/*- * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) * * Copyright (c) 1991, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * The Mach Operating System project at Carnegie-Mellon University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * * Copyright (c) 1987, 1990 Carnegie-Mellon University. * All rights reserved. * * Authors: Avadis Tevanian, Jr., Michael Wayne Young * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Virtual memory object module. */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int old_msync; SYSCTL_INT(_vm, OID_AUTO, old_msync, CTLFLAG_RW, &old_msync, 0, "Use old (insecure) msync behavior"); static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, int flags, boolean_t *allclean, boolean_t *eio); static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean); static void vm_object_backing_remove(vm_object_t object); /* * Virtual memory objects maintain the actual data * associated with allocated virtual memory. A given * page of memory exists within exactly one object. * * An object is only deallocated when all "references" * are given up. Only one "reference" to a given * region of an object should be writeable. * * Associated with each object is a list of all resident * memory pages belonging to that object; this list is * maintained by the "vm_page" module, and locked by the object's * lock. * * Each object also records a "pager" routine which is * used to retrieve (and store) pages to the proper backing * storage. In addition, objects may be backed by other * objects from which they were virtual-copied. * * The only items within the object structure which are * modified after time of creation are: * reference count locked by object's lock * pager routine locked by object's lock * */ struct object_q vm_object_list; struct mtx vm_object_list_mtx; /* lock for object list and count */ struct vm_object kernel_object_store; static SYSCTL_NODE(_vm_stats, OID_AUTO, object, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "VM object stats"); static COUNTER_U64_DEFINE_EARLY(object_collapses); SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapses, CTLFLAG_RD, &object_collapses, "VM object collapses"); static COUNTER_U64_DEFINE_EARLY(object_bypasses); SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, bypasses, CTLFLAG_RD, &object_bypasses, "VM object bypasses"); static COUNTER_U64_DEFINE_EARLY(object_collapse_waits); SYSCTL_COUNTER_U64(_vm_stats_object, OID_AUTO, collapse_waits, CTLFLAG_RD, &object_collapse_waits, "Number of sleeps for collapse"); static uma_zone_t obj_zone; static int vm_object_zinit(void *mem, int size, int flags); #ifdef INVARIANTS static void vm_object_zdtor(void *mem, int size, void *arg); static void vm_object_zdtor(void *mem, int size, void *arg) { vm_object_t object; object = (vm_object_t)mem; KASSERT(object->ref_count == 0, ("object %p ref_count = %d", object, object->ref_count)); KASSERT(TAILQ_EMPTY(&object->memq), ("object %p has resident pages in its memq", object)); KASSERT(vm_radix_is_empty(&object->rtree), ("object %p has resident pages in its trie", object)); #if VM_NRESERVLEVEL > 0 KASSERT(LIST_EMPTY(&object->rvq), ("object %p has reservations", object)); #endif KASSERT(!vm_object_busied(object), ("object %p busy = %d", object, blockcount_read(&object->busy))); KASSERT(object->resident_page_count == 0, ("object %p resident_page_count = %d", object, object->resident_page_count)); KASSERT(atomic_load_int(&object->shadow_count) == 0, ("object %p shadow_count = %d", object, atomic_load_int(&object->shadow_count))); KASSERT(object->type == OBJT_DEAD, ("object %p has non-dead type %d", object, object->type)); KASSERT(object->charge == 0 && object->cred == NULL, ("object %p has non-zero charge %ju (%p)", object, (uintmax_t)object->charge, object->cred)); } #endif static int vm_object_zinit(void *mem, int size, int flags) { vm_object_t object; object = (vm_object_t)mem; rw_init_flags(&object->lock, "vmobject", RW_DUPOK | RW_NEW); /* These are true for any object that has been freed */ object->type = OBJT_DEAD; vm_radix_init(&object->rtree); refcount_init(&object->ref_count, 0); blockcount_init(&object->paging_in_progress); blockcount_init(&object->busy); object->resident_page_count = 0; atomic_store_int(&object->shadow_count, 0); object->flags = OBJ_DEAD; mtx_lock(&vm_object_list_mtx); TAILQ_INSERT_TAIL(&vm_object_list, object, object_list); mtx_unlock(&vm_object_list_mtx); return (0); } static void _vm_object_allocate(objtype_t type, vm_pindex_t size, u_short flags, vm_object_t object, void *handle) { TAILQ_INIT(&object->memq); LIST_INIT(&object->shadow_head); object->type = type; object->flags = flags; if ((flags & OBJ_SWAP) != 0) { pctrie_init(&object->un_pager.swp.swp_blks); object->un_pager.swp.writemappings = 0; } /* * Ensure that swap_pager_swapoff() iteration over object_list * sees up to date type and pctrie head if it observed * non-dead object. */ atomic_thread_fence_rel(); object->pg_color = 0; object->size = size; object->domain.dr_policy = NULL; object->generation = 1; object->cleangeneration = 1; refcount_init(&object->ref_count, 1); object->memattr = VM_MEMATTR_DEFAULT; object->cred = NULL; object->charge = 0; object->handle = handle; object->backing_object = NULL; object->backing_object_offset = (vm_ooffset_t) 0; #if VM_NRESERVLEVEL > 0 LIST_INIT(&object->rvq); #endif umtx_shm_object_init(object); } /* * vm_object_init: * * Initialize the VM objects module. */ void vm_object_init(void) { TAILQ_INIT(&vm_object_list); mtx_init(&vm_object_list_mtx, "vm object_list", NULL, MTX_DEF); rw_init(&kernel_object->lock, "kernel vm object"); vm_radix_init(&kernel_object->rtree); _vm_object_allocate(OBJT_PHYS, atop(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS), OBJ_UNMANAGED, kernel_object, NULL); #if VM_NRESERVLEVEL > 0 kernel_object->flags |= OBJ_COLORED; kernel_object->pg_color = (u_short)atop(VM_MIN_KERNEL_ADDRESS); #endif kernel_object->un_pager.phys.ops = &default_phys_pg_ops; /* * The lock portion of struct vm_object must be type stable due * to vm_pageout_fallback_object_lock locking a vm object * without holding any references to it. * * paging_in_progress is valid always. Lockless references to * the objects may acquire pip and then check OBJ_DEAD. */ obj_zone = uma_zcreate("VM OBJECT", sizeof (struct vm_object), NULL, #ifdef INVARIANTS vm_object_zdtor, #else NULL, #endif vm_object_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); vm_radix_zinit(); } void vm_object_clear_flag(vm_object_t object, u_short bits) { VM_OBJECT_ASSERT_WLOCKED(object); object->flags &= ~bits; } /* * Sets the default memory attribute for the specified object. Pages * that are allocated to this object are by default assigned this memory * attribute. * * Presently, this function must be called before any pages are allocated * to the object. In the future, this requirement may be relaxed for * "default" and "swap" objects. */ int vm_object_set_memattr(vm_object_t object, vm_memattr_t memattr) { VM_OBJECT_ASSERT_WLOCKED(object); if (object->type == OBJT_DEAD) return (KERN_INVALID_ARGUMENT); if (!TAILQ_EMPTY(&object->memq)) return (KERN_FAILURE); object->memattr = memattr; return (KERN_SUCCESS); } void vm_object_pip_add(vm_object_t object, short i) { if (i > 0) blockcount_acquire(&object->paging_in_progress, i); } void vm_object_pip_wakeup(vm_object_t object) { vm_object_pip_wakeupn(object, 1); } void vm_object_pip_wakeupn(vm_object_t object, short i) { if (i > 0) blockcount_release(&object->paging_in_progress, i); } /* * Atomically drop the object lock and wait for pip to drain. This protects * from sleep/wakeup races due to identity changes. The lock is not re-acquired * on return. */ static void vm_object_pip_sleep(vm_object_t object, const char *waitid) { (void)blockcount_sleep(&object->paging_in_progress, &object->lock, waitid, PVM | PDROP); } void vm_object_pip_wait(vm_object_t object, const char *waitid) { VM_OBJECT_ASSERT_WLOCKED(object); blockcount_wait(&object->paging_in_progress, &object->lock, waitid, PVM); } void vm_object_pip_wait_unlocked(vm_object_t object, const char *waitid) { VM_OBJECT_ASSERT_UNLOCKED(object); blockcount_wait(&object->paging_in_progress, NULL, waitid, PVM); } /* * vm_object_allocate: * * Returns a new object with the given size. */ vm_object_t vm_object_allocate(objtype_t type, vm_pindex_t size) { vm_object_t object; u_short flags; switch (type) { case OBJT_DEAD: panic("vm_object_allocate: can't create OBJT_DEAD"); case OBJT_SWAP: flags = OBJ_COLORED | OBJ_SWAP; break; case OBJT_DEVICE: case OBJT_SG: flags = OBJ_FICTITIOUS | OBJ_UNMANAGED; break; case OBJT_MGTDEVICE: flags = OBJ_FICTITIOUS; break; case OBJT_PHYS: flags = OBJ_UNMANAGED; break; case OBJT_VNODE: flags = 0; break; default: panic("vm_object_allocate: type %d is undefined or dynamic", type); } object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); _vm_object_allocate(type, size, flags, object, NULL); return (object); } vm_object_t vm_object_allocate_dyn(objtype_t dyntype, vm_pindex_t size, u_short flags) { vm_object_t object; MPASS(dyntype >= OBJT_FIRST_DYN /* && dyntype < nitems(pagertab) */); object = (vm_object_t)uma_zalloc(obj_zone, M_WAITOK); _vm_object_allocate(dyntype, size, flags, object, NULL); return (object); } /* * vm_object_allocate_anon: * * Returns a new default object of the given size and marked as * anonymous memory for special split/collapse handling. Color * to be initialized by the caller. */ vm_object_t vm_object_allocate_anon(vm_pindex_t size, vm_object_t backing_object, struct ucred *cred, vm_size_t charge) { vm_object_t handle, object; if (backing_object == NULL) handle = NULL; else if ((backing_object->flags & OBJ_ANON) != 0) handle = backing_object->handle; else handle = backing_object; object = uma_zalloc(obj_zone, M_WAITOK); _vm_object_allocate(OBJT_SWAP, size, OBJ_ANON | OBJ_ONEMAPPING | OBJ_SWAP, object, handle); object->cred = cred; object->charge = cred != NULL ? charge : 0; return (object); } static void vm_object_reference_vnode(vm_object_t object) { u_int old; /* * vnode objects need the lock for the first reference * to serialize with vnode_object_deallocate(). */ if (!refcount_acquire_if_gt(&object->ref_count, 0)) { VM_OBJECT_RLOCK(object); old = refcount_acquire(&object->ref_count); if (object->type == OBJT_VNODE && old == 0) vref(object->handle); VM_OBJECT_RUNLOCK(object); } } /* * vm_object_reference: * * Acquires a reference to the given object. */ void vm_object_reference(vm_object_t object) { if (object == NULL) return; if (object->type == OBJT_VNODE) vm_object_reference_vnode(object); else refcount_acquire(&object->ref_count); KASSERT((object->flags & OBJ_DEAD) == 0, ("vm_object_reference: Referenced dead object.")); } /* * vm_object_reference_locked: * * Gets another reference to the given object. * * The object must be locked. */ void vm_object_reference_locked(vm_object_t object) { u_int old; VM_OBJECT_ASSERT_LOCKED(object); old = refcount_acquire(&object->ref_count); if (object->type == OBJT_VNODE && old == 0) vref(object->handle); KASSERT((object->flags & OBJ_DEAD) == 0, ("vm_object_reference: Referenced dead object.")); } /* * Handle deallocating an object of type OBJT_VNODE. */ static void vm_object_deallocate_vnode(vm_object_t object) { struct vnode *vp = (struct vnode *) object->handle; bool last; KASSERT(object->type == OBJT_VNODE, ("vm_object_deallocate_vnode: not a vnode object")); KASSERT(vp != NULL, ("vm_object_deallocate_vnode: missing vp")); /* Object lock to protect handle lookup. */ last = refcount_release(&object->ref_count); VM_OBJECT_RUNLOCK(object); if (!last) return; if (!umtx_shm_vnobj_persistent) umtx_shm_object_terminated(object); /* vrele may need the vnode lock. */ vrele(vp); } /* * We dropped a reference on an object and discovered that it had a * single remaining shadow. This is a sibling of the reference we * dropped. Attempt to collapse the sibling and backing object. */ static vm_object_t vm_object_deallocate_anon(vm_object_t backing_object) { vm_object_t object; /* Fetch the final shadow. */ object = LIST_FIRST(&backing_object->shadow_head); KASSERT(object != NULL && atomic_load_int(&backing_object->shadow_count) == 1, ("vm_object_anon_deallocate: ref_count: %d, shadow_count: %d", backing_object->ref_count, atomic_load_int(&backing_object->shadow_count))); KASSERT((object->flags & OBJ_ANON) != 0, ("invalid shadow object %p", object)); if (!VM_OBJECT_TRYWLOCK(object)) { /* * Prevent object from disappearing since we do not have a * reference. */ vm_object_pip_add(object, 1); VM_OBJECT_WUNLOCK(backing_object); VM_OBJECT_WLOCK(object); vm_object_pip_wakeup(object); } else VM_OBJECT_WUNLOCK(backing_object); /* * Check for a collapse/terminate race with the last reference holder. */ if ((object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) != 0 || !refcount_acquire_if_not_zero(&object->ref_count)) { VM_OBJECT_WUNLOCK(object); return (NULL); } backing_object = object->backing_object; if (backing_object != NULL && (backing_object->flags & OBJ_ANON) != 0) vm_object_collapse(object); VM_OBJECT_WUNLOCK(object); return (object); } /* * vm_object_deallocate: * * Release a reference to the specified object, * gained either through a vm_object_allocate * or a vm_object_reference call. When all references * are gone, storage associated with this object * may be relinquished. * * No object may be locked. */ void vm_object_deallocate(vm_object_t object) { vm_object_t temp; bool released; while (object != NULL) { /* * If the reference count goes to 0 we start calling * vm_object_terminate() on the object chain. A ref count * of 1 may be a special case depending on the shadow count * being 0 or 1. These cases require a write lock on the * object. */ if ((object->flags & OBJ_ANON) == 0) released = refcount_release_if_gt(&object->ref_count, 1); else released = refcount_release_if_gt(&object->ref_count, 2); if (released) return; if (object->type == OBJT_VNODE) { VM_OBJECT_RLOCK(object); if (object->type == OBJT_VNODE) { vm_object_deallocate_vnode(object); return; } VM_OBJECT_RUNLOCK(object); } VM_OBJECT_WLOCK(object); KASSERT(object->ref_count > 0, ("vm_object_deallocate: object deallocated too many times: %d", object->type)); /* * If this is not the final reference to an anonymous * object we may need to collapse the shadow chain. */ if (!refcount_release(&object->ref_count)) { if (object->ref_count > 1 || atomic_load_int(&object->shadow_count) == 0) { if ((object->flags & OBJ_ANON) != 0 && object->ref_count == 1) vm_object_set_flag(object, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(object); return; } /* Handle collapsing last ref on anonymous objects. */ object = vm_object_deallocate_anon(object); continue; } /* * Handle the final reference to an object. We restart * the loop with the backing object to avoid recursion. */ umtx_shm_object_terminated(object); temp = object->backing_object; if (temp != NULL) { KASSERT(object->type == OBJT_SWAP, ("shadowed tmpfs v_object 2 %p", object)); vm_object_backing_remove(object); } KASSERT((object->flags & OBJ_DEAD) == 0, ("vm_object_deallocate: Terminating dead object.")); vm_object_set_flag(object, OBJ_DEAD); vm_object_terminate(object); object = temp; } } void vm_object_destroy(vm_object_t object) { uma_zfree(obj_zone, object); } static void vm_object_sub_shadow(vm_object_t object) { KASSERT(object->shadow_count >= 1, ("object %p sub_shadow count zero", object)); atomic_subtract_int(&object->shadow_count, 1); } static void vm_object_backing_remove_locked(vm_object_t object) { vm_object_t backing_object; backing_object = object->backing_object; VM_OBJECT_ASSERT_WLOCKED(object); VM_OBJECT_ASSERT_WLOCKED(backing_object); KASSERT((object->flags & OBJ_COLLAPSING) == 0, ("vm_object_backing_remove: Removing collapsing object.")); vm_object_sub_shadow(backing_object); if ((object->flags & OBJ_SHADOWLIST) != 0) { LIST_REMOVE(object, shadow_list); vm_object_clear_flag(object, OBJ_SHADOWLIST); } object->backing_object = NULL; } static void vm_object_backing_remove(vm_object_t object) { vm_object_t backing_object; VM_OBJECT_ASSERT_WLOCKED(object); backing_object = object->backing_object; if ((object->flags & OBJ_SHADOWLIST) != 0) { VM_OBJECT_WLOCK(backing_object); vm_object_backing_remove_locked(object); VM_OBJECT_WUNLOCK(backing_object); } else { object->backing_object = NULL; vm_object_sub_shadow(backing_object); } } static void vm_object_backing_insert_locked(vm_object_t object, vm_object_t backing_object) { VM_OBJECT_ASSERT_WLOCKED(object); atomic_add_int(&backing_object->shadow_count, 1); if ((backing_object->flags & OBJ_ANON) != 0) { VM_OBJECT_ASSERT_WLOCKED(backing_object); LIST_INSERT_HEAD(&backing_object->shadow_head, object, shadow_list); vm_object_set_flag(object, OBJ_SHADOWLIST); } object->backing_object = backing_object; } static void vm_object_backing_insert(vm_object_t object, vm_object_t backing_object) { VM_OBJECT_ASSERT_WLOCKED(object); if ((backing_object->flags & OBJ_ANON) != 0) { VM_OBJECT_WLOCK(backing_object); vm_object_backing_insert_locked(object, backing_object); VM_OBJECT_WUNLOCK(backing_object); } else { object->backing_object = backing_object; atomic_add_int(&backing_object->shadow_count, 1); } } /* * Insert an object into a backing_object's shadow list with an additional * reference to the backing_object added. */ static void vm_object_backing_insert_ref(vm_object_t object, vm_object_t backing_object) { VM_OBJECT_ASSERT_WLOCKED(object); if ((backing_object->flags & OBJ_ANON) != 0) { VM_OBJECT_WLOCK(backing_object); KASSERT((backing_object->flags & OBJ_DEAD) == 0, ("shadowing dead anonymous object")); vm_object_reference_locked(backing_object); vm_object_backing_insert_locked(object, backing_object); vm_object_clear_flag(backing_object, OBJ_ONEMAPPING); VM_OBJECT_WUNLOCK(backing_object); } else { vm_object_reference(backing_object); atomic_add_int(&backing_object->shadow_count, 1); object->backing_object = backing_object; } } /* * Transfer a backing reference from backing_object to object. */ static void vm_object_backing_transfer(vm_object_t object, vm_object_t backing_object) { vm_object_t new_backing_object; /* * Note that the reference to backing_object->backing_object * moves from within backing_object to within object. */ vm_object_backing_remove_locked(object); new_backing_object = backing_object->backing_object; if (new_backing_object == NULL) return; if ((new_backing_object->flags & OBJ_ANON) != 0) { VM_OBJECT_WLOCK(new_backing_object); vm_object_backing_remove_locked(backing_object); vm_object_backing_insert_locked(object, new_backing_object); VM_OBJECT_WUNLOCK(new_backing_object); } else { /* * shadow_count for new_backing_object is left * unchanged, its reference provided by backing_object * is replaced by object. */ object->backing_object = new_backing_object; backing_object->backing_object = NULL; } } /* * Wait for a concurrent collapse to settle. */ static void vm_object_collapse_wait(vm_object_t object) { VM_OBJECT_ASSERT_WLOCKED(object); while ((object->flags & OBJ_COLLAPSING) != 0) { vm_object_pip_wait(object, "vmcolwait"); counter_u64_add(object_collapse_waits, 1); } } /* * Waits for a backing object to clear a pending collapse and returns * it locked if it is an ANON object. */ static vm_object_t vm_object_backing_collapse_wait(vm_object_t object) { vm_object_t backing_object; VM_OBJECT_ASSERT_WLOCKED(object); for (;;) { backing_object = object->backing_object; if (backing_object == NULL || (backing_object->flags & OBJ_ANON) == 0) return (NULL); VM_OBJECT_WLOCK(backing_object); if ((backing_object->flags & (OBJ_DEAD | OBJ_COLLAPSING)) == 0) break; VM_OBJECT_WUNLOCK(object); vm_object_pip_sleep(backing_object, "vmbckwait"); counter_u64_add(object_collapse_waits, 1); VM_OBJECT_WLOCK(object); } return (backing_object); } /* * vm_object_terminate_single_page removes a pageable page from the object, * and removes it from the paging queues and frees it, if it is not wired. * It is invoked via callback from vm_object_terminate_pages. */ static void vm_object_terminate_single_page(vm_page_t p, void *objectv) { vm_object_t object __diagused = objectv; vm_page_assert_unbusied(p); KASSERT(p->object == object && (p->ref_count & VPRC_OBJREF) != 0, ("%s: page %p is inconsistent", __func__, p)); p->object = NULL; if (vm_page_drop(p, VPRC_OBJREF) == VPRC_OBJREF) { KASSERT((object->flags & OBJ_UNMANAGED) != 0 || vm_page_astate_load(p).queue != PQ_NONE, ("%s: page %p does not belong to a queue", __func__, p)); VM_CNT_INC(v_pfree); vm_page_free(p); } } /* * vm_object_terminate_pages removes any remaining pageable pages * from the object and resets the object to an empty state. */ static void vm_object_terminate_pages(vm_object_t object) { VM_OBJECT_ASSERT_WLOCKED(object); /* * If the object contained any pages, then reset it to an empty state. * Rather than incrementally removing each page from the object, the * page and object are reset to any empty state. */ if (object->resident_page_count == 0) return; vm_radix_reclaim_callback(&object->rtree, vm_object_terminate_single_page, object); TAILQ_INIT(&object->memq); object->resident_page_count = 0; if (object->type == OBJT_VNODE) vdrop(object->handle); } /* * vm_object_terminate actually destroys the specified object, freeing * up all previously used resources. * * The object must be locked. * This routine may block. */ void vm_object_terminate(vm_object_t object) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((object->flags & OBJ_DEAD) != 0, ("terminating non-dead obj %p", object)); KASSERT((object->flags & OBJ_COLLAPSING) == 0, ("terminating collapsing obj %p", object)); KASSERT(object->backing_object == NULL, ("terminating shadow obj %p", object)); /* * Wait for the pageout daemon and other current users to be * done with the object. Note that new paging_in_progress * users can come after this wait, but they must check * OBJ_DEAD flag set (without unlocking the object), and avoid * the object being terminated. */ vm_object_pip_wait(object, "objtrm"); KASSERT(object->ref_count == 0, ("vm_object_terminate: object with references, ref_count=%d", object->ref_count)); if ((object->flags & OBJ_PG_DTOR) == 0) vm_object_terminate_pages(object); #if VM_NRESERVLEVEL > 0 if (__predict_false(!LIST_EMPTY(&object->rvq))) vm_reserv_break_all(object); #endif KASSERT(object->cred == NULL || (object->flags & OBJ_SWAP) != 0, ("%s: non-swap obj %p has cred", __func__, object)); /* * Let the pager know object is dead. */ vm_pager_deallocate(object); VM_OBJECT_WUNLOCK(object); vm_object_destroy(object); } /* * Make the page read-only so that we can clear the object flags. However, if * this is a nosync mmap then the object is likely to stay dirty so do not * mess with the page and do not clear the object flags. Returns TRUE if the * page should be flushed, and FALSE otherwise. */ static boolean_t vm_object_page_remove_write(vm_page_t p, int flags, boolean_t *allclean) { vm_page_assert_busied(p); /* * If we have been asked to skip nosync pages and this is a * nosync page, skip it. Note that the object flags were not * cleared in this case so we do not have to set them. */ if ((flags & OBJPC_NOSYNC) != 0 && (p->a.flags & PGA_NOSYNC) != 0) { *allclean = FALSE; return (FALSE); } else { pmap_remove_write(p); return (p->dirty != 0); } } /* * vm_object_page_clean * * Clean all dirty pages in the specified range of object. Leaves page * on whatever queue it is currently on. If NOSYNC is set then do not * write out pages with PGA_NOSYNC set (originally comes from MAP_NOSYNC), * leaving the object dirty. * * For swap objects backing tmpfs regular files, do not flush anything, * but remove write protection on the mapped pages to update mtime through * mmaped writes. * * When stuffing pages asynchronously, allow clustering. XXX we need a * synchronous clustering mode implementation. * * Odd semantics: if start == end, we clean everything. * * The object must be locked. * * Returns FALSE if some page from the range was not written, as * reported by the pager, and TRUE otherwise. */ boolean_t vm_object_page_clean(vm_object_t object, vm_ooffset_t start, vm_ooffset_t end, int flags) { vm_page_t np, p; vm_pindex_t pi, tend, tstart; int curgeneration, n, pagerflags; boolean_t eio, res, allclean; VM_OBJECT_ASSERT_WLOCKED(object); if (!vm_object_mightbedirty(object) || object->resident_page_count == 0) return (TRUE); pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) != 0 ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK; pagerflags |= (flags & OBJPC_INVAL) != 0 ? VM_PAGER_PUT_INVAL : 0; tstart = OFF_TO_IDX(start); tend = (end == 0) ? object->size : OFF_TO_IDX(end + PAGE_MASK); allclean = tstart == 0 && tend >= object->size; res = TRUE; rescan: curgeneration = object->generation; for (p = vm_page_find_least(object, tstart); p != NULL; p = np) { pi = p->pindex; if (pi >= tend) break; np = TAILQ_NEXT(p, listq); if (vm_page_none_valid(p)) continue; if (vm_page_busy_acquire(p, VM_ALLOC_WAITFAIL) == 0) { if (object->generation != curgeneration && (flags & OBJPC_SYNC) != 0) goto rescan; np = vm_page_find_least(object, pi); continue; } if (!vm_object_page_remove_write(p, flags, &allclean)) { vm_page_xunbusy(p); continue; } if (object->type == OBJT_VNODE) { n = vm_object_page_collect_flush(object, p, pagerflags, flags, &allclean, &eio); if (eio) { res = FALSE; allclean = FALSE; } if (object->generation != curgeneration && (flags & OBJPC_SYNC) != 0) goto rescan; /* * If the VOP_PUTPAGES() did a truncated write, so * that even the first page of the run is not fully * written, vm_pageout_flush() returns 0 as the run * length. Since the condition that caused truncated * write may be permanent, e.g. exhausted free space, * accepting n == 0 would cause an infinite loop. * * Forwarding the iterator leaves the unwritten page * behind, but there is not much we can do there if * filesystem refuses to write it. */ if (n == 0) { n = 1; allclean = FALSE; } } else { n = 1; vm_page_xunbusy(p); } np = vm_page_find_least(object, pi + n); } #if 0 VOP_FSYNC(vp, (pagerflags & VM_PAGER_PUT_SYNC) ? MNT_WAIT : 0); #endif /* * Leave updating cleangeneration for tmpfs objects to tmpfs * scan. It needs to update mtime, which happens for other * filesystems during page writeouts. */ if (allclean && object->type == OBJT_VNODE) object->cleangeneration = curgeneration; return (res); } static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags, int flags, boolean_t *allclean, boolean_t *eio) { vm_page_t ma[2 * vm_pageout_page_count - 1], tp; int base, count, runlen; vm_page_lock_assert(p, MA_NOTOWNED); vm_page_assert_xbusied(p); VM_OBJECT_ASSERT_WLOCKED(object); base = nitems(ma) / 2; ma[base] = p; for (count = 1, tp = p; count < vm_pageout_page_count; count++) { tp = vm_page_next(tp); if (tp == NULL || vm_page_tryxbusy(tp) == 0) break; if (!vm_object_page_remove_write(tp, flags, allclean)) { vm_page_xunbusy(tp); break; } ma[base + count] = tp; } for (tp = p; count < vm_pageout_page_count; count++) { tp = vm_page_prev(tp); if (tp == NULL || vm_page_tryxbusy(tp) == 0) break; if (!vm_object_page_remove_write(tp, flags, allclean)) { vm_page_xunbusy(tp); break; } ma[--base] = tp; } vm_pageout_flush(&ma[base], count, pagerflags, nitems(ma) / 2 - base, &runlen, eio); return (runlen); } /* * Note that there is absolutely no sense in writing out * anonymous objects, so we track down the vnode object * to write out. * We invalidate (remove) all pages from the address space * for semantic correctness. * * If the backing object is a device object with unmanaged pages, then any * mappings to the specified range of pages must be removed before this * function is called. * * Note: certain anonymous maps, such as MAP_NOSYNC maps, * may start out with a NULL object. */ boolean_t vm_object_sync(vm_object_t object, vm_ooffset_t offset, vm_size_t size, boolean_t syncio, boolean_t invalidate) { vm_object_t backing_object; struct vnode *vp; struct mount *mp; int error, flags, fsync_after; boolean_t res; if (object == NULL) return (TRUE); res = TRUE; error = 0; VM_OBJECT_WLOCK(object); while ((backing_object = object->backing_object) != NULL) { VM_OBJECT_WLOCK(backing_object); offset += object->backing_object_offset; VM_OBJECT_WUNLOCK(object); object = backing_object; if (object->size < OFF_TO_IDX(offset + size)) size = IDX_TO_OFF(object->size) - offset; } /* * Flush pages if writing is allowed, invalidate them * if invalidation requested. Pages undergoing I/O * will be ignored by vm_object_page_remove(). * * We cannot lock the vnode and then wait for paging * to complete without deadlocking against vm_fault. * Instead we simply call vm_object_page_remove() and * allow it to block internally on a page-by-page * basis when it encounters pages undergoing async * I/O. */ if (object->type == OBJT_VNODE && vm_object_mightbedirty(object) != 0 && ((vp = object->handle)->v_vflag & VV_NOSYNC) == 0) { VM_OBJECT_WUNLOCK(object); (void)vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (syncio && !invalidate && offset == 0 && atop(size) == object->size) { /* * If syncing the whole mapping of the file, * it is faster to schedule all the writes in * async mode, also allowing the clustering, * and then wait for i/o to complete. */ flags = 0; fsync_after = TRUE; } else { flags = (syncio || invalidate) ? OBJPC_SYNC : 0; flags |= invalidate ? (OBJPC_SYNC | OBJPC_INVAL) : 0; fsync_after = FALSE; } VM_OBJECT_WLOCK(object); res = vm_object_page_clean(object, offset, offset + size, flags); VM_OBJECT_WUNLOCK(object); if (fsync_after) { for (;;) { error = VOP_FSYNC(vp, MNT_WAIT, curthread); if (error != ERELOOKUP) break; /* * Allow SU/bufdaemon to handle more * dependencies in the meantime. */ VOP_UNLOCK(vp); vn_finished_write(mp); (void)vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } } VOP_UNLOCK(vp); vn_finished_write(mp); if (error != 0) res = FALSE; VM_OBJECT_WLOCK(object); } if ((object->type == OBJT_VNODE || object->type == OBJT_DEVICE) && invalidate) { if (object->type == OBJT_DEVICE) /* * The option OBJPR_NOTMAPPED must be passed here * because vm_object_page_remove() cannot remove * unmanaged mappings. */ flags = OBJPR_NOTMAPPED; else if (old_msync) flags = 0; else flags = OBJPR_CLEANONLY; vm_object_page_remove(object, OFF_TO_IDX(offset), OFF_TO_IDX(offset + size + PAGE_MASK), flags); } VM_OBJECT_WUNLOCK(object); return (res); } /* * Determine whether the given advice can be applied to the object. Advice is * not applied to unmanaged pages since they never belong to page queues, and * since MADV_FREE is destructive, it can apply only to anonymous pages that * have been mapped at most once. */ static bool vm_object_advice_applies(vm_object_t object, int advice) { if ((object->flags & OBJ_UNMANAGED) != 0) return (false); if (advice != MADV_FREE) return (true); return ((object->flags & (OBJ_ONEMAPPING | OBJ_ANON)) == (OBJ_ONEMAPPING | OBJ_ANON)); } static void vm_object_madvise_freespace(vm_object_t object, int advice, vm_pindex_t pindex, vm_size_t size) { if (advice == MADV_FREE) vm_pager_freespace(object, pindex, size); } /* * vm_object_madvise: * * Implements the madvise function at the object/page level. * * MADV_WILLNEED (any object) * * Activate the specified pages if they are resident. * * MADV_DONTNEED (any object) * * Deactivate the specified pages if they are resident. * * MADV_FREE (OBJT_SWAP objects, OBJ_ONEMAPPING only) * * Deactivate and clean the specified pages if they are * resident. This permits the process to reuse the pages * without faulting or the kernel to reclaim the pages * without I/O. */ void vm_object_madvise(vm_object_t object, vm_pindex_t pindex, vm_pindex_t end, int advice) { vm_pindex_t tpindex; vm_object_t backing_object, tobject; vm_page_t m, tm; if (object == NULL) return; relookup: VM_OBJECT_WLOCK(object); if (!vm_object_advice_applies(object, advice)) { VM_OBJECT_WUNLOCK(object); return; } for (m = vm_page_find_least(object, pindex); pindex < end; pindex++) { tobject = object; /* * If the next page isn't resident in the top-level object, we * need to search the shadow chain. When applying MADV_FREE, we * take care to release any swap space used to store * non-resident pages. */ if (m == NULL || pindex < m->pindex) { /* * Optimize a common case: if the top-level object has * no backing object, we can skip over the non-resident * range in constant time. */ if (object->backing_object == NULL) { tpindex = (m != NULL && m->pindex < end) ? m->pindex : end; vm_object_madvise_freespace(object, advice, pindex, tpindex - pindex); if ((pindex = tpindex) == end) break; goto next_page; } tpindex = pindex; do { vm_object_madvise_freespace(tobject, advice, tpindex, 1); /* * Prepare to search the next object in the * chain. */ backing_object = tobject->backing_object; if (backing_object == NULL) goto next_pindex; VM_OBJECT_WLOCK(backing_object); tpindex += OFF_TO_IDX(tobject->backing_object_offset); if (tobject != object) VM_OBJECT_WUNLOCK(tobject); tobject = backing_object; if (!vm_object_advice_applies(tobject, advice)) goto next_pindex; } while ((tm = vm_page_lookup(tobject, tpindex)) == NULL); } else { next_page: tm = m; m = TAILQ_NEXT(m, listq); } /* * If the page is not in a normal state, skip it. The page * can not be invalidated while the object lock is held. */ if (!vm_page_all_valid(tm) || vm_page_wired(tm)) goto next_pindex; KASSERT((tm->flags & PG_FICTITIOUS) == 0, ("vm_object_madvise: page %p is fictitious", tm)); KASSERT((tm->oflags & VPO_UNMANAGED) == 0, ("vm_object_madvise: page %p is not managed", tm)); if (vm_page_tryxbusy(tm) == 0) { if (object != tobject) VM_OBJECT_WUNLOCK(object); if (advice == MADV_WILLNEED) { /* * Reference the page before unlocking and * sleeping so that the page daemon is less * likely to reclaim it. */ vm_page_aflag_set(tm, PGA_REFERENCED); } if (!vm_page_busy_sleep(tm, "madvpo", 0)) VM_OBJECT_WUNLOCK(tobject); goto relookup; } vm_page_advise(tm, advice); vm_page_xunbusy(tm); vm_object_madvise_freespace(tobject, advice, tm->pindex, 1); next_pindex: if (tobject != object) VM_OBJECT_WUNLOCK(tobject); } VM_OBJECT_WUNLOCK(object); } /* * vm_object_shadow: * * Create a new object which is backed by the * specified existing object range. The source * object reference is deallocated. * * The new object and offset into that object * are returned in the source parameters. */ void vm_object_shadow(vm_object_t *object, vm_ooffset_t *offset, vm_size_t length, struct ucred *cred, bool shared) { vm_object_t source; vm_object_t result; source = *object; /* * Don't create the new object if the old object isn't shared. * * If we hold the only reference we can guarantee that it won't * increase while we have the map locked. Otherwise the race is * harmless and we will end up with an extra shadow object that * will be collapsed later. */ if (source != NULL && source->ref_count == 1 && (source->flags & OBJ_ANON) != 0) return; /* * Allocate a new object with the given length. */ result = vm_object_allocate_anon(atop(length), source, cred, length); /* * Store the offset into the source object, and fix up the offset into * the new object. */ result->backing_object_offset = *offset; if (shared || source != NULL) { VM_OBJECT_WLOCK(result); /* * The new object shadows the source object, adding a * reference to it. Our caller changes his reference * to point to the new object, removing a reference to * the source object. Net result: no change of * reference count, unless the caller needs to add one * more reference due to forking a shared map entry. */ if (shared) { vm_object_reference_locked(result); vm_object_clear_flag(result, OBJ_ONEMAPPING); } /* * Try to optimize the result object's page color when * shadowing in order to maintain page coloring * consistency in the combined shadowed object. */ if (source != NULL) { vm_object_backing_insert(result, source); result->domain = source->domain; #if VM_NRESERVLEVEL > 0 vm_object_set_flag(result, (source->flags & OBJ_COLORED)); result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & ((1 << (VM_NFREEORDER - 1)) - 1); #endif } VM_OBJECT_WUNLOCK(result); } /* * Return the new things */ *offset = 0; *object = result; } /* * vm_object_split: * * Split the pages in a map entry into a new object. This affords * easier removal of unused pages, and keeps object inheritance from * being a negative impact on memory usage. */ void vm_object_split(vm_map_entry_t entry) { vm_page_t m, m_next; vm_object_t orig_object, new_object, backing_object; vm_pindex_t idx, offidxstart; vm_size_t size; orig_object = entry->object.vm_object; KASSERT((orig_object->flags & OBJ_ONEMAPPING) != 0, ("vm_object_split: Splitting object with multiple mappings.")); if ((orig_object->flags & OBJ_ANON) == 0) return; if (orig_object->ref_count <= 1) return; VM_OBJECT_WUNLOCK(orig_object); offidxstart = OFF_TO_IDX(entry->offset); size = atop(entry->end - entry->start); new_object = vm_object_allocate_anon(size, orig_object, orig_object->cred, ptoa(size)); /* * We must wait for the orig_object to complete any in-progress * collapse so that the swap blocks are stable below. The * additional reference on backing_object by new object will * prevent further collapse operations until split completes. */ VM_OBJECT_WLOCK(orig_object); vm_object_collapse_wait(orig_object); /* * At this point, the new object is still private, so the order in * which the original and new objects are locked does not matter. */ VM_OBJECT_WLOCK(new_object); new_object->domain = orig_object->domain; backing_object = orig_object->backing_object; if (backing_object != NULL) { vm_object_backing_insert_ref(new_object, backing_object); new_object->backing_object_offset = orig_object->backing_object_offset + entry->offset; } if (orig_object->cred != NULL) { crhold(orig_object->cred); KASSERT(orig_object->charge >= ptoa(size), ("orig_object->charge < 0")); orig_object->charge -= ptoa(size); } /* * Mark the split operation so that swap_pager_getpages() knows * that the object is in transition. */ vm_object_set_flag(orig_object, OBJ_SPLIT); #ifdef INVARIANTS idx = 0; #endif retry: m = vm_page_find_least(orig_object, offidxstart); KASSERT(m == NULL || idx <= m->pindex - offidxstart, ("%s: object %p was repopulated", __func__, orig_object)); for (; m != NULL && (idx = m->pindex - offidxstart) < size; m = m_next) { m_next = TAILQ_NEXT(m, listq); /* * We must wait for pending I/O to complete before we can * rename the page. * * We do not have to VM_PROT_NONE the page as mappings should * not be changed by this operation. */ if (vm_page_tryxbusy(m) == 0) { VM_OBJECT_WUNLOCK(new_object); if (vm_page_busy_sleep(m, "spltwt", 0)) VM_OBJECT_WLOCK(orig_object); VM_OBJECT_WLOCK(new_object); goto retry; } /* * The page was left invalid. Likely placed there by * an incomplete fault. Just remove and ignore. */ if (vm_page_none_valid(m)) { if (vm_page_remove(m)) vm_page_free(m); continue; } /* vm_page_rename() will dirty the page. */ if (vm_page_rename(m, new_object, idx)) { vm_page_xunbusy(m); VM_OBJECT_WUNLOCK(new_object); VM_OBJECT_WUNLOCK(orig_object); vm_radix_wait(); VM_OBJECT_WLOCK(orig_object); VM_OBJECT_WLOCK(new_object); goto retry; } #if VM_NRESERVLEVEL > 0 /* * If some of the reservation's allocated pages remain with * the original object, then transferring the reservation to * the new object is neither particularly beneficial nor * particularly harmful as compared to leaving the reservation * with the original object. If, however, all of the * reservation's allocated pages are transferred to the new * object, then transferring the reservation is typically * beneficial. Determining which of these two cases applies * would be more costly than unconditionally renaming the * reservation. */ vm_reserv_rename(m, new_object, orig_object, offidxstart); #endif } /* * swap_pager_copy() can sleep, in which case the orig_object's * and new_object's locks are released and reacquired. */ swap_pager_copy(orig_object, new_object, offidxstart, 0); TAILQ_FOREACH(m, &new_object->memq, listq) vm_page_xunbusy(m); vm_object_clear_flag(orig_object, OBJ_SPLIT); VM_OBJECT_WUNLOCK(orig_object); VM_OBJECT_WUNLOCK(new_object); entry->object.vm_object = new_object; entry->offset = 0LL; vm_object_deallocate(orig_object); VM_OBJECT_WLOCK(new_object); } static vm_page_t vm_object_collapse_scan_wait(vm_object_t object, vm_page_t p) { vm_object_t backing_object; VM_OBJECT_ASSERT_WLOCKED(object); backing_object = object->backing_object; VM_OBJECT_ASSERT_WLOCKED(backing_object); KASSERT(p == NULL || p->object == object || p->object == backing_object, ("invalid ownership %p %p %p", p, object, backing_object)); /* The page is only NULL when rename fails. */ if (p == NULL) { VM_OBJECT_WUNLOCK(object); VM_OBJECT_WUNLOCK(backing_object); vm_radix_wait(); VM_OBJECT_WLOCK(object); } else if (p->object == object) { VM_OBJECT_WUNLOCK(backing_object); if (vm_page_busy_sleep(p, "vmocol", 0)) VM_OBJECT_WLOCK(object); } else { VM_OBJECT_WUNLOCK(object); if (!vm_page_busy_sleep(p, "vmocol", 0)) VM_OBJECT_WUNLOCK(backing_object); VM_OBJECT_WLOCK(object); } VM_OBJECT_WLOCK(backing_object); return (TAILQ_FIRST(&backing_object->memq)); } static void vm_object_collapse_scan(vm_object_t object) { vm_object_t backing_object; vm_page_t next, p, pp; vm_pindex_t backing_offset_index, new_pindex; VM_OBJECT_ASSERT_WLOCKED(object); VM_OBJECT_ASSERT_WLOCKED(object->backing_object); backing_object = object->backing_object; backing_offset_index = OFF_TO_IDX(object->backing_object_offset); /* * Our scan */ for (p = TAILQ_FIRST(&backing_object->memq); p != NULL; p = next) { next = TAILQ_NEXT(p, listq); new_pindex = p->pindex - backing_offset_index; /* * Check for busy page */ if (vm_page_tryxbusy(p) == 0) { next = vm_object_collapse_scan_wait(object, p); continue; } KASSERT(object->backing_object == backing_object, ("vm_object_collapse_scan: backing object mismatch %p != %p", object->backing_object, backing_object)); KASSERT(p->object == backing_object, ("vm_object_collapse_scan: object mismatch %p != %p", p->object, backing_object)); if (p->pindex < backing_offset_index || new_pindex >= object->size) { vm_pager_freespace(backing_object, p->pindex, 1); KASSERT(!pmap_page_is_mapped(p), ("freeing mapped page %p", p)); if (vm_page_remove(p)) vm_page_free(p); continue; } if (!vm_page_all_valid(p)) { KASSERT(!pmap_page_is_mapped(p), ("freeing mapped page %p", p)); if (vm_page_remove(p)) vm_page_free(p); continue; } pp = vm_page_lookup(object, new_pindex); if (pp != NULL && vm_page_tryxbusy(pp) == 0) { vm_page_xunbusy(p); /* * The page in the parent is busy and possibly not * (yet) valid. Until its state is finalized by the * busy bit owner, we can't tell whether it shadows the * original page. */ next = vm_object_collapse_scan_wait(object, pp); continue; } if (pp != NULL && vm_page_none_valid(pp)) { /* * The page was invalid in the parent. Likely placed * there by an incomplete fault. Just remove and * ignore. p can replace it. */ if (vm_page_remove(pp)) vm_page_free(pp); pp = NULL; } if (pp != NULL || vm_pager_has_page(object, new_pindex, NULL, NULL)) { /* * The page already exists in the parent OR swap exists * for this location in the parent. Leave the parent's * page alone. Destroy the original page from the * backing object. */ vm_pager_freespace(backing_object, p->pindex, 1); KASSERT(!pmap_page_is_mapped(p), ("freeing mapped page %p", p)); if (vm_page_remove(p)) vm_page_free(p); if (pp != NULL) vm_page_xunbusy(pp); continue; } /* * Page does not exist in parent, rename the page from the * backing object to the main object. * * If the page was mapped to a process, it can remain mapped * through the rename. vm_page_rename() will dirty the page. */ if (vm_page_rename(p, object, new_pindex)) { vm_page_xunbusy(p); next = vm_object_collapse_scan_wait(object, NULL); continue; } /* Use the old pindex to free the right page. */ vm_pager_freespace(backing_object, new_pindex + backing_offset_index, 1); #if VM_NRESERVLEVEL > 0 /* * Rename the reservation. */ vm_reserv_rename(p, object, backing_object, backing_offset_index); #endif vm_page_xunbusy(p); } return; } /* * vm_object_collapse: * * Collapse an object with the object backing it. * Pages in the backing object are moved into the * parent, and the backing object is deallocated. */ void vm_object_collapse(vm_object_t object) { vm_object_t backing_object, new_backing_object; VM_OBJECT_ASSERT_WLOCKED(object); while (TRUE) { KASSERT((object->flags & (OBJ_DEAD | OBJ_ANON)) == OBJ_ANON, ("collapsing invalid object")); /* * Wait for the backing_object to finish any pending * collapse so that the caller sees the shortest possible * shadow chain. */ backing_object = vm_object_backing_collapse_wait(object); if (backing_object == NULL) return; KASSERT(object->ref_count > 0 && object->ref_count > atomic_load_int(&object->shadow_count), ("collapse with invalid ref %d or shadow %d count.", object->ref_count, atomic_load_int(&object->shadow_count))); KASSERT((backing_object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, ("vm_object_collapse: Backing object already collapsing.")); KASSERT((object->flags & (OBJ_COLLAPSING | OBJ_DEAD)) == 0, ("vm_object_collapse: object is already collapsing.")); /* * We know that we can either collapse the backing object if * the parent is the only reference to it, or (perhaps) have * the parent bypass the object if the parent happens to shadow * all the resident pages in the entire backing object. */ if (backing_object->ref_count == 1) { KASSERT(atomic_load_int(&backing_object->shadow_count) == 1, ("vm_object_collapse: shadow_count: %d", atomic_load_int(&backing_object->shadow_count))); vm_object_pip_add(object, 1); vm_object_set_flag(object, OBJ_COLLAPSING); vm_object_pip_add(backing_object, 1); vm_object_set_flag(backing_object, OBJ_DEAD); /* * If there is exactly one reference to the backing * object, we can collapse it into the parent. */ vm_object_collapse_scan(object); /* * Move the pager from backing_object to object. * * swap_pager_copy() can sleep, in which case the * backing_object's and object's locks are released and * reacquired. */ swap_pager_copy(backing_object, object, OFF_TO_IDX(object->backing_object_offset), TRUE); /* * Object now shadows whatever backing_object did. */ vm_object_clear_flag(object, OBJ_COLLAPSING); vm_object_backing_transfer(object, backing_object); object->backing_object_offset += backing_object->backing_object_offset; VM_OBJECT_WUNLOCK(object); vm_object_pip_wakeup(object); /* * Discard backing_object. * * Since the backing object has no pages, no pager left, * and no object references within it, all that is * necessary is to dispose of it. */ KASSERT(backing_object->ref_count == 1, ( "backing_object %p was somehow re-referenced during collapse!", backing_object)); vm_object_pip_wakeup(backing_object); (void)refcount_release(&backing_object->ref_count); umtx_shm_object_terminated(backing_object); vm_object_terminate(backing_object); counter_u64_add(object_collapses, 1); VM_OBJECT_WLOCK(object); } else { /* * If we do not entirely shadow the backing object, * there is nothing we can do so we give up. * * The object lock and backing_object lock must not * be dropped during this sequence. */ if (!swap_pager_scan_all_shadowed(object)) { VM_OBJECT_WUNLOCK(backing_object); break; } /* * Make the parent shadow the next object in the * chain. Deallocating backing_object will not remove * it, since its reference count is at least 2. */ vm_object_backing_remove_locked(object); new_backing_object = backing_object->backing_object; if (new_backing_object != NULL) { vm_object_backing_insert_ref(object, new_backing_object); object->backing_object_offset += backing_object->backing_object_offset; } /* * Drop the reference count on backing_object. Since * its ref_count was at least 2, it will not vanish. */ (void)refcount_release(&backing_object->ref_count); KASSERT(backing_object->ref_count >= 1, ( "backing_object %p was somehow dereferenced during collapse!", backing_object)); VM_OBJECT_WUNLOCK(backing_object); counter_u64_add(object_bypasses, 1); } /* * Try again with this object's new backing object. */ } } /* * vm_object_page_remove: * * For the given object, either frees or invalidates each of the * specified pages. In general, a page is freed. However, if a page is * wired for any reason other than the existence of a managed, wired * mapping, then it may be invalidated but not removed from the object. * Pages are specified by the given range ["start", "end") and the option * OBJPR_CLEANONLY. As a special case, if "end" is zero, then the range * extends from "start" to the end of the object. If the option * OBJPR_CLEANONLY is specified, then only the non-dirty pages within the * specified range are affected. If the option OBJPR_NOTMAPPED is * specified, then the pages within the specified range must have no * mappings. Otherwise, if this option is not specified, any mappings to * the specified pages are removed before the pages are freed or * invalidated. * * In general, this operation should only be performed on objects that * contain managed pages. There are, however, two exceptions. First, it * is performed on the kernel and kmem objects by vm_map_entry_delete(). * Second, it is used by msync(..., MS_INVALIDATE) to invalidate device- * backed pages. In both of these cases, the option OBJPR_CLEANONLY must * not be specified and the option OBJPR_NOTMAPPED must be specified. * * The object must be locked. */ void vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end, int options) { vm_page_t p, next; VM_OBJECT_ASSERT_WLOCKED(object); KASSERT((object->flags & OBJ_UNMANAGED) == 0 || (options & (OBJPR_CLEANONLY | OBJPR_NOTMAPPED)) == OBJPR_NOTMAPPED, ("vm_object_page_remove: illegal options for object %p", object)); if (object->resident_page_count == 0) return; vm_object_pip_add(object, 1); again: p = vm_page_find_least(object, start); /* * Here, the variable "p" is either (1) the page with the least pindex * greater than or equal to the parameter "start" or (2) NULL. */ for (; p != NULL && (p->pindex < end || end == 0); p = next) { next = TAILQ_NEXT(p, listq); /* * Skip invalid pages if asked to do so. Try to avoid acquiring * the busy lock, as some consumers rely on this to avoid * deadlocks. * * A thread may concurrently transition the page from invalid to * valid using only the busy lock, so the result of this check * is immediately stale. It is up to consumers to handle this, * for instance by ensuring that all invalid->valid transitions * happen with a mutex held, as may be possible for a * filesystem. */ if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) continue; /* * If the page is wired for any reason besides the existence * of managed, wired mappings, then it cannot be freed. For * example, fictitious pages, which represent device memory, * are inherently wired and cannot be freed. They can, * however, be invalidated if the option OBJPR_CLEANONLY is * not specified. */ if (vm_page_tryxbusy(p) == 0) { if (vm_page_busy_sleep(p, "vmopar", 0)) VM_OBJECT_WLOCK(object); goto again; } if ((options & OBJPR_VALIDONLY) != 0 && vm_page_none_valid(p)) { vm_page_xunbusy(p); continue; } if (vm_page_wired(p)) { wired: if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0) pmap_remove_all(p); if ((options & OBJPR_CLEANONLY) == 0) { vm_page_invalid(p); vm_page_undirty(p); } vm_page_xunbusy(p); continue; } KASSERT((p->flags & PG_FICTITIOUS) == 0, ("vm_object_page_remove: page %p is fictitious", p)); if ((options & OBJPR_CLEANONLY) != 0 && !vm_page_none_valid(p)) { if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0 && !vm_page_try_remove_write(p)) goto wired; if (p->dirty != 0) { vm_page_xunbusy(p); continue; } } if ((options & OBJPR_NOTMAPPED) == 0 && object->ref_count != 0 && !vm_page_try_remove_all(p)) goto wired; vm_page_free(p); } vm_object_pip_wakeup(object); vm_pager_freespace(object, start, (end == 0 ? object->size : end) - start); } /* * vm_object_page_noreuse: * * For the given object, attempt to move the specified pages to * the head of the inactive queue. This bypasses regular LRU * operation and allows the pages to be reused quickly under memory * pressure. If a page is wired for any reason, then it will not * be queued. Pages are specified by the range ["start", "end"). * As a special case, if "end" is zero, then the range extends from * "start" to the end of the object. * * This operation should only be performed on objects that * contain non-fictitious, managed pages. * * The object must be locked. */ void vm_object_page_noreuse(vm_object_t object, vm_pindex_t start, vm_pindex_t end) { vm_page_t p, next; VM_OBJECT_ASSERT_LOCKED(object); KASSERT((object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0, ("vm_object_page_noreuse: illegal object %p", object)); if (object->resident_page_count == 0) return; p = vm_page_find_least(object, start); /* * Here, the variable "p" is either (1) the page with the least pindex * greater than or equal to the parameter "start" or (2) NULL. */ for (; p != NULL && (p->pindex < end || end == 0); p = next) { next = TAILQ_NEXT(p, listq); vm_page_deactivate_noreuse(p); } } /* * Populate the specified range of the object with valid pages. Returns * TRUE if the range is successfully populated and FALSE otherwise. * * Note: This function should be optimized to pass a larger array of * pages to vm_pager_get_pages() before it is applied to a non- * OBJT_DEVICE object. * * The object must be locked. */ boolean_t vm_object_populate(vm_object_t object, vm_pindex_t start, vm_pindex_t end) { vm_page_t m; vm_pindex_t pindex; int rv; VM_OBJECT_ASSERT_WLOCKED(object); for (pindex = start; pindex < end; pindex++) { rv = vm_page_grab_valid(&m, object, pindex, VM_ALLOC_NORMAL); if (rv != VM_PAGER_OK) break; /* * Keep "m" busy because a subsequent iteration may unlock * the object. */ } if (pindex > start) { m = vm_page_lookup(object, start); while (m != NULL && m->pindex < pindex) { vm_page_xunbusy(m); m = TAILQ_NEXT(m, listq); } } return (pindex == end); } /* * Routine: vm_object_coalesce * Function: Coalesces two objects backing up adjoining * regions of memory into a single object. * * returns TRUE if objects were combined. * * NOTE: Only works at the moment if the second object is NULL - * if it's not, which object do we lock first? * * Parameters: * prev_object First object to coalesce * prev_offset Offset into prev_object * prev_size Size of reference to prev_object * next_size Size of reference to the second object * reserved Indicator that extension region has * swap accounted for * * Conditions: * The object must *not* be locked. */ boolean_t vm_object_coalesce(vm_object_t prev_object, vm_ooffset_t prev_offset, vm_size_t prev_size, vm_size_t next_size, boolean_t reserved) { vm_pindex_t next_pindex; if (prev_object == NULL) return (TRUE); if ((prev_object->flags & OBJ_ANON) == 0) return (FALSE); VM_OBJECT_WLOCK(prev_object); /* * Try to collapse the object first. */ vm_object_collapse(prev_object); /* * Can't coalesce if: . more than one reference . paged out . shadows * another object . has a copy elsewhere (any of which mean that the * pages not mapped to prev_entry may be in use anyway) */ if (prev_object->backing_object != NULL) { VM_OBJECT_WUNLOCK(prev_object); return (FALSE); } prev_size >>= PAGE_SHIFT; next_size >>= PAGE_SHIFT; next_pindex = OFF_TO_IDX(prev_offset) + prev_size; if (prev_object->ref_count > 1 && prev_object->size != next_pindex && (prev_object->flags & OBJ_ONEMAPPING) == 0) { VM_OBJECT_WUNLOCK(prev_object); return (FALSE); } /* * Account for the charge. */ if (prev_object->cred != NULL) { /* * If prev_object was charged, then this mapping, * although not charged now, may become writable * later. Non-NULL cred in the object would prevent * swap reservation during enabling of the write * access, so reserve swap now. Failed reservation * cause allocation of the separate object for the map * entry, and swap reservation for this entry is * managed in appropriate time. */ if (!reserved && !swap_reserve_by_cred(ptoa(next_size), prev_object->cred)) { VM_OBJECT_WUNLOCK(prev_object); return (FALSE); } prev_object->charge += ptoa(next_size); } /* * Remove any pages that may still be in the object from a previous * deallocation. */ if (next_pindex < prev_object->size) { vm_object_page_remove(prev_object, next_pindex, next_pindex + next_size, 0); #if 0 if (prev_object->cred != NULL) { KASSERT(prev_object->charge >= ptoa(prev_object->size - next_pindex), ("object %p overcharged 1 %jx %jx", prev_object, (uintmax_t)next_pindex, (uintmax_t)next_size)); prev_object->charge -= ptoa(prev_object->size - next_pindex); } #endif } /* * Extend the object if necessary. */ if (next_pindex + next_size > prev_object->size) prev_object->size = next_pindex + next_size; VM_OBJECT_WUNLOCK(prev_object); return (TRUE); } void vm_object_set_writeable_dirty_(vm_object_t object) { atomic_add_int(&object->generation, 1); } bool vm_object_mightbedirty_(vm_object_t object) { return (object->generation != object->cleangeneration); } /* * vm_object_unwire: * * For each page offset within the specified range of the given object, * find the highest-level page in the shadow chain and unwire it. A page * must exist at every page offset, and the highest-level page must be * wired. */ void vm_object_unwire(vm_object_t object, vm_ooffset_t offset, vm_size_t length, uint8_t queue) { vm_object_t tobject, t1object; vm_page_t m, tm; vm_pindex_t end_pindex, pindex, tpindex; int depth, locked_depth; KASSERT((offset & PAGE_MASK) == 0, ("vm_object_unwire: offset is not page aligned")); KASSERT((length & PAGE_MASK) == 0, ("vm_object_unwire: length is not a multiple of PAGE_SIZE")); /* The wired count of a fictitious page never changes. */ if ((object->flags & OBJ_FICTITIOUS) != 0) return; pindex = OFF_TO_IDX(offset); end_pindex = pindex + atop(length); again: locked_depth = 1; VM_OBJECT_RLOCK(object); m = vm_page_find_least(object, pindex); while (pindex < end_pindex) { if (m == NULL || pindex < m->pindex) { /* * The first object in the shadow chain doesn't * contain a page at the current index. Therefore, * the page must exist in a backing object. */ tobject = object; tpindex = pindex; depth = 0; do { tpindex += OFF_TO_IDX(tobject->backing_object_offset); tobject = tobject->backing_object; KASSERT(tobject != NULL, ("vm_object_unwire: missing page")); if ((tobject->flags & OBJ_FICTITIOUS) != 0) goto next_page; depth++; if (depth == locked_depth) { locked_depth++; VM_OBJECT_RLOCK(tobject); } } while ((tm = vm_page_lookup(tobject, tpindex)) == NULL); } else { tm = m; m = TAILQ_NEXT(m, listq); } if (vm_page_trysbusy(tm) == 0) { for (tobject = object; locked_depth >= 1; locked_depth--) { t1object = tobject->backing_object; if (tm->object != tobject) VM_OBJECT_RUNLOCK(tobject); tobject = t1object; } tobject = tm->object; if (!vm_page_busy_sleep(tm, "unwbo", VM_ALLOC_IGN_SBUSY)) VM_OBJECT_RUNLOCK(tobject); goto again; } vm_page_unwire(tm, queue); vm_page_sunbusy(tm); next_page: pindex++; } /* Release the accumulated object locks. */ for (tobject = object; locked_depth >= 1; locked_depth--) { t1object = tobject->backing_object; VM_OBJECT_RUNLOCK(tobject); tobject = t1object; } } /* * Return the vnode for the given object, or NULL if none exists. * For tmpfs objects, the function may return NULL if there is * no vnode allocated at the time of the call. */ struct vnode * vm_object_vnode(vm_object_t object) { struct vnode *vp; VM_OBJECT_ASSERT_LOCKED(object); vm_pager_getvp(object, &vp, NULL); return (vp); } /* * Busy the vm object. This prevents new pages belonging to the object from * becoming busy. Existing pages persist as busy. Callers are responsible * for checking page state before proceeding. */ void vm_object_busy(vm_object_t obj) { VM_OBJECT_ASSERT_LOCKED(obj); blockcount_acquire(&obj->busy, 1); /* The fence is required to order loads of page busy. */ atomic_thread_fence_acq_rel(); } void vm_object_unbusy(vm_object_t obj) { blockcount_release(&obj->busy, 1); } void vm_object_busy_wait(vm_object_t obj, const char *wmesg) { VM_OBJECT_ASSERT_UNLOCKED(obj); (void)blockcount_sleep(&obj->busy, NULL, wmesg, PVM); } /* * This function aims to determine if the object is mapped, * specifically, if it is referenced by a vm_map_entry. Because * objects occasionally acquire transient references that do not * represent a mapping, the method used here is inexact. However, it * has very low overhead and is good enough for the advisory * vm.vmtotal sysctl. */ bool vm_object_is_active(vm_object_t obj) { return (obj->ref_count > atomic_load_int(&obj->shadow_count)); } static int vm_object_list_handler(struct sysctl_req *req, bool swap_only) { struct kinfo_vmobject *kvo; char *fullpath, *freepath; struct vnode *vp; struct vattr va; vm_object_t obj; vm_page_t m; struct cdev *cdev; struct cdevsw *csw; u_long sp; int count, error, ref; key_t key; unsigned short seq; bool want_path; if (req->oldptr == NULL) { /* * If an old buffer has not been provided, generate an * estimate of the space needed for a subsequent call. */ mtx_lock(&vm_object_list_mtx); count = 0; TAILQ_FOREACH(obj, &vm_object_list, object_list) { if (obj->type == OBJT_DEAD) continue; count++; } mtx_unlock(&vm_object_list_mtx); return (SYSCTL_OUT(req, NULL, sizeof(struct kinfo_vmobject) * count * 11 / 10)); } want_path = !(swap_only || jailed(curthread->td_ucred)); kvo = malloc(sizeof(*kvo), M_TEMP, M_WAITOK | M_ZERO); error = 0; /* * VM objects are type stable and are never removed from the * list once added. This allows us to safely read obj->object_list * after reacquiring the VM object lock. */ mtx_lock(&vm_object_list_mtx); TAILQ_FOREACH(obj, &vm_object_list, object_list) { if (obj->type == OBJT_DEAD || (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) continue; VM_OBJECT_RLOCK(obj); if (obj->type == OBJT_DEAD || (swap_only && (obj->flags & (OBJ_ANON | OBJ_SWAP)) == 0)) { VM_OBJECT_RUNLOCK(obj); continue; } mtx_unlock(&vm_object_list_mtx); kvo->kvo_size = ptoa(obj->size); kvo->kvo_resident = obj->resident_page_count; kvo->kvo_ref_count = obj->ref_count; kvo->kvo_shadow_count = atomic_load_int(&obj->shadow_count); kvo->kvo_memattr = obj->memattr; kvo->kvo_active = 0; kvo->kvo_inactive = 0; kvo->kvo_flags = 0; if (!swap_only) { TAILQ_FOREACH(m, &obj->memq, listq) { /* * A page may belong to the object but be * dequeued and set to PQ_NONE while the * object lock is not held. This makes the * reads of m->queue below racy, and we do not * count pages set to PQ_NONE. However, this * sysctl is only meant to give an * approximation of the system anyway. */ if (vm_page_active(m)) kvo->kvo_active++; else if (vm_page_inactive(m)) kvo->kvo_inactive++; else if (vm_page_in_laundry(m)) kvo->kvo_laundry++; } } kvo->kvo_vn_fileid = 0; kvo->kvo_vn_fsid = 0; kvo->kvo_vn_fsid_freebsd11 = 0; freepath = NULL; fullpath = ""; vp = NULL; kvo->kvo_type = vm_object_kvme_type(obj, want_path ? &vp : NULL); if (vp != NULL) { vref(vp); } else if ((obj->flags & OBJ_ANON) != 0) { MPASS(kvo->kvo_type == KVME_TYPE_SWAP); kvo->kvo_me = (uintptr_t)obj; /* tmpfs objs are reported as vnodes */ kvo->kvo_backing_obj = (uintptr_t)obj->backing_object; sp = swap_pager_swapped_pages(obj); kvo->kvo_swapped = sp > UINT32_MAX ? UINT32_MAX : sp; } if ((obj->type == OBJT_DEVICE || obj->type == OBJT_MGTDEVICE) && (obj->flags & OBJ_CDEVH) != 0) { cdev = obj->un_pager.devp.handle; if (cdev != NULL) { csw = dev_refthread(cdev, &ref); if (csw != NULL) { strlcpy(kvo->kvo_path, cdev->si_name, sizeof(kvo->kvo_path)); dev_relthread(cdev, ref); } } } VM_OBJECT_RUNLOCK(obj); if ((obj->flags & OBJ_SYSVSHM) != 0) { kvo->kvo_flags |= KVMO_FLAG_SYSVSHM; shmobjinfo(obj, &key, &seq); kvo->kvo_vn_fileid = key; kvo->kvo_vn_fsid_freebsd11 = seq; } if ((obj->flags & OBJ_POSIXSHM) != 0) { kvo->kvo_flags |= KVMO_FLAG_POSIXSHM; shm_get_path(obj, kvo->kvo_path, sizeof(kvo->kvo_path)); } if (vp != NULL) { vn_fullpath(vp, &fullpath, &freepath); vn_lock(vp, LK_SHARED | LK_RETRY); if (VOP_GETATTR(vp, &va, curthread->td_ucred) == 0) { kvo->kvo_vn_fileid = va.va_fileid; kvo->kvo_vn_fsid = va.va_fsid; kvo->kvo_vn_fsid_freebsd11 = va.va_fsid; /* truncate */ } vput(vp); strlcpy(kvo->kvo_path, fullpath, sizeof(kvo->kvo_path)); free(freepath, M_TEMP); } /* Pack record size down */ kvo->kvo_structsize = offsetof(struct kinfo_vmobject, kvo_path) + strlen(kvo->kvo_path) + 1; kvo->kvo_structsize = roundup(kvo->kvo_structsize, sizeof(uint64_t)); error = SYSCTL_OUT(req, kvo, kvo->kvo_structsize); maybe_yield(); mtx_lock(&vm_object_list_mtx); if (error) break; } mtx_unlock(&vm_object_list_mtx); free(kvo, M_TEMP); return (error); } static int sysctl_vm_object_list(SYSCTL_HANDLER_ARGS) { return (vm_object_list_handler(req, false)); } SYSCTL_PROC(_vm, OID_AUTO, objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list, "S,kinfo_vmobject", "List of VM objects"); static int sysctl_vm_object_list_swap(SYSCTL_HANDLER_ARGS) { return (vm_object_list_handler(req, true)); } /* * This sysctl returns list of the anonymous or swap objects. Intent * is to provide stripped optimized list useful to analyze swap use. * Since technically non-swap (default) objects participate in the * shadow chains, and are converted to swap type as needed by swap * pager, we must report them. */ SYSCTL_PROC(_vm, OID_AUTO, swap_objects, CTLTYPE_STRUCT | CTLFLAG_RW | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_object_list_swap, "S,kinfo_vmobject", "List of swap VM objects"); #include "opt_ddb.h" #ifdef DDB #include #include #include static int _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry) { vm_map_t tmpm; vm_map_entry_t tmpe; vm_object_t obj; if (map == 0) return 0; if (entry == 0) { VM_MAP_ENTRY_FOREACH(tmpe, map) { if (_vm_object_in_map(map, object, tmpe)) { return 1; } } } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { tmpm = entry->object.sub_map; VM_MAP_ENTRY_FOREACH(tmpe, tmpm) { if (_vm_object_in_map(tmpm, object, tmpe)) { return 1; } } } else if ((obj = entry->object.vm_object) != NULL) { for (; obj; obj = obj->backing_object) if (obj == object) { return 1; } } return 0; } static int vm_object_in_map(vm_object_t object) { struct proc *p; /* sx_slock(&allproc_lock); */ FOREACH_PROC_IN_SYSTEM(p) { if (!p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */) continue; if (_vm_object_in_map(&p->p_vmspace->vm_map, object, 0)) { /* sx_sunlock(&allproc_lock); */ return 1; } } /* sx_sunlock(&allproc_lock); */ if (_vm_object_in_map(kernel_map, object, 0)) return 1; return 0; } DB_SHOW_COMMAND_FLAGS(vmochk, vm_object_check, DB_CMD_MEMSAFE) { vm_object_t object; /* * make sure that internal objs are in a map somewhere * and none have zero ref counts. */ TAILQ_FOREACH(object, &vm_object_list, object_list) { if ((object->flags & OBJ_ANON) != 0) { if (object->ref_count == 0) { db_printf("vmochk: internal obj has zero ref count: %ld\n", (long)object->size); } if (!vm_object_in_map(object)) { db_printf( "vmochk: internal obj is not in a map: " "ref: %d, size: %lu: 0x%lx, backing_object: %p\n", object->ref_count, (u_long)object->size, (u_long)object->size, (void *)object->backing_object); } } if (db_pager_quit) return; } } /* * vm_object_print: [ debug ] */ DB_SHOW_COMMAND(object, vm_object_print_static) { /* XXX convert args. */ vm_object_t object = (vm_object_t)addr; boolean_t full = have_addr; vm_page_t p; /* XXX count is an (unused) arg. Avoid shadowing it. */ #define count was_count int count; if (object == NULL) return; db_iprintf( "Object %p: type=%d, size=0x%jx, res=%d, ref=%d, flags=0x%x ruid %d charge %jx\n", object, (int)object->type, (uintmax_t)object->size, object->resident_page_count, object->ref_count, object->flags, object->cred ? object->cred->cr_ruid : -1, (uintmax_t)object->charge); db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%jx\n", atomic_load_int(&object->shadow_count), object->backing_object ? object->backing_object->ref_count : 0, object->backing_object, (uintmax_t)object->backing_object_offset); if (!full) return; db_indent += 2; count = 0; TAILQ_FOREACH(p, &object->memq, listq) { if (count == 0) db_iprintf("memory:="); else if (count == 6) { db_printf("\n"); db_iprintf(" ..."); count = 0; } else db_printf(","); count++; db_printf("(off=0x%jx,page=0x%jx)", (uintmax_t)p->pindex, (uintmax_t)VM_PAGE_TO_PHYS(p)); if (db_pager_quit) break; } if (count != 0) db_printf("\n"); db_indent -= 2; } /* XXX. */ #undef count /* XXX need this non-static entry for calling from vm_map_print. */ void vm_object_print( /* db_expr_t */ long addr, boolean_t have_addr, /* db_expr_t */ long count, char *modif) { vm_object_print_static(addr, have_addr, count, modif); } DB_SHOW_COMMAND_FLAGS(vmopag, vm_object_print_pages, DB_CMD_MEMSAFE) { vm_object_t object; vm_pindex_t fidx; vm_paddr_t pa; vm_page_t m, prev_m; int rcount; TAILQ_FOREACH(object, &vm_object_list, object_list) { db_printf("new object: %p\n", (void *)object); if (db_pager_quit) return; rcount = 0; fidx = 0; pa = -1; TAILQ_FOREACH(m, &object->memq, listq) { if ((prev_m = TAILQ_PREV(m, pglist, listq)) != NULL && prev_m->pindex + 1 != m->pindex) { if (rcount) { db_printf(" index(%ld)run(%d)pa(0x%lx)\n", (long)fidx, rcount, (long)pa); if (db_pager_quit) return; rcount = 0; } } if (rcount && (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) { ++rcount; continue; } if (rcount) { db_printf(" index(%ld)run(%d)pa(0x%lx)\n", (long)fidx, rcount, (long)pa); if (db_pager_quit) return; } fidx = m->pindex; pa = VM_PAGE_TO_PHYS(m); rcount = 1; } if (rcount) { db_printf(" index(%ld)run(%d)pa(0x%lx)\n", (long)fidx, rcount, (long)pa); if (db_pager_quit) return; } } } #endif /* DDB */