/* * sound/dmabuf.c * * The DMA buffer manager for digitized voice applications * * Copyright by Hannu Savolainen 1993, 1994 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. 2. * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: dmabuf.c,v 1.8 1994/08/02 07:39:49 davidg Exp $ */ #include "sound_config.h" #ifdef CONFIGURE_SOUNDCARD #include "sound_calls.h" #if !defined(EXCLUDE_AUDIO) || !defined(EXCLUDE_GUS) DEFINE_WAIT_QUEUES (dev_sleeper[MAX_AUDIO_DEV], dev_sleep_flag[MAX_AUDIO_DEV]); static struct dma_buffparms dmaps[MAX_AUDIO_DEV] = {0}; /* * Primitive way to allocate * such a large array. * Needs dynamic run-time alloction. */ static void reorganize_buffers (int dev) { /* * This routine breaks the physical device buffers to logical ones. */ struct dma_buffparms *dmap = audio_devs[dev]->dmap; struct audio_operations *dsp_dev = audio_devs[dev]; unsigned i, p, n; unsigned sr, nc, sz, bsz; if (dmap->fragment_size == 0) { /* Compute the fragment size using the default algorithm */ sr = dsp_dev->ioctl (dev, SOUND_PCM_READ_RATE, 0, 1); nc = dsp_dev->ioctl (dev, SOUND_PCM_READ_CHANNELS, 0, 1); sz = dsp_dev->ioctl (dev, SOUND_PCM_READ_BITS, 0, 1); if (sr < 1 || nc < 1 || sz < 1) { printk ("Warning: Invalid PCM parameters[%d] sr=%d, nc=%d, sz=%d\n", dev, sr, nc, sz); sr = DSP_DEFAULT_SPEED; nc = 1; sz = 8; } sz /= 8; /* #bits -> #bytes */ sz = sr * nc * sz; /* * Compute a buffer size for time not exeeding 1 second. * Usually this algorithm gives a buffer size for 0.5 to 1.0 seconds * of sound (using the current speed, sample size and #channels). */ bsz = dsp_dev->buffsize; while (bsz > sz) bsz /= 2; if (dsp_dev->buffcount == 1 && bsz == dsp_dev->buffsize) bsz /= 2; /* Needs at least 2 buffers */ if (dmap->subdivision == 0) /* Not already set */ dmap->subdivision = 1; /* Init to default value */ bsz /= dmap->subdivision; if (bsz < 64) bsz = 4096; /* Just a sanity check */ while ((dsp_dev->buffsize * dsp_dev->buffcount) / bsz > MAX_SUB_BUFFERS) bsz *= 2; dmap->fragment_size = bsz; } else { /* * The process has specified the buffer sice with SNDCTL_DSP_SETFRAGMENT or * the buffer sice computation has already been done. */ if (dmap->fragment_size > audio_devs[dev]->buffsize) dmap->fragment_size = audio_devs[dev]->buffsize; bsz = dmap->fragment_size; } /* * Now computing addresses for the logical buffers */ n = 0; for (i = 0; i < dmap->raw_count && n < dmap->max_fragments && n < MAX_SUB_BUFFERS; i++) { p = 0; while ((p + bsz) <= dsp_dev->buffsize && n < dmap->max_fragments && n < MAX_SUB_BUFFERS) { dmap->buf[n] = dmap->raw_buf[i] + p; dmap->buf_phys[n] = dmap->raw_buf_phys[i] + p; p += bsz; n++; } } dmap->nbufs = n; dmap->bytes_in_use = n * bsz; for (i = 0; i < dmap->nbufs; i++) { dmap->counts[i] = 0; } dmap->flags |= DMA_ALLOC_DONE; } static void dma_init_buffers (int dev) { struct dma_buffparms *dmap = audio_devs[dev]->dmap = &dmaps[dev]; RESET_WAIT_QUEUE (dev_sleeper[dev], dev_sleep_flag[dev]); dmap->flags = DMA_BUSY; /* Other flags off */ dmap->qlen = dmap->qhead = dmap->qtail = 0; dmap->qlen = dmap->qtail = dmap->qhead = 0; dmap->dma_mode = DMODE_NONE; } int DMAbuf_open (int dev, int mode) { int retval; struct dma_buffparms *dmap = NULL; if (dev >= num_audiodevs) { printk ("PCM device %d not installed.\n", dev); return RET_ERROR (ENXIO); } if (!audio_devs[dev]) { printk ("PCM device %d not initialized\n", dev); return RET_ERROR (ENXIO); } dmap = audio_devs[dev]->dmap = &dmaps[dev]; if (dmap->flags & DMA_BUSY) return RET_ERROR (EBUSY); #ifdef USE_RUNTIME_DMAMEM dmap->raw_buf[0] = NULL; sound_dma_malloc (dev); #endif if (dmap->raw_buf[0] == NULL) return RET_ERROR (ENOSPC); /* Memory allocation failed during boot */ if ((retval = audio_devs[dev]->open (dev, mode)) < 0) return retval; dmap->open_mode = mode; dmap->subdivision = dmap->underrun_count = 0; dmap->fragment_size = 0; dmap->max_fragments = 65536; /* Just a large value */ dma_init_buffers (dev); audio_devs[dev]->ioctl (dev, SOUND_PCM_WRITE_BITS, 8, 1); audio_devs[dev]->ioctl (dev, SOUND_PCM_WRITE_CHANNELS, 1, 1); audio_devs[dev]->ioctl (dev, SOUND_PCM_WRITE_RATE, DSP_DEFAULT_SPEED, 1); return 0; } static void dma_reset (int dev) { int retval; unsigned long flags; DISABLE_INTR (flags); audio_devs[dev]->reset (dev); audio_devs[dev]->close (dev); if ((retval = audio_devs[dev]->open (dev, audio_devs[dev]->dmap->open_mode)) < 0) printk ("Sound: Reset failed - Can't reopen device\n"); RESTORE_INTR (flags); dma_init_buffers (dev); reorganize_buffers (dev); } static int dma_sync (int dev) { unsigned long flags; if (audio_devs[dev]->dmap->dma_mode == DMODE_OUTPUT) { DISABLE_INTR (flags); while (!PROCESS_ABORTING (dev_sleeper[dev], dev_sleep_flag[dev]) && audio_devs[dev]->dmap->qlen) { DO_SLEEP (dev_sleeper[dev], dev_sleep_flag[dev], 10 * HZ); if (TIMED_OUT (dev_sleeper[dev], dev_sleep_flag[dev])) { RESTORE_INTR (flags); return audio_devs[dev]->dmap->qlen; } } RESTORE_INTR (flags); /* * Some devices such as GUS have huge amount of on board RAM for the * audio data. We have to wait util the device has finished playing. */ DISABLE_INTR (flags); if (audio_devs[dev]->local_qlen) /* Device has hidden buffers */ { while (!(PROCESS_ABORTING (dev_sleeper[dev], dev_sleep_flag[dev])) && audio_devs[dev]->local_qlen (dev)) { DO_SLEEP (dev_sleeper[dev], dev_sleep_flag[dev], HZ); } } RESTORE_INTR (flags); } return audio_devs[dev]->dmap->qlen; } int DMAbuf_release (int dev, int mode) { unsigned long flags; if (!(PROCESS_ABORTING (dev_sleeper[dev], dev_sleep_flag[dev])) && (audio_devs[dev]->dmap->dma_mode == DMODE_OUTPUT)) { dma_sync (dev); } #ifdef USE_RUNTIME_DMAMEM sound_dma_free (dev); #endif DISABLE_INTR (flags); audio_devs[dev]->reset (dev); audio_devs[dev]->close (dev); audio_devs[dev]->dmap->dma_mode = DMODE_NONE; audio_devs[dev]->dmap->flags &= ~DMA_BUSY; RESTORE_INTR (flags); return 0; } int DMAbuf_getrdbuffer (int dev, char **buf, int *len) { unsigned long flags; int err = EIO; struct dma_buffparms *dmap = audio_devs[dev]->dmap; DISABLE_INTR (flags); if (!dmap->qlen) { if (dmap->flags & DMA_RESTART) { dma_reset (dev); dmap->flags &= ~DMA_RESTART; } if (dmap->dma_mode == DMODE_OUTPUT) /* Direction change */ { dma_sync (dev); dma_reset (dev); dmap->dma_mode = DMODE_NONE; } if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers (dev); if (dmap->dma_mode) { int err; if ((err = audio_devs[dev]->prepare_for_input (dev, dmap->fragment_size, dmap->nbufs)) < 0) { RESTORE_INTR (flags); return err; } dmap->dma_mode = DMODE_INPUT; } if (!(dmap->flags & DMA_ACTIVE)) { audio_devs[dev]->start_input (dev, dmap->buf_phys[dmap->qtail], dmap->fragment_size, 0, !(audio_devs[dev]->flags & DMA_AUTOMODE) || !(dmap->flags & DMA_STARTED)); dmap->flags |= DMA_ACTIVE | DMA_STARTED; } /* Wait for the next block */ DO_SLEEP (dev_sleeper[dev], dev_sleep_flag[dev], 2 * HZ); if (TIMED_OUT (dev_sleeper[dev], dev_sleep_flag[dev])) { printk ("Sound: DMA timed out - IRQ/DRQ config error?\n"); err = EIO; SET_ABORT_FLAG (dev_sleeper[dev], dev_sleep_flag[dev]); } else err = EINTR; } RESTORE_INTR (flags); if (!dmap->qlen) return RET_ERROR (err); *buf = &dmap->buf[dmap->qhead][dmap->counts[dmap->qhead]]; *len = dmap->fragment_size - dmap->counts[dmap->qhead]; return dmap->qhead; } int DMAbuf_rmchars (int dev, int buff_no, int c) { struct dma_buffparms *dmap = audio_devs[dev]->dmap; int p = dmap->counts[dmap->qhead] + c; if (p >= dmap->fragment_size) { /* This buffer is completely empty */ dmap->counts[dmap->qhead] = 0; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printk ("\nSound: Audio queue1 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; } else dmap->counts[dmap->qhead] = p; return 0; } int DMAbuf_ioctl (int dev, unsigned int cmd, unsigned int arg, int local) { struct dma_buffparms *dmap = audio_devs[dev]->dmap; switch (cmd) { case SNDCTL_DSP_RESET: dma_reset (dev); return 0; break; case SNDCTL_DSP_SYNC: dma_sync (dev); dma_reset (dev); return 0; break; case SNDCTL_DSP_GETBLKSIZE: if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers (dev); return IOCTL_OUT (arg, dmap->fragment_size); break; case SNDCTL_DSP_SUBDIVIDE: { int fact = IOCTL_IN (arg); if (fact == 0) { fact = dmap->subdivision; if (fact == 0) fact = 1; return IOCTL_OUT (arg, fact); } if (dmap->subdivision != 0 || dmap->fragment_size)/* Loo late to change */ return RET_ERROR (EINVAL); if (fact > MAX_REALTIME_FACTOR) return RET_ERROR (EINVAL); if (fact != 1 && fact != 2 && fact != 4 && fact != 8 && fact != 16) return RET_ERROR (EINVAL); dmap->subdivision = fact; return IOCTL_OUT (arg, fact); } break; case SNDCTL_DSP_SETFRAGMENT: { int fact = IOCTL_IN (arg); int bytes, count; if (fact == 0) return RET_ERROR (EIO); if (dmap->subdivision != 0 || dmap->fragment_size)/* Loo late to change */ return RET_ERROR (EINVAL); bytes = fact & 0xffff; count = (fact >> 16) & 0xffff; if (count == 0) count = MAX_SUB_BUFFERS; if (bytes < 7 || bytes > 17) /* <64 || > 128k */ return RET_ERROR (EINVAL); if (count < 2) return RET_ERROR (EINVAL); dmap->fragment_size = (1 << bytes); dmap->max_fragments = count; if (dmap->fragment_size > audio_devs[dev]->buffsize) dmap->fragment_size = audio_devs[dev]->buffsize; if (dmap->fragment_size == audio_devs[dev]->buffsize && audio_devs[dev]->flags & DMA_AUTOMODE) dmap->fragment_size /= 2; /* Needs at least 2 buffers */ dmap->subdivision = 1; /* Disable SNDCTL_DSP_SUBDIVIDE */ return IOCTL_OUT (arg, bytes | (count << 16)); } break; default: return audio_devs[dev]->ioctl (dev, cmd, arg, local); } /* NOTREACHED */ return RET_ERROR (EIO); } static int space_in_queue (int dev) { int len, max, tmp; struct dma_buffparms *dmap = audio_devs[dev]->dmap; if (dmap->qlen == dmap->nbufs)/* No space at all */ return 0; /* * Verify that there are no more pending buffers than the limit * defined by the process. */ max = dmap->max_fragments; len = dmap->qlen; if (audio_devs[dev]->local_qlen) { tmp = audio_devs[dev]->local_qlen (dev); if (tmp & len) tmp--; /* * This buffer has been counted twice */ len += tmp; } if (len >= max) return 0; return 1; } int DMAbuf_getwrbuffer (int dev, char **buf, int *size) { unsigned long flags; int abort, err = EIO; struct dma_buffparms *dmap = audio_devs[dev]->dmap; if (dmap->dma_mode == DMODE_INPUT) /* Direction change */ { dma_reset (dev); dmap->dma_mode = DMODE_NONE; } else if (dmap->flags & DMA_RESTART) /* Restart buffering */ { dma_sync (dev); dma_reset (dev); } dmap->flags &= ~DMA_RESTART; if (!(dmap->flags & DMA_ALLOC_DONE)) reorganize_buffers (dev); if (!dmap->dma_mode) { int err; dmap->dma_mode = DMODE_OUTPUT; if ((err = audio_devs[dev]->prepare_for_output (dev, dmap->fragment_size, dmap->nbufs)) < 0) return err; } DISABLE_INTR (flags); abort = 0; while (!space_in_queue (dev) && !abort) { /* * Wait for free space */ DO_SLEEP (dev_sleeper[dev], dev_sleep_flag[dev], 2 * HZ); if (TIMED_OUT (dev_sleeper[dev], dev_sleep_flag[dev])) { printk ("Sound: DMA timed out - IRQ/DRQ config error?\n"); err = EIO; abort = 1; SET_ABORT_FLAG (dev_sleeper[dev], dev_sleep_flag[dev]); } else if (PROCESS_ABORTING (dev_sleeper[dev], dev_sleep_flag[dev])) { err = EINTR; abort = 1; } } RESTORE_INTR (flags); if (!space_in_queue (dev)) { return RET_ERROR (err); /* Caught a signal ? */ } *buf = dmap->buf[dmap->qtail]; *size = dmap->fragment_size; dmap->counts[dmap->qtail] = 0; return dmap->qtail; } int DMAbuf_start_output (int dev, int buff_no, int l) { struct dma_buffparms *dmap = audio_devs[dev]->dmap; if (buff_no != dmap->qtail) printk ("Sound warning: DMA buffers out of sync %d != %d\n", buff_no, dmap->qtail); dmap->qlen++; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printk ("\nSound: Audio queue2 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->counts[dmap->qtail] = l; if ((l != dmap->fragment_size) && ((audio_devs[dev]->flags & DMA_AUTOMODE) && audio_devs[dev]->flags & NEEDS_RESTART)) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; if (!(dmap->flags & DMA_ACTIVE)) { dmap->flags |= DMA_ACTIVE; audio_devs[dev]->output_block (dev, dmap->buf_phys[dmap->qhead], dmap->counts[dmap->qhead], 0, !(audio_devs[dev]->flags & DMA_AUTOMODE) || !(dmap->flags & DMA_STARTED)); dmap->flags |= DMA_STARTED; } return 0; } int DMAbuf_start_dma (int dev, unsigned long physaddr, int count, int dma_mode) { int chan = audio_devs[dev]->dmachan; struct dma_buffparms *dmap = audio_devs[dev]->dmap; unsigned long flags; /* * This function is not as portable as it should be. */ /* * The count must be one less than the actual size. This is handled by * set_dma_addr() */ if (audio_devs[dev]->flags & DMA_AUTOMODE) { /* * Auto restart mode. Transfer the whole * * buffer */ #ifdef linux DISABLE_INTR (flags); disable_dma (chan); clear_dma_ff (chan); set_dma_mode (chan, dma_mode | DMA_AUTOINIT); set_dma_addr (chan, dmap->raw_buf_phys[0]); set_dma_count (chan, dmap->bytes_in_use); enable_dma (chan); RESTORE_INTR (flags); #else /* linux */ #ifdef __FreeBSD__ printk ("sound: Invalid DMA mode for device %d\n", dev); isa_dmastart ((dma_mode == DMA_MODE_READ) ? B_READ : B_WRITE, (caddr_t)dmap->raw_buf_phys[0], dmap->bytes_in_use, chan); #else /* __FreeBSD__ */ #if defined(GENERIC_SYSV) #ifndef DMAMODE_AUTO printk ("sound: Invalid DMA mode for device %d\n", dev); #endif /* DMAMODE_AUTO */ dma_param (chan, ((dma_mode == DMA_MODE_READ) ? DMA_Rdmode : DMA_Wrmode) #ifdef DMAMODE_AUTO | DMAMODE_AUTO #endif /* DMAMODE_AUTO */ , dmap->raw_buf_phys[0], dmap->bytes_in_use); dma_enable (chan); #else /* GENERIC_SYSV */ #error This routine is not valid for this OS. #endif /* __FreeBSD__ */ #endif /* linux */ #endif } else { #ifdef linux DISABLE_INTR (flags); disable_dma (chan); clear_dma_ff (chan); set_dma_mode (chan, dma_mode); set_dma_addr (chan, physaddr); set_dma_count (chan, count); enable_dma (chan); RESTORE_INTR (flags); #else /* linux */ #ifdef __FreeBSD__ isa_dmastart ((dma_mode == DMA_MODE_READ) ? B_READ : B_WRITE, (caddr_t)physaddr, count, chan); #else /* __FreeBSD__ */ #if defined(GENERIC_SYSV) dma_param (chan, ((dma_mode == DMA_MODE_READ) ? DMA_Rdmode : DMA_Wrmode), physaddr, count); dma_enable (chan); #else /* GENERIC_SYSV */ #error This routine is not valid for this OS. #endif /* GENERIC_SYSV */ #endif /* __FreeBSD */ #endif /* linux */ } return count; } long DMAbuf_init (long mem_start) { int dev; /* * NOTE! This routine could be called several times. */ for (dev = 0; dev < num_audiodevs; dev++) audio_devs[dev]->dmap = &dmaps[dev]; return mem_start; } void DMAbuf_outputintr (int dev, int event_type) { /* * Event types: * 0 = DMA transfer done. Device still has more data in the local * buffer. * 1 = DMA transfer done. Device doesn't have local buffer or it's * empty now. * 2 = No DMA transfer but the device has now more space in it's local * buffer. */ unsigned long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap; if (event_type != 2) { if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) { printk ("\nSound: Audio queue3 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); return; } dmap->qlen--; dmap->qhead = (dmap->qhead + 1) % dmap->nbufs; dmap->flags &= ~DMA_ACTIVE; if (dmap->qlen) { audio_devs[dev]->output_block (dev, dmap->buf_phys[dmap->qhead], dmap->counts[dmap->qhead], 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); dmap->flags |= DMA_ACTIVE; } else if (event_type == 1) { dmap->underrun_count++; audio_devs[dev]->halt_xfer (dev); if ((audio_devs[dev]->flags & DMA_AUTOMODE) && audio_devs[dev]->flags & NEEDS_RESTART) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; } } /* event_type != 2 */ DISABLE_INTR (flags); if (SOMEONE_WAITING (dev_sleeper[dev], dev_sleep_flag[dev])) { WAKE_UP (dev_sleeper[dev], dev_sleep_flag[dev]); } RESTORE_INTR (flags); } void DMAbuf_inputintr (int dev) { unsigned long flags; struct dma_buffparms *dmap = audio_devs[dev]->dmap; if (dmap->qlen == (dmap->nbufs - 1)) { printk ("Sound: Recording overrun\n"); dmap->underrun_count++; audio_devs[dev]->halt_xfer (dev); dmap->flags &= ~DMA_ACTIVE; if (audio_devs[dev]->flags & DMA_AUTOMODE) dmap->flags |= DMA_RESTART; else dmap->flags &= ~DMA_RESTART; } else { dmap->qlen++; if (dmap->qlen <= 0 || dmap->qlen > dmap->nbufs) printk ("\nSound: Audio queue4 corrupted for dev%d (%d/%d)\n", dev, dmap->qlen, dmap->nbufs); dmap->qtail = (dmap->qtail + 1) % dmap->nbufs; audio_devs[dev]->start_input (dev, dmap->buf_phys[dmap->qtail], dmap->fragment_size, 1, !(audio_devs[dev]->flags & DMA_AUTOMODE)); dmap->flags |= DMA_ACTIVE; } DISABLE_INTR (flags); if (SOMEONE_WAITING (dev_sleeper[dev], dev_sleep_flag[dev])) { WAKE_UP (dev_sleeper[dev], dev_sleep_flag[dev]); } RESTORE_INTR (flags); } int DMAbuf_open_dma (int dev) { unsigned long flags; int chan = audio_devs[dev]->dmachan; if (ALLOC_DMA_CHN (chan)) { printk ("Unable to grab DMA%d for the audio driver\n", chan); return RET_ERROR (EBUSY); } DISABLE_INTR (flags); #ifdef linux disable_dma (chan); clear_dma_ff (chan); #endif RESTORE_INTR (flags); return 0; } void DMAbuf_close_dma (int dev) { int chan = audio_devs[dev]->dmachan; DMAbuf_reset_dma (chan); RELEASE_DMA_CHN (chan); } void DMAbuf_reset_dma (int chan) { } /* * The sound_mem_init() is called by mem_init() immediately after mem_map is * initialized and before free_page_list is created. * * This routine allocates DMA buffers at the end of available physical memory ( * <16M) and marks pages reserved at mem_map. */ #else /* * Stub versions if audio services not included */ int DMAbuf_open (int dev, int mode) { return RET_ERROR (ENXIO); } int DMAbuf_release (int dev, int mode) { return 0; } int DMAbuf_getwrbuffer (int dev, char **buf, int *size) { return RET_ERROR (EIO); } int DMAbuf_getrdbuffer (int dev, char **buf, int *len) { return RET_ERROR (EIO); } int DMAbuf_rmchars (int dev, int buff_no, int c) { return RET_ERROR (EIO); } int DMAbuf_start_output (int dev, int buff_no, int l) { return RET_ERROR (EIO); } int DMAbuf_ioctl (int dev, unsigned int cmd, unsigned int arg, int local) { return RET_ERROR (EIO); } long DMAbuf_init (long mem_start) { return mem_start; } int DMAbuf_start_dma (int dev, unsigned long physaddr, int count, int dma_mode) { return RET_ERROR (EIO); } int DMAbuf_open_dma (int chan) { return RET_ERROR (ENXIO); } void DMAbuf_close_dma (int chan) { return; } void DMAbuf_reset_dma (int chan) { return; } void DMAbuf_inputintr (int dev) { return; } void DMAbuf_outputintr (int dev, int underrun_flag) { return; } #endif #endif