/*- * Copyright (c) 2001 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Jonathan Lemon * and NAI Labs, the Security Research Division of Network Associates, Inc. * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the * DARPA CHATS research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_mac.h" #include #include #include #include #include #include #include #include #include /* for proc0 declaration */ #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #endif #include #include #include #include #include #ifdef INET6 #include #endif #ifdef IPSEC #include #ifdef INET6 #include #endif #endif /*IPSEC*/ #ifdef FAST_IPSEC #include #ifdef INET6 #include #endif #include #define IPSEC #endif /*FAST_IPSEC*/ #include #include static int tcp_syncookies = 1; SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW, &tcp_syncookies, 0, "Use TCP SYN cookies if the syncache overflows"); static void syncache_drop(struct syncache *, struct syncache_head *); static void syncache_free(struct syncache *); static void syncache_insert(struct syncache *, struct syncache_head *); struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **); static int syncache_respond(struct syncache *, struct mbuf *); static struct socket *syncache_socket(struct syncache *, struct socket *, struct mbuf *m); static void syncache_timer(void *); static u_int32_t syncookie_generate(struct syncache *); static struct syncache *syncookie_lookup(struct in_conninfo *, struct tcphdr *, struct socket *); /* * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies. * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds, * the odds are that the user has given up attempting to connect by then. */ #define SYNCACHE_MAXREXMTS 3 /* Arbitrary values */ #define TCP_SYNCACHE_HASHSIZE 512 #define TCP_SYNCACHE_BUCKETLIMIT 30 struct tcp_syncache { struct syncache_head *hashbase; uma_zone_t zone; u_int hashsize; u_int hashmask; u_int bucket_limit; u_int cache_count; u_int cache_limit; u_int rexmt_limit; u_int hash_secret; u_int next_reseed; TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1]; struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1]; }; static struct tcp_syncache tcp_syncache; SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache"); SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD, &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache"); SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD, &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache"); SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD, &tcp_syncache.cache_count, 0, "Current number of entries in syncache"); SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD, &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable"); SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW, &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions"); static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache"); #define SYNCACHE_HASH(inc, mask) \ ((tcp_syncache.hash_secret ^ \ (inc)->inc_faddr.s_addr ^ \ ((inc)->inc_faddr.s_addr >> 16) ^ \ (inc)->inc_fport ^ (inc)->inc_lport) & mask) #define SYNCACHE_HASH6(inc, mask) \ ((tcp_syncache.hash_secret ^ \ (inc)->inc6_faddr.s6_addr32[0] ^ \ (inc)->inc6_faddr.s6_addr32[3] ^ \ (inc)->inc_fport ^ (inc)->inc_lport) & mask) #define ENDPTS_EQ(a, b) ( \ (a)->ie_fport == (b)->ie_fport && \ (a)->ie_lport == (b)->ie_lport && \ (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \ (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \ ) #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0) #define SYNCACHE_TIMEOUT(sc, slot) do { \ sc->sc_rxtslot = (slot); \ sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)]; \ TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq); \ if (!callout_active(&tcp_syncache.tt_timerq[(slot)])) \ callout_reset(&tcp_syncache.tt_timerq[(slot)], \ TCPTV_RTOBASE * tcp_backoff[(slot)], \ syncache_timer, (void *)((intptr_t)(slot))); \ } while (0) static void syncache_free(struct syncache *sc) { struct rtentry *rt; if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); #ifdef INET6 if (sc->sc_inc.inc_isipv6) rt = sc->sc_route6.ro_rt; else #endif rt = sc->sc_route.ro_rt; if (rt != NULL) { /* * If this is the only reference to a protocol cloned * route, remove it immediately. */ if (rt->rt_flags & RTF_WASCLONED && (sc->sc_flags & SCF_KEEPROUTE) == 0 && rt->rt_refcnt == 1) rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL); RTFREE(rt); } uma_zfree(tcp_syncache.zone, sc); } void syncache_init(void) { int i; tcp_syncache.cache_count = 0; tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE; tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT; tcp_syncache.cache_limit = tcp_syncache.hashsize * tcp_syncache.bucket_limit; tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS; tcp_syncache.next_reseed = 0; tcp_syncache.hash_secret = arc4random(); TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize", &tcp_syncache.hashsize); TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit", &tcp_syncache.cache_limit); TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit", &tcp_syncache.bucket_limit); if (!powerof2(tcp_syncache.hashsize)) { printf("WARNING: syncache hash size is not a power of 2.\n"); tcp_syncache.hashsize = 512; /* safe default */ } tcp_syncache.hashmask = tcp_syncache.hashsize - 1; /* Allocate the hash table. */ MALLOC(tcp_syncache.hashbase, struct syncache_head *, tcp_syncache.hashsize * sizeof(struct syncache_head), M_SYNCACHE, 0); /* Initialize the hash buckets. */ for (i = 0; i < tcp_syncache.hashsize; i++) { TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket); tcp_syncache.hashbase[i].sch_length = 0; } /* Initialize the timer queues. */ for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) { TAILQ_INIT(&tcp_syncache.timerq[i]); callout_init(&tcp_syncache.tt_timerq[i], 0); } /* * Allocate the syncache entries. Allow the zone to allocate one * more entry than cache limit, so a new entry can bump out an * older one. */ tcp_syncache.cache_limit -= 1; tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit); } static void syncache_insert(sc, sch) struct syncache *sc; struct syncache_head *sch; { struct syncache *sc2; int s, i; /* * Make sure that we don't overflow the per-bucket * limit or the total cache size limit. */ s = splnet(); if (sch->sch_length >= tcp_syncache.bucket_limit) { /* * The bucket is full, toss the oldest element. */ sc2 = TAILQ_FIRST(&sch->sch_bucket); sc2->sc_tp->ts_recent = ticks; syncache_drop(sc2, sch); tcpstat.tcps_sc_bucketoverflow++; } else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) { /* * The cache is full. Toss the oldest entry in the * entire cache. This is the front entry in the * first non-empty timer queue with the largest * timeout value. */ for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) { sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]); if (sc2 != NULL) break; } sc2->sc_tp->ts_recent = ticks; syncache_drop(sc2, NULL); tcpstat.tcps_sc_cacheoverflow++; } /* Initialize the entry's timer. */ SYNCACHE_TIMEOUT(sc, 0); /* Put it into the bucket. */ TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash); sch->sch_length++; tcp_syncache.cache_count++; tcpstat.tcps_sc_added++; splx(s); } static void syncache_drop(sc, sch) struct syncache *sc; struct syncache_head *sch; { int s; if (sch == NULL) { #ifdef INET6 if (sc->sc_inc.inc_isipv6) { sch = &tcp_syncache.hashbase[ SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)]; } else #endif { sch = &tcp_syncache.hashbase[ SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)]; } } s = splnet(); TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash); sch->sch_length--; tcp_syncache.cache_count--; TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq); if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot])) callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]); splx(s); syncache_free(sc); } /* * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted. * If we have retransmitted an entry the maximum number of times, expire it. */ static void syncache_timer(xslot) void *xslot; { intptr_t slot = (intptr_t)xslot; struct syncache *sc, *nsc; struct inpcb *inp; int s; s = splnet(); INP_INFO_RLOCK(&tcbinfo); if (callout_pending(&tcp_syncache.tt_timerq[slot]) || !callout_active(&tcp_syncache.tt_timerq[slot])) { INP_INFO_RUNLOCK(&tcbinfo); splx(s); return; } callout_deactivate(&tcp_syncache.tt_timerq[slot]); nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]); while (nsc != NULL) { if (ticks < nsc->sc_rxttime) break; sc = nsc; inp = sc->sc_tp->t_inpcb; if (slot == SYNCACHE_MAXREXMTS || slot >= tcp_syncache.rexmt_limit || inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) { nsc = TAILQ_NEXT(sc, sc_timerq); syncache_drop(sc, NULL); tcpstat.tcps_sc_stale++; continue; } /* * syncache_respond() may call back into the syncache to * to modify another entry, so do not obtain the next * entry on the timer chain until it has completed. */ (void) syncache_respond(sc, NULL); nsc = TAILQ_NEXT(sc, sc_timerq); tcpstat.tcps_sc_retransmitted++; TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq); SYNCACHE_TIMEOUT(sc, slot + 1); } if (nsc != NULL) callout_reset(&tcp_syncache.tt_timerq[slot], nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot)); INP_INFO_RUNLOCK(&tcbinfo); splx(s); } /* * Find an entry in the syncache. */ struct syncache * syncache_lookup(inc, schp) struct in_conninfo *inc; struct syncache_head **schp; { struct syncache *sc; struct syncache_head *sch; int s; #ifdef INET6 if (inc->inc_isipv6) { sch = &tcp_syncache.hashbase[ SYNCACHE_HASH6(inc, tcp_syncache.hashmask)]; *schp = sch; s = splnet(); TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) { if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) { splx(s); return (sc); } } splx(s); } else #endif { sch = &tcp_syncache.hashbase[ SYNCACHE_HASH(inc, tcp_syncache.hashmask)]; *schp = sch; s = splnet(); TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) { #ifdef INET6 if (sc->sc_inc.inc_isipv6) continue; #endif if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) { splx(s); return (sc); } } splx(s); } return (NULL); } /* * This function is called when we get a RST for a * non-existent connection, so that we can see if the * connection is in the syn cache. If it is, zap it. */ void syncache_chkrst(inc, th) struct in_conninfo *inc; struct tcphdr *th; { struct syncache *sc; struct syncache_head *sch; sc = syncache_lookup(inc, &sch); if (sc == NULL) return; /* * If the RST bit is set, check the sequence number to see * if this is a valid reset segment. * RFC 793 page 37: * In all states except SYN-SENT, all reset (RST) segments * are validated by checking their SEQ-fields. A reset is * valid if its sequence number is in the window. * * The sequence number in the reset segment is normally an * echo of our outgoing acknowlegement numbers, but some hosts * send a reset with the sequence number at the rightmost edge * of our receive window, and we have to handle this case. */ if (SEQ_GEQ(th->th_seq, sc->sc_irs) && SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) { syncache_drop(sc, sch); tcpstat.tcps_sc_reset++; } } void syncache_badack(inc) struct in_conninfo *inc; { struct syncache *sc; struct syncache_head *sch; sc = syncache_lookup(inc, &sch); if (sc != NULL) { syncache_drop(sc, sch); tcpstat.tcps_sc_badack++; } } void syncache_unreach(inc, th) struct in_conninfo *inc; struct tcphdr *th; { struct syncache *sc; struct syncache_head *sch; /* we are called at splnet() here */ sc = syncache_lookup(inc, &sch); if (sc == NULL) return; /* If the sequence number != sc_iss, then it's a bogus ICMP msg */ if (ntohl(th->th_seq) != sc->sc_iss) return; /* * If we've rertransmitted 3 times and this is our second error, * we remove the entry. Otherwise, we allow it to continue on. * This prevents us from incorrectly nuking an entry during a * spurious network outage. * * See tcp_notify(). */ if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) { sc->sc_flags |= SCF_UNREACH; return; } syncache_drop(sc, sch); tcpstat.tcps_sc_unreach++; } /* * Build a new TCP socket structure from a syncache entry. */ static struct socket * syncache_socket(sc, lso, m) struct syncache *sc; struct socket *lso; struct mbuf *m; { struct inpcb *inp = NULL; struct socket *so; struct tcpcb *tp; /* * Ok, create the full blown connection, and set things up * as they would have been set up if we had created the * connection when the SYN arrived. If we can't create * the connection, abort it. */ so = sonewconn(lso, SS_ISCONNECTED); if (so == NULL) { /* * Drop the connection; we will send a RST if the peer * retransmits the ACK, */ tcpstat.tcps_listendrop++; goto abort; } #ifdef MAC mac_set_socket_peer_from_mbuf(m, so); #endif inp = sotoinpcb(so); /* * Insert new socket into hash list. */ inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6; #ifdef INET6 if (sc->sc_inc.inc_isipv6) { inp->in6p_laddr = sc->sc_inc.inc6_laddr; } else { inp->inp_vflag &= ~INP_IPV6; inp->inp_vflag |= INP_IPV4; #endif inp->inp_laddr = sc->sc_inc.inc_laddr; #ifdef INET6 } #endif inp->inp_lport = sc->sc_inc.inc_lport; if (in_pcbinshash(inp) != 0) { /* * Undo the assignments above if we failed to * put the PCB on the hash lists. */ #ifdef INET6 if (sc->sc_inc.inc_isipv6) inp->in6p_laddr = in6addr_any; else #endif inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; goto abort; } #ifdef IPSEC /* copy old policy into new socket's */ if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp)) printf("syncache_expand: could not copy policy\n"); #endif #ifdef INET6 if (sc->sc_inc.inc_isipv6) { struct inpcb *oinp = sotoinpcb(lso); struct in6_addr laddr6; struct sockaddr_in6 *sin6; /* * Inherit socket options from the listening socket. * Note that in6p_inputopts are not (and should not be) * copied, since it stores previously received options and is * used to detect if each new option is different than the * previous one and hence should be passed to a user. * If we copied in6p_inputopts, a user would not be able to * receive options just after calling the accept system call. */ inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS; if (oinp->in6p_outputopts) inp->in6p_outputopts = ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT); inp->in6p_route = sc->sc_route6; sc->sc_route6.ro_rt = NULL; MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6, M_SONAME, M_NOWAIT | M_ZERO); if (sin6 == NULL) goto abort; sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_addr = sc->sc_inc.inc6_faddr; sin6->sin6_port = sc->sc_inc.inc_fport; laddr6 = inp->in6p_laddr; if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) inp->in6p_laddr = sc->sc_inc.inc6_laddr; if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) { inp->in6p_laddr = laddr6; FREE(sin6, M_SONAME); goto abort; } FREE(sin6, M_SONAME); } else #endif { struct in_addr laddr; struct sockaddr_in *sin; inp->inp_options = ip_srcroute(); if (inp->inp_options == NULL) { inp->inp_options = sc->sc_ipopts; sc->sc_ipopts = NULL; } inp->inp_route = sc->sc_route; sc->sc_route.ro_rt = NULL; MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_NOWAIT | M_ZERO); if (sin == NULL) goto abort; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = sc->sc_inc.inc_faddr; sin->sin_port = sc->sc_inc.inc_fport; bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero)); laddr = inp->inp_laddr; if (inp->inp_laddr.s_addr == INADDR_ANY) inp->inp_laddr = sc->sc_inc.inc_laddr; if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) { inp->inp_laddr = laddr; FREE(sin, M_SONAME); goto abort; } FREE(sin, M_SONAME); } tp = intotcpcb(inp); tp->t_state = TCPS_SYN_RECEIVED; tp->iss = sc->sc_iss; tp->irs = sc->sc_irs; tcp_rcvseqinit(tp); tcp_sendseqinit(tp); tp->snd_wl1 = sc->sc_irs; tp->rcv_up = sc->sc_irs + 1; tp->rcv_wnd = sc->sc_wnd; tp->rcv_adv += tp->rcv_wnd; tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY); if (sc->sc_flags & SCF_NOOPT) tp->t_flags |= TF_NOOPT; if (sc->sc_flags & SCF_WINSCALE) { tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE; tp->requested_s_scale = sc->sc_requested_s_scale; tp->request_r_scale = sc->sc_request_r_scale; } if (sc->sc_flags & SCF_TIMESTAMP) { tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP; tp->ts_recent = sc->sc_tsrecent; tp->ts_recent_age = ticks; } if (sc->sc_flags & SCF_CC) { /* * Initialization of the tcpcb for transaction; * set SND.WND = SEG.WND, * initialize CCsend and CCrecv. */ tp->t_flags |= TF_REQ_CC|TF_RCVD_CC; tp->cc_send = sc->sc_cc_send; tp->cc_recv = sc->sc_cc_recv; } tcp_mss(tp, sc->sc_peer_mss); /* * If the SYN,ACK was retransmitted, reset cwnd to 1 segment. */ if (sc->sc_rxtslot != 0) tp->snd_cwnd = tp->t_maxseg; callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp); tcpstat.tcps_accepts++; return (so); abort: if (so != NULL) (void) soabort(so); return (NULL); } /* * This function gets called when we receive an ACK for a * socket in the LISTEN state. We look up the connection * in the syncache, and if its there, we pull it out of * the cache and turn it into a full-blown connection in * the SYN-RECEIVED state. */ int syncache_expand(inc, th, sop, m) struct in_conninfo *inc; struct tcphdr *th; struct socket **sop; struct mbuf *m; { struct syncache *sc; struct syncache_head *sch; struct socket *so; sc = syncache_lookup(inc, &sch); if (sc == NULL) { /* * There is no syncache entry, so see if this ACK is * a returning syncookie. To do this, first: * A. See if this socket has had a syncache entry dropped in * the past. We don't want to accept a bogus syncookie * if we've never received a SYN. * B. check that the syncookie is valid. If it is, then * cobble up a fake syncache entry, and return. */ if (!tcp_syncookies) return (0); sc = syncookie_lookup(inc, th, *sop); if (sc == NULL) return (0); sch = NULL; tcpstat.tcps_sc_recvcookie++; } /* * If seg contains an ACK, but not for our SYN/ACK, send a RST. */ if (th->th_ack != sc->sc_iss + 1) return (0); so = syncache_socket(sc, *sop, m); if (so == NULL) { #if 0 resetandabort: /* XXXjlemon check this - is this correct? */ (void) tcp_respond(NULL, m, m, th, th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK); #endif m_freem(m); /* XXX only needed for above */ tcpstat.tcps_sc_aborted++; } else { sc->sc_flags |= SCF_KEEPROUTE; tcpstat.tcps_sc_completed++; } if (sch == NULL) syncache_free(sc); else syncache_drop(sc, sch); *sop = so; return (1); } /* * Given a LISTEN socket and an inbound SYN request, add * this to the syn cache, and send back a segment: * * to the source. * * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN. * Doing so would require that we hold onto the data and deliver it * to the application. However, if we are the target of a SYN-flood * DoS attack, an attacker could send data which would eventually * consume all available buffer space if it were ACKed. By not ACKing * the data, we avoid this DoS scenario. */ int syncache_add(inc, to, th, sop, m) struct in_conninfo *inc; struct tcpopt *to; struct tcphdr *th; struct socket **sop; struct mbuf *m; { struct tcpcb *tp; struct socket *so; struct syncache *sc = NULL; struct syncache_head *sch; struct mbuf *ipopts = NULL; struct rmxp_tao *taop; int i, s, win; so = *sop; tp = sototcpcb(so); /* * Remember the IP options, if any. */ #ifdef INET6 if (!inc->inc_isipv6) #endif ipopts = ip_srcroute(); /* * See if we already have an entry for this connection. * If we do, resend the SYN,ACK, and reset the retransmit timer. * * XXX * should the syncache be re-initialized with the contents * of the new SYN here (which may have different options?) */ sc = syncache_lookup(inc, &sch); if (sc != NULL) { tcpstat.tcps_sc_dupsyn++; if (ipopts) { /* * If we were remembering a previous source route, * forget it and use the new one we've been given. */ if (sc->sc_ipopts) (void) m_free(sc->sc_ipopts); sc->sc_ipopts = ipopts; } /* * Update timestamp if present. */ if (sc->sc_flags & SCF_TIMESTAMP) sc->sc_tsrecent = to->to_tsval; /* * PCB may have changed, pick up new values. */ sc->sc_tp = tp; sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt; if (syncache_respond(sc, m) == 0) { s = splnet(); TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq); SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot); splx(s); tcpstat.tcps_sndacks++; tcpstat.tcps_sndtotal++; } *sop = NULL; return (1); } sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT); if (sc == NULL) { /* * The zone allocator couldn't provide more entries. * Treat this as if the cache was full; drop the oldest * entry and insert the new one. */ s = splnet(); for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) { sc = TAILQ_FIRST(&tcp_syncache.timerq[i]); if (sc != NULL) break; } sc->sc_tp->ts_recent = ticks; syncache_drop(sc, NULL); splx(s); tcpstat.tcps_sc_zonefail++; sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT); if (sc == NULL) { if (ipopts) (void) m_free(ipopts); return (0); } } /* * Fill in the syncache values. */ bzero(sc, sizeof(*sc)); sc->sc_tp = tp; sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt; sc->sc_ipopts = ipopts; sc->sc_inc.inc_fport = inc->inc_fport; sc->sc_inc.inc_lport = inc->inc_lport; #ifdef INET6 sc->sc_inc.inc_isipv6 = inc->inc_isipv6; if (inc->inc_isipv6) { sc->sc_inc.inc6_faddr = inc->inc6_faddr; sc->sc_inc.inc6_laddr = inc->inc6_laddr; sc->sc_route6.ro_rt = NULL; } else #endif { sc->sc_inc.inc_faddr = inc->inc_faddr; sc->sc_inc.inc_laddr = inc->inc_laddr; sc->sc_route.ro_rt = NULL; } sc->sc_irs = th->th_seq; sc->sc_flags = 0; sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0; if (tcp_syncookies) sc->sc_iss = syncookie_generate(sc); else sc->sc_iss = arc4random(); /* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */ win = sbspace(&so->so_rcv); win = imax(win, 0); win = imin(win, TCP_MAXWIN); sc->sc_wnd = win; if (tcp_do_rfc1323) { /* * A timestamp received in a SYN makes * it ok to send timestamp requests and replies. */ if (to->to_flags & TOF_TS) { sc->sc_tsrecent = to->to_tsval; sc->sc_flags |= SCF_TIMESTAMP; } if (to->to_flags & TOF_SCALE) { int wscale = 0; /* Compute proper scaling value from buffer space */ while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat) wscale++; sc->sc_request_r_scale = wscale; sc->sc_requested_s_scale = to->to_requested_s_scale; sc->sc_flags |= SCF_WINSCALE; } } if (tcp_do_rfc1644) { /* * A CC or CC.new option received in a SYN makes * it ok to send CC in subsequent segments. */ if (to->to_flags & (TOF_CC|TOF_CCNEW)) { sc->sc_cc_recv = to->to_cc; sc->sc_cc_send = CC_INC(tcp_ccgen); sc->sc_flags |= SCF_CC; } } if (tp->t_flags & TF_NOOPT) sc->sc_flags = SCF_NOOPT; /* * XXX * We have the option here of not doing TAO (even if the segment * qualifies) and instead fall back to a normal 3WHS via the syncache. * This allows us to apply synflood protection to TAO-qualifying SYNs * also. However, there should be a hueristic to determine when to * do this, and is not present at the moment. */ /* * Perform TAO test on incoming CC (SEG.CC) option, if any. * - compare SEG.CC against cached CC from the same host, if any. * - if SEG.CC > chached value, SYN must be new and is accepted * immediately: save new CC in the cache, mark the socket * connected, enter ESTABLISHED state, turn on flag to * send a SYN in the next segment. * A virtual advertised window is set in rcv_adv to * initialize SWS prevention. Then enter normal segment * processing: drop SYN, process data and FIN. * - otherwise do a normal 3-way handshake. */ taop = tcp_gettaocache(&sc->sc_inc); if ((to->to_flags & TOF_CC) != 0) { if (((tp->t_flags & TF_NOPUSH) != 0) && sc->sc_flags & SCF_CC && taop != NULL && taop->tao_cc != 0 && CC_GT(to->to_cc, taop->tao_cc)) { sc->sc_rxtslot = 0; so = syncache_socket(sc, *sop, m); if (so != NULL) { sc->sc_flags |= SCF_KEEPROUTE; taop->tao_cc = to->to_cc; *sop = so; } syncache_free(sc); return (so != NULL); } } else { /* * No CC option, but maybe CC.NEW: invalidate cached value. */ if (taop != NULL) taop->tao_cc = 0; } /* * TAO test failed or there was no CC option, * do a standard 3-way handshake. */ if (syncache_respond(sc, m) == 0) { syncache_insert(sc, sch); tcpstat.tcps_sndacks++; tcpstat.tcps_sndtotal++; } else { syncache_free(sc); tcpstat.tcps_sc_dropped++; } *sop = NULL; return (1); } static int syncache_respond(sc, m) struct syncache *sc; struct mbuf *m; { u_int8_t *optp; int optlen, error; u_int16_t tlen, hlen, mssopt; struct ip *ip = NULL; struct rtentry *rt; struct tcphdr *th; #ifdef INET6 struct ip6_hdr *ip6 = NULL; #endif #ifdef INET6 if (sc->sc_inc.inc_isipv6) { rt = tcp_rtlookup6(&sc->sc_inc); if (rt != NULL) mssopt = rt->rt_ifp->if_mtu - (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)); else mssopt = tcp_v6mssdflt; hlen = sizeof(struct ip6_hdr); } else #endif { rt = tcp_rtlookup(&sc->sc_inc); if (rt != NULL) mssopt = rt->rt_ifp->if_mtu - (sizeof(struct ip) + sizeof(struct tcphdr)); else mssopt = tcp_mssdflt; hlen = sizeof(struct ip); } /* Compute the size of the TCP options. */ if (sc->sc_flags & SCF_NOOPT) { optlen = 0; } else { optlen = TCPOLEN_MAXSEG + ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) + ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) + ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0); } tlen = hlen + sizeof(struct tcphdr) + optlen; /* * XXX * assume that the entire packet will fit in a header mbuf */ KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small")); /* * XXX shouldn't this reuse the mbuf if possible ? * Create the IP+TCP header from scratch. */ if (m) m_freem(m); m = m_gethdr(M_NOWAIT, MT_HEADER); if (m == NULL) return (ENOBUFS); m->m_data += max_linkhdr; m->m_len = tlen; m->m_pkthdr.len = tlen; m->m_pkthdr.rcvif = NULL; #ifdef MAC mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m); #endif #ifdef INET6 if (sc->sc_inc.inc_isipv6) { ip6 = mtod(m, struct ip6_hdr *); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_nxt = IPPROTO_TCP; ip6->ip6_src = sc->sc_inc.inc6_laddr; ip6->ip6_dst = sc->sc_inc.inc6_faddr; ip6->ip6_plen = htons(tlen - hlen); /* ip6_hlim is set after checksum */ /* ip6_flow = ??? */ th = (struct tcphdr *)(ip6 + 1); } else #endif { ip = mtod(m, struct ip *); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(struct ip) >> 2; ip->ip_len = tlen; ip->ip_id = 0; ip->ip_off = 0; ip->ip_sum = 0; ip->ip_p = IPPROTO_TCP; ip->ip_src = sc->sc_inc.inc_laddr; ip->ip_dst = sc->sc_inc.inc_faddr; ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */ ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */ /* * See if we should do MTU discovery. Route lookups are * expensive, so we will only unset the DF bit if: * * 1) path_mtu_discovery is disabled * 2) the SCF_UNREACH flag has been set */ if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0)) ip->ip_off |= IP_DF; th = (struct tcphdr *)(ip + 1); } th->th_sport = sc->sc_inc.inc_lport; th->th_dport = sc->sc_inc.inc_fport; th->th_seq = htonl(sc->sc_iss); th->th_ack = htonl(sc->sc_irs + 1); th->th_off = (sizeof(struct tcphdr) + optlen) >> 2; th->th_x2 = 0; th->th_flags = TH_SYN|TH_ACK; th->th_win = htons(sc->sc_wnd); th->th_urp = 0; /* Tack on the TCP options. */ if (optlen != 0) { optp = (u_int8_t *)(th + 1); *optp++ = TCPOPT_MAXSEG; *optp++ = TCPOLEN_MAXSEG; *optp++ = (mssopt >> 8) & 0xff; *optp++ = mssopt & 0xff; if (sc->sc_flags & SCF_WINSCALE) { *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 | TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 | sc->sc_request_r_scale); optp += 4; } if (sc->sc_flags & SCF_TIMESTAMP) { u_int32_t *lp = (u_int32_t *)(optp); /* Form timestamp option per appendix A of RFC 1323. */ *lp++ = htonl(TCPOPT_TSTAMP_HDR); *lp++ = htonl(ticks); *lp = htonl(sc->sc_tsrecent); optp += TCPOLEN_TSTAMP_APPA; } /* * Send CC and CC.echo if we received CC from our peer. */ if (sc->sc_flags & SCF_CC) { u_int32_t *lp = (u_int32_t *)(optp); *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC)); *lp++ = htonl(sc->sc_cc_send); *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO)); *lp = htonl(sc->sc_cc_recv); optp += TCPOLEN_CC_APPA * 2; } } #ifdef INET6 if (sc->sc_inc.inc_isipv6) { struct route_in6 *ro6 = &sc->sc_route6; th->th_sum = 0; th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen); ip6->ip6_hlim = in6_selecthlim(NULL, ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL); error = ip6_output(m, NULL, ro6, 0, NULL, NULL, sc->sc_tp->t_inpcb); } else #endif { th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htons(tlen - hlen + IPPROTO_TCP)); m->m_pkthdr.csum_flags = CSUM_TCP; m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL, sc->sc_tp->t_inpcb); } return (error); } /* * cookie layers: * * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .| * | peer iss | * | MD5(laddr,faddr,lport,fport,secret) |. . . . . . .| * | 0 |(A)| | * (A): peer mss index */ /* * The values below are chosen to minimize the size of the tcp_secret * table, as well as providing roughly a 4 second lifetime for the cookie. */ #define SYNCOOKIE_HASHSHIFT 2 /* log2(# of 32bit words from hash) */ #define SYNCOOKIE_WNDBITS 7 /* exposed bits for window indexing */ #define SYNCOOKIE_TIMESHIFT 5 /* scale ticks to window time units */ #define SYNCOOKIE_HASHMASK ((1 << SYNCOOKIE_HASHSHIFT) - 1) #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1) #define SYNCOOKIE_NSECRETS (1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT)) #define SYNCOOKIE_TIMEOUT \ (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT)) #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK) static struct { u_int32_t ts_secbits; u_int ts_expire; } tcp_secret[SYNCOOKIE_NSECRETS]; static int tcp_msstab[] = { 0, 536, 1460, 8960 }; static MD5_CTX syn_ctx; #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v)) /* * Consider the problem of a recreated (and retransmitted) cookie. If the * original SYN was accepted, the connection is established. The second * SYN is inflight, and if it arrives with an ISN that falls within the * receive window, the connection is killed. * * However, since cookies have other problems, this may not be worth * worrying about. */ static u_int32_t syncookie_generate(struct syncache *sc) { u_int32_t md5_buffer[4]; u_int32_t data; int wnd, idx; wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK; idx = wnd >> SYNCOOKIE_HASHSHIFT; if (tcp_secret[idx].ts_expire < ticks) { tcp_secret[idx].ts_secbits = arc4random(); tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT; } for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--) if (tcp_msstab[data] <= sc->sc_peer_mss) break; data = (data << SYNCOOKIE_WNDBITS) | wnd; data ^= sc->sc_irs; /* peer's iss */ MD5Init(&syn_ctx); #ifdef INET6 if (sc->sc_inc.inc_isipv6) { MD5Add(sc->sc_inc.inc6_laddr); MD5Add(sc->sc_inc.inc6_faddr); } else #endif { MD5Add(sc->sc_inc.inc_laddr); MD5Add(sc->sc_inc.inc_faddr); } MD5Add(sc->sc_inc.inc_lport); MD5Add(sc->sc_inc.inc_fport); MD5Add(tcp_secret[idx].ts_secbits); MD5Final((u_char *)&md5_buffer, &syn_ctx); data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK); return (data); } static struct syncache * syncookie_lookup(inc, th, so) struct in_conninfo *inc; struct tcphdr *th; struct socket *so; { u_int32_t md5_buffer[4]; struct syncache *sc; u_int32_t data; int wnd, idx; data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */ wnd = data & SYNCOOKIE_WNDMASK; idx = wnd >> SYNCOOKIE_HASHSHIFT; if (tcp_secret[idx].ts_expire < ticks || sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks) return (NULL); MD5Init(&syn_ctx); #ifdef INET6 if (inc->inc_isipv6) { MD5Add(inc->inc6_laddr); MD5Add(inc->inc6_faddr); } else #endif { MD5Add(inc->inc_laddr); MD5Add(inc->inc_faddr); } MD5Add(inc->inc_lport); MD5Add(inc->inc_fport); MD5Add(tcp_secret[idx].ts_secbits); MD5Final((u_char *)&md5_buffer, &syn_ctx); data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK]; if ((data & ~SYNCOOKIE_DATAMASK) != 0) return (NULL); data = data >> SYNCOOKIE_WNDBITS; sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT); if (sc == NULL) return (NULL); /* * Fill in the syncache values. * XXX duplicate code from syncache_add */ sc->sc_ipopts = NULL; sc->sc_inc.inc_fport = inc->inc_fport; sc->sc_inc.inc_lport = inc->inc_lport; #ifdef INET6 sc->sc_inc.inc_isipv6 = inc->inc_isipv6; if (inc->inc_isipv6) { sc->sc_inc.inc6_faddr = inc->inc6_faddr; sc->sc_inc.inc6_laddr = inc->inc6_laddr; sc->sc_route6.ro_rt = NULL; } else #endif { sc->sc_inc.inc_faddr = inc->inc_faddr; sc->sc_inc.inc_laddr = inc->inc_laddr; sc->sc_route.ro_rt = NULL; } sc->sc_irs = th->th_seq - 1; sc->sc_iss = th->th_ack - 1; wnd = sbspace(&so->so_rcv); wnd = imax(wnd, 0); wnd = imin(wnd, TCP_MAXWIN); sc->sc_wnd = wnd; sc->sc_flags = 0; sc->sc_rxtslot = 0; sc->sc_peer_mss = tcp_msstab[data]; return (sc); }