } } #endif setrunqueue(p); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p switching out lock=%p", m, (void *)m->mtx_lock); mi_switch(); if (LOCK_LOG_TEST(&m->mtx_object, opts)) CTR2(KTR_LOCK, "_mtx_unlock_sleep: %p resuming lock=%p", m, (void *)m->mtx_lock); } mtx_unlock_spin(&sched_lock); return; } /* * All the unlocking of MTX_SPIN locks is done inline. * See the _rel_spin_lock() macro for the details. */ #ifdef WITNESS /* * Update the lock object flags before calling witness. Note that when we * lock a mutex, this is called after getting the lock, but when unlocking * a mutex, this function is called before releasing the lock. */ void _mtx_update_flags(struct mtx *m, int locking) { mtx_assert(m, MA_OWNED); if (locking) { m->mtx_object.lo_flags |= LO_LOCKED; if (mtx_recursed(m)) m->mtx_object.lo_flags |= LO_RECURSED; else /* XXX: we shouldn't need this in theory. */ m->mtx_object.lo_flags &= ~LO_RECURSED; } else { switch (m->mtx_recurse) { case 0: /* XXX: we shouldn't need the LO_RECURSED in theory. */ m->mtx_object.lo_flags &= ~(LO_LOCKED | LO_RECURSED); break; case 1: m->mtx_object.lo_flags &= ~(LO_RECURSED); break; default: break; } } } #endif /* * The backing function for the INVARIANTS-enabled mtx_assert() */ #ifdef INVARIANT_SUPPORT void _mtx_assert(struct mtx *m, int what, const char *file, int line) { switch (what) { case MA_OWNED: case MA_OWNED | MA_RECURSED: case MA_OWNED | MA_NOTRECURSED: if (!mtx_owned(m)) panic("mutex %s not owned at %s:%d", m->mtx_object.lo_name, file, line); if (mtx_recursed(m)) { if ((what & MA_NOTRECURSED) != 0) panic("mutex %s recursed at %s:%d", m->mtx_object.lo_name, file, line); } else if ((what & MA_RECURSED) != 0) { panic("mutex %s unrecursed at %s:%d", m->mtx_object.lo_name, file, line); } break; case MA_NOTOWNED: if (mtx_owned(m)) panic("mutex %s owned at %s:%d", m->mtx_object.lo_name, file, line); break; default: panic("unknown mtx_assert at %s:%d", file, line); } } #endif /* * The MUTEX_DEBUG-enabled mtx_validate() * * Most of these checks have been moved off into the LO_INITIALIZED flag * maintained by the witness code. */ #ifdef MUTEX_DEBUG void mtx_validate __P((struct mtx *)); void mtx_validate(struct mtx *m) { /* * XXX - When kernacc() is fixed on the alpha to handle K0_SEG memory properly * we can re-enable the kernacc() checks. */ #ifndef __alpha__ if (!kernacc((caddr_t)m, sizeof(m), VM_PROT_READ | VM_PROT_WRITE)) panic("Can't read and write to mutex %p", m); #endif } #endif /* * Mutex initialization routine; initialize lock `m' of type contained in * `opts' with options contained in `opts' and description `description.' */ void mtx_init(struct mtx *m, const char *description, int opts) { struct lock_object *lock; MPASS((opts & ~(MTX_SPIN | MTX_QUIET | MTX_RECURSE | MTX_SLEEPABLE | MTX_NOWITNESS)) == 0); #ifdef MUTEX_DEBUG /* Diagnostic and error correction */ mtx_validate(m); #endif bzero(m, sizeof(*m)); lock = &m->mtx_object; if (opts & MTX_SPIN) lock->lo_class = &lock_class_mtx_spin; else lock->lo_class = &lock_class_mtx_sleep; lock->lo_name = description; if (opts & MTX_QUIET) lock->lo_flags = LO_QUIET; if (opts & MTX_RECURSE) lock->lo_flags |= LO_RECURSABLE; if (opts & MTX_SLEEPABLE) lock->lo_flags |= LO_SLEEPABLE; if ((opts & MTX_NOWITNESS) == 0) lock->lo_flags |= LO_WITNESS; m->mtx_lock = MTX_UNOWNED; TAILQ_INIT(&m->mtx_blocked); LOCK_LOG_INIT(lock, opts); WITNESS_INIT(lock); } /* * Remove lock `m' from all_mtx queue. We don't allow MTX_QUIET to be * passed in as a flag here because if the corresponding mtx_init() was * called with MTX_QUIET set, then it will already be set in the mutex's * flags. */ void mtx_destroy(struct mtx *m) { LOCK_LOG_DESTROY(&m->mtx_object, 0); if (!mtx_owned(m)) MPASS(mtx_unowned(m)); else { MPASS((m->mtx_lock & (MTX_RECURSED|MTX_CONTESTED)) == 0); /* Tell witness this isn't locked to make it happy. */ m->mtx_object.lo_flags &= ~LO_LOCKED; WITNESS_UNLOCK(&m->mtx_object, MTX_NOSWITCH, __FILE__, __LINE__); } WITNESS_DESTROY(&m->mtx_object); }