/*- * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 * $FreeBSD$ */ #include "apm.h" #include "ether.h" #include "npx.h" #include "opt_atalk.h" #include "opt_compat.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_ipx.h" #include "opt_maxmem.h" #include "opt_msgbuf.h" #include "opt_perfmon.h" #include "opt_smp.h" #include "opt_sysvipc.h" #include "opt_user_ldt.h" #include "opt_userconfig.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SYSVSHM #include #endif #ifdef SYSVMSG #include #endif #ifdef SYSVSEM #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* pcb.h included via sys/user.h */ #ifdef SMP #include #include #endif #ifdef PERFMON #include #endif #ifdef OLD_BUS_ARCH #include #endif #include #ifdef PC98 #include #include #else #include #endif #include #include #include #include extern void init386 __P((int first)); extern void dblfault_handler __P((void)); extern void printcpuinfo(void); /* XXX header file */ extern void earlysetcpuclass(void); /* same header file */ extern void finishidentcpu(void); extern void panicifcpuunsupported(void); extern void initializecpu(void); static void cpu_startup __P((void *)); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL) static MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf"); #ifdef PC98 int need_pre_dma_flush; /* If 1, use wbinvd befor DMA transfer. */ int need_post_dma_flush; /* If 1, use invd after DMA transfer. */ #endif int _udatasel, _ucodesel; u_int atdevbase; #if defined(SWTCH_OPTIM_STATS) extern int swtch_optim_stats; SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats, CTLFLAG_RD, &swtch_optim_stats, 0, ""); SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count, CTLFLAG_RD, &tlb_flush_count, 0, ""); #endif #ifdef PC98 static int ispc98 = 1; #else static int ispc98 = 0; #endif SYSCTL_INT(_machdep, OID_AUTO, ispc98, CTLFLAG_RD, &ispc98, 0, ""); int physmem = 0; int cold = 1; static int sysctl_hw_physmem SYSCTL_HANDLER_ARGS { int error = sysctl_handle_int(oidp, 0, ctob(physmem), req); return (error); } SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_hw_physmem, "I", ""); static int sysctl_hw_usermem SYSCTL_HANDLER_ARGS { int error = sysctl_handle_int(oidp, 0, ctob(physmem - cnt.v_wire_count), req); return (error); } SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_hw_usermem, "I", ""); static int sysctl_hw_availpages SYSCTL_HANDLER_ARGS { int error = sysctl_handle_int(oidp, 0, i386_btop(avail_end - avail_start), req); return (error); } SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD, 0, 0, sysctl_hw_availpages, "I", ""); static int sysctl_machdep_msgbuf SYSCTL_HANDLER_ARGS { int error; /* Unwind the buffer, so that it's linear (possibly starting with * some initial nulls). */ error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr, msgbufp->msg_size-msgbufp->msg_bufr,req); if(error) return(error); if(msgbufp->msg_bufr>0) { error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr, msgbufp->msg_bufr,req); } return(error); } SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD, 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer"); static int msgbuf_clear; static int sysctl_machdep_msgbuf_clear SYSCTL_HANDLER_ARGS { int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error && req->newptr) { /* Clear the buffer and reset write pointer */ bzero(msgbufp->msg_ptr,msgbufp->msg_size); msgbufp->msg_bufr=msgbufp->msg_bufx=0; msgbuf_clear=0; } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW, &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I", "Clear kernel message buffer"); int bootverbose = 0, Maxmem = 0; #ifdef PC98 int Maxmem_under16M = 0; #endif long dumplo; vm_offset_t phys_avail[10]; /* must be 2 less so 0 0 can signal end of chunks */ #define PHYS_AVAIL_ARRAY_END ((sizeof(phys_avail) / sizeof(vm_offset_t)) - 2) static vm_offset_t buffer_sva, buffer_eva; vm_offset_t clean_sva, clean_eva; static vm_offset_t pager_sva, pager_eva; #define offsetof(type, member) ((size_t)(&((type *)0)->member)) static void cpu_startup(dummy) void *dummy; { register unsigned i; register caddr_t v; vm_offset_t maxaddr; vm_size_t size = 0; int firstaddr; vm_offset_t minaddr; if (boothowto & RB_VERBOSE) bootverbose++; /* * Good {morning,afternoon,evening,night}. */ printf(version); earlysetcpuclass(); startrtclock(); printcpuinfo(); panicifcpuunsupported(); #ifdef PERFMON perfmon_init(); #endif printf("real memory = %u (%uK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { int size1 = phys_avail[indx + 1] - phys_avail[indx]; printf("0x%08x - 0x%08x, %u bytes (%u pages)\n", phys_avail[indx], phys_avail[indx + 1] - 1, size1, size1 / PAGE_SIZE); } } /* * Calculate callout wheel size */ for (callwheelsize = 1, callwheelbits = 0; callwheelsize < ncallout; callwheelsize <<= 1, ++callwheelbits) ; callwheelmask = callwheelsize - 1; /* * Allocate space for system data structures. * The first available kernel virtual address is in "v". * As pages of kernel virtual memory are allocated, "v" is incremented. * As pages of memory are allocated and cleared, * "firstaddr" is incremented. * An index into the kernel page table corresponding to the * virtual memory address maintained in "v" is kept in "mapaddr". */ /* * Make two passes. The first pass calculates how much memory is * needed and allocates it. The second pass assigns virtual * addresses to the various data structures. */ firstaddr = 0; again: v = (caddr_t)firstaddr; #define valloc(name, type, num) \ (name) = (type *)v; v = (caddr_t)((name)+(num)) #define valloclim(name, type, num, lim) \ (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num))) valloc(callout, struct callout, ncallout); valloc(callwheel, struct callout_tailq, callwheelsize); #ifdef SYSVSHM valloc(shmsegs, struct shmid_ds, shminfo.shmmni); #endif #ifdef SYSVSEM valloc(sema, struct semid_ds, seminfo.semmni); valloc(sem, struct sem, seminfo.semmns); /* This is pretty disgusting! */ valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int)); #endif #ifdef SYSVMSG valloc(msgpool, char, msginfo.msgmax); valloc(msgmaps, struct msgmap, msginfo.msgseg); valloc(msghdrs, struct msg, msginfo.msgtql); valloc(msqids, struct msqid_ds, msginfo.msgmni); #endif if (nbuf == 0) { nbuf = 50; if (physmem > 1024) nbuf += min((physmem - 1024) / 8, 2048); if (physmem > 16384) nbuf += (physmem - 16384) / 20; } nswbuf = max(min(nbuf/4, 256), 16); valloc(swbuf, struct buf, nswbuf); valloc(buf, struct buf, nbuf); v = bufhashinit(v); /* * End of first pass, size has been calculated so allocate memory */ if (firstaddr == 0) { size = (vm_size_t)(v - firstaddr); firstaddr = (int)kmem_alloc(kernel_map, round_page(size)); if (firstaddr == 0) panic("startup: no room for tables"); goto again; } /* * End of second pass, addresses have been assigned */ if ((vm_size_t)(v - firstaddr) != size) panic("startup: table size inconsistency"); clean_map = kmem_suballoc(kernel_map, &clean_sva, &clean_eva, (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size); buffer_map = kmem_suballoc(clean_map, &buffer_sva, &buffer_eva, (nbuf*BKVASIZE)); pager_map = kmem_suballoc(clean_map, &pager_sva, &pager_eva, (nswbuf*MAXPHYS) + pager_map_size); pager_map->system_map = 1; exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, (16*(ARG_MAX+(PAGE_SIZE*3)))); /* * Finally, allocate mbuf pool. Since mclrefcnt is an off-size * we use the more space efficient malloc in place of kmem_alloc. */ { vm_offset_t mb_map_size; mb_map_size = nmbufs * MSIZE + nmbclusters * MCLBYTES; mb_map_size = roundup2(mb_map_size, max(MCLBYTES, PAGE_SIZE)); mclrefcnt = malloc(mb_map_size / MCLBYTES, M_MBUF, M_NOWAIT); bzero(mclrefcnt, mb_map_size / MCLBYTES); mb_map = kmem_suballoc(kmem_map, (vm_offset_t *)&mbutl, &maxaddr, mb_map_size); mb_map->system_map = 1; } /* * Initialize callouts */ SLIST_INIT(&callfree); for (i = 0; i < ncallout; i++) { callout_init(&callout[i]); callout[i].c_flags = CALLOUT_LOCAL_ALLOC; SLIST_INSERT_HEAD(&callfree, &callout[i], c_links.sle); } for (i = 0; i < callwheelsize; i++) { TAILQ_INIT(&callwheel[i]); } #if defined(USERCONFIG) userconfig(); cninit(); /* the preferred console may have changed */ #endif printf("avail memory = %u (%uK bytes)\n", ptoa(cnt.v_free_count), ptoa(cnt.v_free_count) / 1024); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); #ifdef SMP /* * OK, enough kmem_alloc/malloc state should be up, lets get on with it! */ mp_start(); /* fire up the APs and APICs */ mp_announce(); #endif /* SMP */ } int register_netisr(num, handler) int num; netisr_t *handler; { if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) { printf("register_netisr: bad isr number: %d\n", num); return (EINVAL); } netisrs[num] = handler; return (0); } void netisr_sysinit(data) void *data; { const struct netisrtab *nit; nit = (const struct netisrtab *)data; register_netisr(nit->nit_num, nit->nit_isr); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by kcall * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ static void osendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { register struct proc *p = curproc; register struct trapframe *regs; register struct osigframe *fp; struct osigframe sf; struct sigacts *psp = p->p_sigacts; int oonstack; regs = p->p_md.md_regs; oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0; /* Allocate and validate space for the signal handler context. */ if ((p->p_flag & P_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct osigframe *)(p->p_sigstk.ss_sp + p->p_sigstk.ss_size - sizeof(struct osigframe)); p->p_sigstk.ss_flags |= SS_ONSTACK; } else fp = (struct osigframe *)regs->tf_esp - 1; /* * grow() will return FALSE if the fp will not fit inside the stack * and the stack can not be grown. useracc will return FALSE * if access is denied. */ if (grow_stack(p, (int)fp) == FALSE || !useracc((caddr_t)fp, sizeof(struct osigframe), VM_PROT_WRITE)) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ SIGACTION(p, SIGILL) = SIG_DFL; SIGDELSET(p->p_sigignore, SIGILL); SIGDELSET(p->p_sigcatch, SIGILL); SIGDELSET(p->p_sigmask, SIGILL); psignal(p, SIGILL); return; } /* Translate the signal if appropriate */ if (p->p_sysent->sv_sigtbl) { if (sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; } /* Build the argument list for the signal handler. */ sf.sf_signum = sig; sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc; if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ sf.sf_arg2 = (register_t)&fp->sf_siginfo; sf.sf_siginfo.si_signo = sig; sf.sf_siginfo.si_code = code; sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher; } else { /* Old FreeBSD-style arguments. */ sf.sf_arg2 = code; sf.sf_addr = regs->tf_err; sf.sf_ahu.sf_handler = catcher; } /* save scratch registers */ sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax; sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx; sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx; sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx; sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi; sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi; sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs; sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds; sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss; sf.sf_siginfo.si_sc.sc_es = regs->tf_es; sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs; sf.sf_siginfo.si_sc.sc_gs = rgs(); sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp; /* Build the signal context to be used by sigreturn. */ sf.sf_siginfo.si_sc.sc_onstack = oonstack; SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask); sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp; sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp; sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip; sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags; sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno; sf.sf_siginfo.si_sc.sc_err = regs->tf_err; /* * If we're a vm86 process, we want to save the segment registers. * We also change eflags to be our emulated eflags, not the actual * eflags. */ if (regs->tf_eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86; sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs; sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs; sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es; sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds; if (vm86->vm86_has_vme == 0) sf.sf_siginfo.si_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); /* see sendsig for comment */ tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP); } /* Copy the sigframe out to the user's stack. */ if (copyout(&sf, fp, sizeof(struct osigframe)) != 0) { /* * Something is wrong with the stack pointer. * ...Kill the process. */ sigexit(p, SIGILL); } regs->tf_esp = (int)fp; regs->tf_eip = PS_STRINGS - oszsigcode; regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; load_gs(_udatasel); regs->tf_ss = _udatasel; } void sendsig(catcher, sig, mask, code) sig_t catcher; int sig; sigset_t *mask; u_long code; { struct proc *p = curproc; struct trapframe *regs; struct sigacts *psp = p->p_sigacts; struct sigframe sf, *sfp; int oonstack; if (SIGISMEMBER(psp->ps_osigset, sig)) { osendsig(catcher, sig, mask, code); return; } regs = p->p_md.md_regs; oonstack = (p->p_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0; /* save user context */ bzero(&sf, sizeof(struct sigframe)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = p->p_sigstk; sf.sf_uc.uc_mcontext.mc_onstack = oonstack; sf.sf_uc.uc_mcontext.mc_gs = rgs(); bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(struct trapframe)); /* Allocate and validate space for the signal handler context. */ if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sfp = (struct sigframe *)(p->p_sigstk.ss_sp + p->p_sigstk.ss_size - sizeof(struct sigframe)); p->p_sigstk.ss_flags |= SS_ONSTACK; } else sfp = (struct sigframe *)regs->tf_esp - 1; /* * grow() will return FALSE if the sfp will not fit inside the stack * and the stack can not be grown. useracc will return FALSE if * access is denied. */ if (grow_stack(p, (int)sfp) == FALSE || !useracc((caddr_t)sfp, sizeof(struct sigframe), VM_PROT_WRITE)) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ #ifdef DEBUG printf("process %d has trashed its stack\n", p->p_pid); #endif SIGACTION(p, SIGILL) = SIG_DFL; SIGDELSET(p->p_sigignore, SIGILL); SIGDELSET(p->p_sigcatch, SIGILL); SIGDELSET(p->p_sigmask, SIGILL); psignal(p, SIGILL); return; } /* Translate the signal is appropriate */ if (p->p_sysent->sv_sigtbl) { if (sig <= p->p_sysent->sv_sigsize) sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)]; } /* Build the argument list for the signal handler. */ sf.sf_signum = sig; sf.sf_ucontext = (register_t)&sfp->sf_uc; if (SIGISMEMBER(p->p_sigacts->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ sf.sf_siginfo = (register_t)&sfp->sf_si; sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* fill siginfo structure */ sf.sf_si.si_signo = sig; sf.sf_si.si_code = code; sf.sf_si.si_addr = (void*)regs->tf_err; } else { /* Old FreeBSD-style arguments. */ sf.sf_siginfo = code; sf.sf_addr = regs->tf_err; sf.sf_ahu.sf_handler = catcher; } /* * If we're a vm86 process, we want to save the segment registers. * We also change eflags to be our emulated eflags, not the actual * eflags. */ if (regs->tf_eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86; sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs; sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs; sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es; sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds; if (vm86->vm86_has_vme == 0) sf.sf_uc.uc_mcontext.mc_eflags = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); /* * We should never have PSL_T set when returning from vm86 * mode. It may be set here if we deliver a signal before * getting to vm86 mode, so turn it off. * * Clear PSL_NT to inhibit T_TSSFLT faults on return from * syscalls made by the signal handler. This just avoids * wasting time for our lazy fixup of such faults. PSL_NT * does nothing in vm86 mode, but vm86 programs can set it * almost legitimately in probes for old cpu types. */ tf->tf_eflags &= ~(PSL_VM|PSL_NT|PSL_T|PSL_VIF|PSL_VIP); } /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) { /* * Something is wrong with the stack pointer. * ...Kill the process. */ sigexit(p, SIGILL); } regs->tf_esp = (int)sfp; regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; load_gs(_udatasel); regs->tf_ss = _udatasel; } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. */ #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0) #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL) int osigreturn(p, uap) struct proc *p; struct osigreturn_args /* { struct osigcontext *sigcntxp; } */ *uap; { register struct osigcontext *scp; register struct trapframe *regs = p->p_md.md_regs; int eflags; scp = uap->sigcntxp; if (!useracc((caddr_t)scp, sizeof (struct osigcontext), VM_PROT_READ)) return(EFAULT); eflags = scp->sc_ps; if (eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86; /* * if pcb_ext == 0 or vm86_inited == 0, the user hasn't * set up the vm86 area, and we can't enter vm86 mode. */ if (p->p_addr->u_pcb.pcb_ext == 0) return (EINVAL); vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86; if (vm86->vm86_inited == 0) return (EINVAL); /* go back to user mode if both flags are set */ if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) trapsignal(p, SIGBUS, 0); if (vm86->vm86_has_vme) { eflags = (tf->tf_eflags & ~VME_USERCHANGE) | (eflags & VME_USERCHANGE) | PSL_VM; } else { vm86->vm86_eflags = eflags; /* save VIF, VIP */ eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM; } tf->tf_vm86_ds = scp->sc_ds; tf->tf_vm86_es = scp->sc_es; tf->tf_vm86_fs = scp->sc_fs; tf->tf_vm86_gs = scp->sc_gs; tf->tf_ds = _udatasel; tf->tf_es = _udatasel; tf->tf_fs = _udatasel; } else { /* * Don't allow users to change privileged or reserved flags. */ /* * XXX do allow users to change the privileged flag PSL_RF. * The cpu sets PSL_RF in tf_eflags for faults. Debuggers * should sometimes set it there too. tf_eflags is kept in * the signal context during signal handling and there is no * other place to remember it, so the PSL_RF bit may be * corrupted by the signal handler without us knowing. * Corruption of the PSL_RF bit at worst causes one more or * one less debugger trap, so allowing it is fairly harmless. */ if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) { return(EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ if (!CS_SECURE(scp->sc_cs)) { trapsignal(p, SIGBUS, T_PROTFLT); return(EINVAL); } regs->tf_ds = scp->sc_ds; regs->tf_es = scp->sc_es; regs->tf_fs = scp->sc_fs; } /* restore scratch registers */ regs->tf_eax = scp->sc_eax; regs->tf_ebx = scp->sc_ebx; regs->tf_ecx = scp->sc_ecx; regs->tf_edx = scp->sc_edx; regs->tf_esi = scp->sc_esi; regs->tf_edi = scp->sc_edi; regs->tf_cs = scp->sc_cs; regs->tf_ss = scp->sc_ss; regs->tf_isp = scp->sc_isp; if (scp->sc_onstack & 01) p->p_sigstk.ss_flags |= SS_ONSTACK; else p->p_sigstk.ss_flags &= ~SS_ONSTACK; SIGSETOLD(p->p_sigmask, scp->sc_mask); SIG_CANTMASK(p->p_sigmask); regs->tf_ebp = scp->sc_fp; regs->tf_esp = scp->sc_sp; regs->tf_eip = scp->sc_pc; regs->tf_eflags = eflags; return(EJUSTRETURN); } int sigreturn(p, uap) struct proc *p; struct sigreturn_args /* { ucontext_t *sigcntxp; } */ *uap; { struct trapframe *regs; ucontext_t *ucp; int cs, eflags; if (((struct osigcontext *)uap->sigcntxp)->sc_trapno == 0x01d516) return osigreturn(p, (struct osigreturn_args *)uap); regs = p->p_md.md_regs; ucp = uap->sigcntxp; eflags = ucp->uc_mcontext.mc_eflags; if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ)) return(EFAULT); if (eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86; /* * if pcb_ext == 0 or vm86_inited == 0, the user hasn't * set up the vm86 area, and we can't enter vm86 mode. */ if (p->p_addr->u_pcb.pcb_ext == 0) return (EINVAL); vm86 = &p->p_addr->u_pcb.pcb_ext->ext_vm86; if (vm86->vm86_inited == 0) return (EINVAL); /* go back to user mode if both flags are set */ if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) trapsignal(p, SIGBUS, 0); if (vm86->vm86_has_vme) { eflags = (tf->tf_eflags & ~VME_USERCHANGE) | (eflags & VME_USERCHANGE) | PSL_VM; } else { vm86->vm86_eflags = eflags; /* save VIF, VIP */ eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM; } bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe)); tf->tf_eflags = eflags; tf->tf_vm86_ds = tf->tf_ds; tf->tf_vm86_es = tf->tf_es; tf->tf_vm86_fs = tf->tf_fs; tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs; tf->tf_ds = _udatasel; tf->tf_es = _udatasel; tf->tf_fs = _udatasel; } else { /* * Don't allow users to change privileged or reserved flags. */ /* * XXX do allow users to change the privileged flag PSL_RF. * The cpu sets PSL_RF in tf_eflags for faults. Debuggers * should sometimes set it there too. tf_eflags is kept in * the signal context during signal handling and there is no * other place to remember it, so the PSL_RF bit may be * corrupted by the signal handler without us knowing. * Corruption of the PSL_RF bit at worst causes one more or * one less debugger trap, so allowing it is fairly harmless. */ if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) { printf("sigreturn: eflags = 0x%x\n", eflags); return(EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { printf("sigreturn: cs = 0x%x\n", cs); trapsignal(p, SIGBUS, T_PROTFLT); return(EINVAL); } bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(struct trapframe)); } if (ucp->uc_mcontext.mc_onstack & 1) p->p_sigstk.ss_flags |= SS_ONSTACK; else p->p_sigstk.ss_flags &= ~SS_ONSTACK; p->p_sigmask = ucp->uc_sigmask; SIG_CANTMASK(p->p_sigmask); return(EJUSTRETURN); } /* * Machine dependent boot() routine * * I haven't seen anything to put here yet * Possibly some stuff might be grafted back here from boot() */ void cpu_boot(int howto) { } /* * Shutdown the CPU as much as possible */ void cpu_halt(void) { for (;;) __asm__ ("hlt"); } /* * Clear registers on exec */ void setregs(p, entry, stack, ps_strings) struct proc *p; u_long entry; u_long stack; u_long ps_strings; { struct trapframe *regs = p->p_md.md_regs; struct pcb *pcb = &p->p_addr->u_pcb; #ifdef USER_LDT /* was i386_user_cleanup() in NetBSD */ if (pcb->pcb_ldt) { if (pcb == curpcb) { lldt(_default_ldt); currentldt = _default_ldt; } kmem_free(kernel_map, (vm_offset_t)pcb->pcb_ldt, pcb->pcb_ldt_len * sizeof(union descriptor)); pcb->pcb_ldt_len = (int)pcb->pcb_ldt = 0; } #endif bzero((char *)regs, sizeof(struct trapframe)); regs->tf_eip = entry; regs->tf_esp = stack; regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T); regs->tf_ss = _udatasel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_cs = _ucodesel; /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */ regs->tf_ebx = ps_strings; /* reset %gs as well */ if (pcb == curpcb) load_gs(_udatasel); else pcb->pcb_gs = _udatasel; /* * Initialize the math emulator (if any) for the current process. * Actually, just clear the bit that says that the emulator has * been initialized. Initialization is delayed until the process * traps to the emulator (if it is done at all) mainly because * emulators don't provide an entry point for initialization. */ p->p_addr->u_pcb.pcb_flags &= ~FP_SOFTFP; /* * Arrange to trap the next npx or `fwait' instruction (see npx.c * for why fwait must be trapped at least if there is an npx or an * emulator). This is mainly to handle the case where npx0 is not * configured, since the npx routines normally set up the trap * otherwise. It should be done only at boot time, but doing it * here allows modifying `npx_exists' for testing the emulator on * systems with an npx. */ load_cr0(rcr0() | CR0_MP | CR0_TS); #if NNPX > 0 /* Initialize the npx (if any) for the current process. */ npxinit(__INITIAL_NPXCW__); #endif /* * XXX - Linux emulator * Make sure sure edx is 0x0 on entry. Linux binaries depend * on it. */ p->p_retval[1] = 0; } static int sysctl_machdep_adjkerntz SYSCTL_HANDLER_ARGS { int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error && req->newptr) resettodr(); return (error); } SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW, &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", ""); SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set, CTLFLAG_RW, &disable_rtc_set, 0, ""); SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo, CTLFLAG_RD, &bootinfo, bootinfo, ""); SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock, CTLFLAG_RW, &wall_cmos_clock, 0, ""); /* * Initialize 386 and configure to run kernel */ /* * Initialize segments & interrupt table */ int _default_ldt; #ifdef SMP union descriptor gdt[NGDT * NCPU]; /* global descriptor table */ #else union descriptor gdt[NGDT]; /* global descriptor table */ #endif static struct gate_descriptor idt0[NIDT]; struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ union descriptor ldt[NLDT]; /* local descriptor table */ #ifdef SMP /* table descriptors - used to load tables by microp */ struct region_descriptor r_gdt, r_idt; #endif #ifndef SMP extern struct segment_descriptor common_tssd, *tss_gdt; #endif int private_tss; /* flag indicating private tss */ #if defined(I586_CPU) && !defined(NO_F00F_HACK) extern int has_f00f_bug; #endif static struct i386tss dblfault_tss; static char dblfault_stack[PAGE_SIZE]; extern struct user *proc0paddr; /* software prototypes -- in more palatable form */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { 0x0, /* segment base address */ 0x0, /* length */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GCODE_SEL 1 Code Descriptor for kernel */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GDATA_SEL 2 Data Descriptor for kernel */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GPROC0_SEL 4 Proc 0 Tss Descriptor */ { 0x0, /* segment base address */ sizeof(struct i386tss)-1,/* length - all address space */ SDT_SYS386TSS, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GLDT_SEL 5 LDT Descriptor */ { (int) ldt, /* segment base address */ sizeof(ldt)-1, /* length - all address space */ SDT_SYSLDT, /* segment type */ SEL_UPL, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GUSERLDT_SEL 6 User LDT Descriptor per process */ { (int) ldt, /* segment base address */ (512 * sizeof(union descriptor)-1), /* length */ SDT_SYSLDT, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GTGATE_SEL 7 Null Descriptor - Placeholder */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */ { 0x400, /* segment base address */ 0xfffff, /* length */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GPANIC_SEL 9 Panic Tss Descriptor */ { (int) &dblfault_tss, /* segment base address */ sizeof(struct i386tss)-1,/* length - all address space */ SDT_SYS386TSS, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* unused - default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */ { 0, /* segment base address (overwritten) */ 0xfffff, /* length */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */ { 0, /* segment base address (overwritten) */ 0xfffff, /* length */ SDT_MEMERA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */ { 0, /* segment base address (overwritten) */ 0xfffff, /* length */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */ { 0, /* segment base address (overwritten) */ 0xfffff, /* length */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */ { 0, /* segment base address (overwritten) */ 0xfffff, /* length */ SDT_MEMRWA, /* segment type */ 0, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, }; static struct soft_segment_descriptor ldt_segs[] = { /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Code Descriptor for user */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMERA, /* segment type */ SEL_UPL, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, /* Null Descriptor - overwritten by call gate */ { 0x0, /* segment base address */ 0x0, /* length - all address space */ 0, /* segment type */ 0, /* segment descriptor priority level */ 0, /* segment descriptor present */ 0, 0, 0, /* default 32 vs 16 bit size */ 0 /* limit granularity (byte/page units)*/ }, /* Data Descriptor for user */ { 0x0, /* segment base address */ 0xfffff, /* length - all address space */ SDT_MEMRWA, /* segment type */ SEL_UPL, /* segment descriptor priority level */ 1, /* segment descriptor present */ 0, 0, 1, /* default 32 vs 16 bit size */ 1 /* limit granularity (byte/page units)*/ }, }; void setidt(idx, func, typ, dpl, selec) int idx; inthand_t *func; int typ; int dpl; int selec; { struct gate_descriptor *ip; ip = idt + idx; ip->gd_looffset = (int)func; ip->gd_selector = selec; ip->gd_stkcpy = 0; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((int)func)>>16 ; } #define IDTVEC(name) __CONCAT(X,name) extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(syscall), IDTVEC(int0x80_syscall); void sdtossd(sd, ssd) struct segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } #define PHYSMAP_SIZE (2 * 8) /* * Populate the (physmap) array with base/bound pairs describing the * available physical memory in the system, then test this memory and * build the phys_avail array describing the actually-available memory. * * If we cannot accurately determine the physical memory map, then use * value from the 0xE801 call, and failing that, the RTC. * * Total memory size may be set by the kernel environment variable * hw.physmem or the compile-time define MAXMEM. */ static void getmemsize_pc98(int first) { u_int biosbasemem, biosextmem; u_int pagesinbase, pagesinext; int pa_indx; int speculative_mprobe; #if NNPX > 0 int msize; #endif vm_offset_t target_page; pc98_getmemsize(); biosbasemem = 640; /* 640KB */ biosextmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */ #ifdef SMP /* make hole for AP bootstrap code */ pagesinbase = mp_bootaddress(biosbasemem) / PAGE_SIZE; #else pagesinbase = biosbasemem * 1024 / PAGE_SIZE; #endif pagesinext = biosextmem * 1024 / PAGE_SIZE; /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". */ Maxmem = pagesinext + 0x100000/PAGE_SIZE; /* * Indicate that we wish to do a speculative search for memory beyond * the end of the reported size if the indicated amount is 64MB (0x4000 * pages) - which is the largest amount that the BIOS/bootblocks can * currently report. If a specific amount of memory is indicated via * the MAXMEM option or the npx0 "msize", then don't do the speculative * memory probe. */ if (Maxmem >= 0x4000) speculative_mprobe = TRUE; else speculative_mprobe = FALSE; #ifdef MAXMEM Maxmem = MAXMEM/4; speculative_mprobe = FALSE; #endif #if NNPX > 0 if (resource_int_value("npx", 0, "msize", &msize) == 0) { if (msize != 0) { Maxmem = msize / 4; speculative_mprobe = FALSE; } } #endif #ifdef SMP /* look for the MP hardware - needed for apic addresses */ mp_probe(); #endif /* call pmap initialization to make new kernel address space */ pmap_bootstrap (first, 0); /* * Size up each available chunk of physical memory. */ /* * We currently don't bother testing base memory. * XXX ...but we probably should. */ pa_indx = 0; if (pagesinbase > 1) { phys_avail[pa_indx++] = PAGE_SIZE; /* skip first page of memory */ phys_avail[pa_indx] = ptoa(pagesinbase);/* memory up to the ISA hole */ physmem = pagesinbase - 1; } else { /* point at first chunk end */ pa_indx++; } for (target_page = avail_start; target_page < ptoa(Maxmem); target_page += PAGE_SIZE) { int tmp, page_bad; page_bad = FALSE; /* skip system area */ if (target_page>=ptoa(Maxmem_under16M) && target_page < ptoa(4096)) page_bad = TRUE; /* * map page into kernel: valid, read/write, non-cacheable */ if (pc98_machine_type & M_EPSON_PC98) { switch (epson_machine_id) { case 0x34: /* PC-486HX */ case 0x35: /* PC-486HG */ case 0x3B: /* PC-486HA */ *(int *)CMAP1 = PG_V | PG_RW | target_page; break; default: #ifdef WB_CACHE *(int *)CMAP1 = PG_V | PG_RW | target_page; #else *(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page; #endif break; } } else { *(int *)CMAP1 = PG_V | PG_RW | PG_N | target_page; } invltlb(); tmp = *(int *)CADDR1; /* * Test for alternating 1's and 0's */ *(volatile int *)CADDR1 = 0xaaaaaaaa; if (*(volatile int *)CADDR1 != 0xaaaaaaaa) { page_bad = TRUE; } /* * Test for alternating 0's and 1's */ *(volatile int *)CADDR1 = 0x55555555; if (*(volatile int *)CADDR1 != 0x55555555) { page_bad = TRUE; } /* * Test for all 1's */ *(volatile int *)CADDR1 = 0xffffffff; if (*(volatile int *)CADDR1 != 0xffffffff) { page_bad = TRUE; } /* * Test for all 0's */ *(volatile int *)CADDR1 = 0x0; if (*(volatile int *)CADDR1 != 0x0) { /* * test of page failed */ page_bad = TRUE; } /* * Restore original value. */ *(int *)CADDR1 = tmp; /* * Adjust array of valid/good pages. */ if (page_bad == FALSE) { /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == target_page) { phys_avail[pa_indx] += PAGE_SIZE; if (speculative_mprobe == TRUE && phys_avail[pa_indx] >= (64*1024*1024)) Maxmem++; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ARRAY_END) { printf("Too many holes in the physical address space, giving up\n"); pa_indx--; break; } phys_avail[pa_indx++] = target_page; /* start */ phys_avail[pa_indx] = target_page + PAGE_SIZE; /* end */ } physmem++; } } *(int *)CMAP1 = 0; invltlb(); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(MSGBUF_SIZE); avail_end = phys_avail[pa_indx]; } #ifndef PC98 static void getmemsize(int first) { int i, physmap_idx, pa_indx; u_int basemem, extmem; struct vm86frame vmf; struct vm86context vmc; vm_offset_t pa, physmap[PHYSMAP_SIZE]; pt_entry_t pte; const char *cp; struct { u_int64_t base; u_int64_t length; u_int32_t type; } *smap; bzero(&vmf, sizeof(struct vm86frame)); bzero(physmap, sizeof(physmap)); /* * Perform "base memory" related probes & setup */ vm86_intcall(0x12, &vmf); basemem = vmf.vmf_ax; if (basemem > 640) { printf("Preposterous BIOS basemem of %uK, truncating to 640K\n", basemem); basemem = 640; } /* * XXX if biosbasemem is now < 640, there is a `hole' * between the end of base memory and the start of * ISA memory. The hole may be empty or it may * contain BIOS code or data. Map it read/write so * that the BIOS can write to it. (Memory from 0 to * the physical end of the kernel is mapped read-only * to begin with and then parts of it are remapped. * The parts that aren't remapped form holes that * remain read-only and are unused by the kernel. * The base memory area is below the physical end of * the kernel and right now forms a read-only hole. * The part of it from PAGE_SIZE to * (trunc_page(biosbasemem * 1024) - 1) will be * remapped and used by the kernel later.) * * This code is similar to the code used in * pmap_mapdev, but since no memory needs to be * allocated we simply change the mapping. */ for (pa = trunc_page(basemem * 1024); pa < ISA_HOLE_START; pa += PAGE_SIZE) { pte = (pt_entry_t)vtopte(pa + KERNBASE); *pte = pa | PG_RW | PG_V; } /* * if basemem != 640, map pages r/w into vm86 page table so * that the bios can scribble on it. */ pte = (pt_entry_t)vm86paddr; for (i = basemem / 4; i < 160; i++) pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U; /* * map page 1 R/W into the kernel page table so we can use it * as a buffer. The kernel will unmap this page later. */ pte = (pt_entry_t)vtopte(KERNBASE + (1 << PAGE_SHIFT)); *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V; extmem = (Maxmem * PAGE_SIZE - 0x100000)/1024; /* extent memory */ /* * get memory map with INT 15:E820 */ #define SMAPSIZ sizeof(*smap) #define SMAP_SIG 0x534D4150 /* 'SMAP' */ vmc.npages = 0; smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT)); vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di); physmap_idx = 0; vmf.vmf_ebx = 0; do { vmf.vmf_eax = 0xE820; vmf.vmf_edx = SMAP_SIG; vmf.vmf_ecx = SMAPSIZ; i = vm86_datacall(0x15, &vmf, &vmc); if (i || vmf.vmf_eax != SMAP_SIG) break; if (boothowto & RB_VERBOSE) printf("SMAP type=%02x base=%08x %08x len=%08x %08x\n", smap->type, *(u_int32_t *)((char *)&smap->base + 4), (u_int32_t)smap->base, *(u_int32_t *)((char *)&smap->length + 4), (u_int32_t)smap->length); if (smap->type != 0x01) goto next_run; if (smap->length == 0) goto next_run; if (smap->base >= 0xffffffff) { printf("%uK of memory above 4GB ignored\n", (u_int)(smap->length / 1024)); goto next_run; } for (i = 0; i <= physmap_idx; i += 2) { if (smap->base < physmap[i + 1]) { if (boothowto & RB_VERBOSE) printf( "Overlapping or non-montonic memory region, ignoring second region\n"); goto next_run; } } if (smap->base == physmap[physmap_idx + 1]) { physmap[physmap_idx + 1] += smap->length; goto next_run; } physmap_idx += 2; if (physmap_idx == PHYSMAP_SIZE) { printf( "Too many segments in the physical address map, giving up\n"); break; } physmap[physmap_idx] = smap->base; physmap[physmap_idx + 1] = smap->base + smap->length; next_run: } while (vmf.vmf_ebx != 0); if (physmap[1] != 0) goto physmap_done; /* * If we failed above, try memory map with INT 15:E801 */ vmf.vmf_ax = 0xE801; if (vm86_intcall(0x15, &vmf) == 0) { extmem = vmf.vmf_cx + vmf.vmf_dx * 64; } else { #if 0 vmf.vmf_ah = 0x88; vm86_intcall(0x15, &vmf); extmem = vmf.vmf_ax; #else /* * Prefer the RTC value for extended memory. */ extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8); #endif } /* * Special hack for chipsets that still remap the 384k hole when * there's 16MB of memory - this really confuses people that * are trying to use bus mastering ISA controllers with the * "16MB limit"; they only have 16MB, but the remapping puts * them beyond the limit. * * If extended memory is between 15-16MB (16-17MB phys address range), * chop it to 15MB. */ if ((extmem > 15 * 1024) && (extmem < 16 * 1024)) extmem = 15 * 1024; physmap[0] = 0; physmap[1] = basemem * 1024; physmap_idx = 2; physmap[physmap_idx] = 0x100000; physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024; physmap_done: /* * Now, physmap contains a map of physical memory. */ #ifdef SMP /* make hole for AP bootstrap code */ physmap[1] = mp_bootaddress(physmap[1] / 1024); /* look for the MP hardware - needed for apic addresses */ mp_probe(); #endif /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". We may adjust this * based on ``hw.physmem'' and the results of the memory test. */ Maxmem = atop(physmap[physmap_idx + 1]); #ifdef MAXMEM Maxmem = MAXMEM / 4; #endif /* * hw.maxmem is a size in bytes; we also allow k, m, and g suffixes * for the appropriate modifiers. This overrides MAXMEM. */ if ((cp = getenv("hw.physmem")) != NULL) { u_int64_t AllowMem, sanity; const char *ep; sanity = AllowMem = strtouq(cp, &ep, 0); if ((ep != cp) && (*ep != 0)) { switch(*ep) { case 'g': case 'G': AllowMem <<= 10; case 'm': case 'M': AllowMem <<= 10; case 'k': case 'K': AllowMem <<= 10; break; default: AllowMem = sanity = 0; } if (AllowMem < sanity) AllowMem = 0; } if (AllowMem == 0) printf("Ignoring invalid memory size of '%s'\n", cp); else Maxmem = atop(AllowMem); } if (atop(physmap[physmap_idx + 1]) != Maxmem && (boothowto & RB_VERBOSE)) printf("Physical memory use set to %uK\n", Maxmem * 4); /* * If Maxmem has been increased beyond what the system has detected, * extend the last memory segment to the new limit. */ if (atop(physmap[physmap_idx + 1]) < Maxmem) physmap[physmap_idx + 1] = ptoa(Maxmem); /* call pmap initialization to make new kernel address space */ pmap_bootstrap(first, 0); /* * Size up each available chunk of physical memory. */ physmap[0] = PAGE_SIZE; /* mask off page 0 */ pa_indx = 0; phys_avail[pa_indx++] = physmap[0]; phys_avail[pa_indx] = physmap[0]; #if 0 pte = (pt_entry_t)vtopte(KERNBASE); #else pte = (pt_entry_t)CMAP1; #endif /* * physmap is in bytes, so when converting to page boundaries, * round up the start address and round down the end address. */ for (i = 0; i <= physmap_idx; i += 2) { vm_offset_t end; end = ptoa(Maxmem); if (physmap[i + 1] < end) end = trunc_page(physmap[i + 1]); for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { int tmp, page_bad; #if 0 int *ptr = 0; #else int *ptr = (int *)CADDR1; #endif /* * block out kernel memory as not available. */ if (pa >= 0x100000 && pa < first) continue; page_bad = FALSE; /* * map page into kernel: valid, read/write,non-cacheable */ *pte = pa | PG_V | PG_RW | PG_N; invltlb(); tmp = *(int *)ptr; /* * Test for alternating 1's and 0's */ *(volatile int *)ptr = 0xaaaaaaaa; if (*(volatile int *)ptr != 0xaaaaaaaa) { page_bad = TRUE; } /* * Test for alternating 0's and 1's */ *(volatile int *)ptr = 0x55555555; if (*(volatile int *)ptr != 0x55555555) { page_bad = TRUE; } /* * Test for all 1's */ *(volatile int *)ptr = 0xffffffff; if (*(volatile int *)ptr != 0xffffffff) { page_bad = TRUE; } /* * Test for all 0's */ *(volatile int *)ptr = 0x0; if (*(volatile int *)ptr != 0x0) { page_bad = TRUE; } /* * Restore original value. */ *(int *)ptr = tmp; /* * Adjust array of valid/good pages. */ if (page_bad == TRUE) { continue; } /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == pa) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ARRAY_END) { printf("Too many holes in the physical address space, giving up\n"); pa_indx--; break; } phys_avail[pa_indx++] = pa; /* start */ phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ } physmem++; } } *pte = 0; invltlb(); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(MSGBUF_SIZE); avail_end = phys_avail[pa_indx]; } #endif void init386(first) int first; { int x; struct gate_descriptor *gdp; int gsel_tss; #ifndef SMP /* table descriptors - used to load tables by microp */ struct region_descriptor r_gdt, r_idt; #endif int off; /* * Prevent lowering of the ipl if we call tsleep() early. */ safepri = cpl; proc0.p_addr = proc0paddr; atdevbase = ISA_HOLE_START + KERNBASE; #ifdef PC98 /* * Initialize DMAC */ pc98_init_dmac(); #endif if (bootinfo.bi_modulep) { preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE; preload_bootstrap_relocate(KERNBASE); } if (bootinfo.bi_envp) kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE; /* * make gdt memory segments, the code segment goes up to end of the * page with etext in it, the data segment goes to the end of * the address space */ /* * XXX text protection is temporarily (?) disabled. The limit was * i386_btop(round_page(etext)) - 1. */ gdt_segs[GCODE_SEL].ssd_limit = i386_btop(0) - 1; gdt_segs[GDATA_SEL].ssd_limit = i386_btop(0) - 1; #ifdef SMP gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(sizeof(struct privatespace)) - 1; gdt_segs[GPRIV_SEL].ssd_base = (int) &SMP_prvspace[0]; gdt_segs[GPROC0_SEL].ssd_base = (int) &SMP_prvspace[0].globaldata.gd_common_tss; SMP_prvspace[0].globaldata.gd_prvspace = &SMP_prvspace[0]; #else gdt_segs[GPRIV_SEL].ssd_limit = i386_btop(0) - 1; gdt_segs[GPROC0_SEL].ssd_base = (int) &common_tss; #endif for (x = 0; x < NGDT; x++) { #ifdef BDE_DEBUGGER /* avoid overwriting db entries with APM ones */ if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL) continue; #endif ssdtosd(&gdt_segs[x], &gdt[x].sd); } r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (int) gdt; lgdt(&r_gdt); /* make ldt memory segments */ /* * The data segment limit must not cover the user area because we * don't want the user area to be writable in copyout() etc. (page * level protection is lost in kernel mode on 386's). Also, we * don't want the user area to be writable directly (page level * protection of the user area is not available on 486's with * CR0_WP set, because there is no user-read/kernel-write mode). * * XXX - VM_MAXUSER_ADDRESS is an end address, not a max. And it * should be spelled ...MAX_USER... */ #define VM_END_USER_RW_ADDRESS VM_MAXUSER_ADDRESS /* * The code segment limit has to cover the user area until we move * the signal trampoline out of the user area. This is safe because * the code segment cannot be written to directly. */ #define VM_END_USER_R_ADDRESS (VM_END_USER_RW_ADDRESS + UPAGES * PAGE_SIZE) ldt_segs[LUCODE_SEL].ssd_limit = i386_btop(VM_END_USER_R_ADDRESS) - 1; ldt_segs[LUDATA_SEL].ssd_limit = i386_btop(VM_END_USER_RW_ADDRESS) - 1; for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++) ssdtosd(&ldt_segs[x], &ldt[x].sd); _default_ldt = GSEL(GLDT_SEL, SEL_KPL); lldt(_default_ldt); #ifdef USER_LDT currentldt = _default_ldt; #endif /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL)); setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(15, &IDTVEC(rsvd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(0x80, &IDTVEC(int0x80_syscall), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); r_idt.rd_limit = sizeof(idt0) - 1; r_idt.rd_base = (int) idt; lidt(&r_idt); /* * Initialize the console before we print anything out. */ cninit(); #include "isa.h" #if NISA >0 isa_defaultirq(); #endif rand_initialize(); #ifdef DDB kdb_init(); if (boothowto & RB_KDB) Debugger("Boot flags requested debugger"); #endif finishidentcpu(); /* Final stage of CPU initialization */ setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); initializecpu(); /* Initialize CPU registers */ /* make an initial tss so cpu can get interrupt stack on syscall! */ common_tss.tss_esp0 = (int) proc0.p_addr + UPAGES*PAGE_SIZE - 16; common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); private_tss = 0; tss_gdt = &gdt[GPROC0_SEL].sd; common_tssd = *tss_gdt; common_tss.tss_ioopt = (sizeof common_tss) << 16; ltr(gsel_tss); dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 = dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)]; dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 = dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL); dblfault_tss.tss_cr3 = (int)IdlePTD; dblfault_tss.tss_eip = (int) dblfault_handler; dblfault_tss.tss_eflags = PSL_KERNEL; dblfault_tss.tss_ds = dblfault_tss.tss_es = dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL); dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL); dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL); dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL); vm86_initialize(); #ifdef PC98 getmemsize_pc98(first); #else getmemsize(first); #endif /* now running on new page tables, configured,and u/iom is accessible */ /* Map the message buffer. */ for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE) pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off); msgbufinit(msgbufp, MSGBUF_SIZE); /* make a call gate to reenter kernel with */ gdp = &ldt[LSYS5CALLS_SEL].gd; x = (int) &IDTVEC(syscall); gdp->gd_looffset = x++; gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL); gdp->gd_stkcpy = 1; gdp->gd_type = SDT_SYS386CGT; gdp->gd_dpl = SEL_UPL; gdp->gd_p = 1; gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16; /* XXX does this work? */ ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL]; ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL]; /* transfer to user mode */ _ucodesel = LSEL(LUCODE_SEL, SEL_UPL); _udatasel = LSEL(LUDATA_SEL, SEL_UPL); /* setup proc 0's pcb */ proc0.p_addr->u_pcb.pcb_flags = 0; proc0.p_addr->u_pcb.pcb_cr3 = (int)IdlePTD; #ifdef SMP proc0.p_addr->u_pcb.pcb_mpnest = 1; #endif proc0.p_addr->u_pcb.pcb_ext = 0; } #if defined(I586_CPU) && !defined(NO_F00F_HACK) static void f00f_hack(void *unused); SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL); static void f00f_hack(void *unused) { struct gate_descriptor *new_idt; #ifndef SMP struct region_descriptor r_idt; #endif vm_offset_t tmp; if (!has_f00f_bug) return; printf("Intel Pentium detected, installing workaround for F00F bug\n"); r_idt.rd_limit = sizeof(idt0) - 1; tmp = kmem_alloc(kernel_map, PAGE_SIZE * 2); if (tmp == 0) panic("kmem_alloc returned 0"); if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0) panic("kmem_alloc returned non-page-aligned memory"); /* Put the first seven entries in the lower page */ new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8)); bcopy(idt, new_idt, sizeof(idt0)); r_idt.rd_base = (int)new_idt; lidt(&r_idt); idt = new_idt; if (vm_map_protect(kernel_map, tmp, tmp + PAGE_SIZE, VM_PROT_READ, FALSE) != KERN_SUCCESS) panic("vm_map_protect failed"); return; } #endif /* defined(I586_CPU) && !NO_F00F_HACK */ int ptrace_set_pc(p, addr) struct proc *p; unsigned long addr; { p->p_md.md_regs->tf_eip = addr; return (0); } int ptrace_single_step(p) struct proc *p; { p->p_md.md_regs->tf_eflags |= PSL_T; return (0); } int ptrace_read_u_check(p, addr, len) struct proc *p; vm_offset_t addr; size_t len; { vm_offset_t gap; if ((vm_offset_t) (addr + len) < addr) return EPERM; if ((vm_offset_t) (addr + len) <= sizeof(struct user)) return 0; gap = (char *) p->p_md.md_regs - (char *) p->p_addr; if ((vm_offset_t) addr < gap) return EPERM; if ((vm_offset_t) (addr + len) <= (vm_offset_t) (gap + sizeof(struct trapframe))) return 0; return EPERM; } int ptrace_write_u(p, off, data) struct proc *p; vm_offset_t off; long data; { struct trapframe frame_copy; vm_offset_t min; struct trapframe *tp; /* * Privileged kernel state is scattered all over the user area. * Only allow write access to parts of regs and to fpregs. */ min = (char *)p->p_md.md_regs - (char *)p->p_addr; if (off >= min && off <= min + sizeof(struct trapframe) - sizeof(int)) { tp = p->p_md.md_regs; frame_copy = *tp; *(int *)((char *)&frame_copy + (off - min)) = data; if (!EFL_SECURE(frame_copy.tf_eflags, tp->tf_eflags) || !CS_SECURE(frame_copy.tf_cs)) return (EINVAL); *(int*)((char *)p->p_addr + off) = data; return (0); } min = offsetof(struct user, u_pcb) + offsetof(struct pcb, pcb_savefpu); if (off >= min && off <= min + sizeof(struct save87) - sizeof(int)) { *(int*)((char *)p->p_addr + off) = data; return (0); } return (EFAULT); } int fill_regs(p, regs) struct proc *p; struct reg *regs; { struct pcb *pcb; struct trapframe *tp; tp = p->p_md.md_regs; regs->r_fs = tp->tf_fs; regs->r_es = tp->tf_es; regs->r_ds = tp->tf_ds; regs->r_edi = tp->tf_edi; regs->r_esi = tp->tf_esi; regs->r_ebp = tp->tf_ebp; regs->r_ebx = tp->tf_ebx; regs->r_edx = tp->tf_edx; regs->r_ecx = tp->tf_ecx; regs->r_eax = tp->tf_eax; regs->r_eip = tp->tf_eip; regs->r_cs = tp->tf_cs; regs->r_eflags = tp->tf_eflags; regs->r_esp = tp->tf_esp; regs->r_ss = tp->tf_ss; pcb = &p->p_addr->u_pcb; regs->r_gs = pcb->pcb_gs; return (0); } int set_regs(p, regs) struct proc *p; struct reg *regs; { struct pcb *pcb; struct trapframe *tp; tp = p->p_md.md_regs; if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); tp->tf_fs = regs->r_fs; tp->tf_es = regs->r_es; tp->tf_ds = regs->r_ds; tp->tf_edi = regs->r_edi; tp->tf_esi = regs->r_esi; tp->tf_ebp = regs->r_ebp; tp->tf_ebx = regs->r_ebx; tp->tf_edx = regs->r_edx; tp->tf_ecx = regs->r_ecx; tp->tf_eax = regs->r_eax; tp->tf_eip = regs->r_eip; tp->tf_cs = regs->r_cs; tp->tf_eflags = regs->r_eflags; tp->tf_esp = regs->r_esp; tp->tf_ss = regs->r_ss; pcb = &p->p_addr->u_pcb; pcb->pcb_gs = regs->r_gs; return (0); } int fill_fpregs(p, fpregs) struct proc *p; struct fpreg *fpregs; { bcopy(&p->p_addr->u_pcb.pcb_savefpu, fpregs, sizeof *fpregs); return (0); } int set_fpregs(p, fpregs) struct proc *p; struct fpreg *fpregs; { bcopy(fpregs, &p->p_addr->u_pcb.pcb_savefpu, sizeof *fpregs); return (0); } int fill_dbregs(p, dbregs) struct proc *p; struct dbreg *dbregs; { struct pcb *pcb; pcb = &p->p_addr->u_pcb; dbregs->dr0 = pcb->pcb_dr0; dbregs->dr1 = pcb->pcb_dr1; dbregs->dr2 = pcb->pcb_dr2; dbregs->dr3 = pcb->pcb_dr3; dbregs->dr4 = 0; dbregs->dr5 = 0; dbregs->dr6 = pcb->pcb_dr6; dbregs->dr7 = pcb->pcb_dr7; return (0); } int set_dbregs(p, dbregs) struct proc *p; struct dbreg *dbregs; { struct pcb *pcb; pcb = &p->p_addr->u_pcb; /* * Don't let a process set a breakpoint that is not within the * process's address space. If a process could do this, it * could halt the system by setting a breakpoint in the kernel * (if ddb was enabled). Thus, we need to check to make sure * that no breakpoints are being enabled for addresses outside * process's address space, unless, perhaps, we were called by * uid 0. * * XXX - what about when the watched area of the user's * address space is written into from within the kernel * ... wouldn't that still cause a breakpoint to be generated * from within kernel mode? */ if (p->p_cred->pc_ucred->cr_uid != 0) { if (dbregs->dr7 & 0x3) { /* dr0 is enabled */ if (dbregs->dr0 >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (dbregs->dr7 & (0x3<<2)) { /* dr1 is enabled */ if (dbregs->dr1 >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (dbregs->dr7 & (0x3<<4)) { /* dr2 is enabled */ if (dbregs->dr2 >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (dbregs->dr7 & (0x3<<6)) { /* dr3 is enabled */ if (dbregs->dr3 >= VM_MAXUSER_ADDRESS) return (EINVAL); } } pcb->pcb_dr0 = dbregs->dr0; pcb->pcb_dr1 = dbregs->dr1; pcb->pcb_dr2 = dbregs->dr2; pcb->pcb_dr3 = dbregs->dr3; pcb->pcb_dr6 = dbregs->dr6; pcb->pcb_dr7 = dbregs->dr7; pcb->pcb_flags |= PCB_DBREGS; return (0); } #ifndef DDB void Debugger(const char *msg) { printf("Debugger(\"%s\") called.\n", msg); } #endif /* no DDB */ #include /* * Determine the size of the transfer, and make sure it is * within the boundaries of the partition. Adjust transfer * if needed, and signal errors or early completion. */ int bounds_check_with_label(struct buf *bp, struct disklabel *lp, int wlabel) { struct partition *p = lp->d_partitions + dkpart(bp->b_dev); int labelsect = lp->d_partitions[0].p_offset; int maxsz = p->p_size, sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT; /* overwriting disk label ? */ /* XXX should also protect bootstrap in first 8K */ if (bp->b_blkno + p->p_offset <= LABELSECTOR + labelsect && #if LABELSECTOR != 0 bp->b_blkno + p->p_offset + sz > LABELSECTOR + labelsect && #endif (bp->b_flags & B_READ) == 0 && wlabel == 0) { bp->b_error = EROFS; goto bad; } #if defined(DOSBBSECTOR) && defined(notyet) /* overwriting master boot record? */ if (bp->b_blkno + p->p_offset <= DOSBBSECTOR && (bp->b_flags & B_READ) == 0 && wlabel == 0) { bp->b_error = EROFS; goto bad; } #endif /* beyond partition? */ if (bp->b_blkno < 0 || bp->b_blkno + sz > maxsz) { /* if exactly at end of disk, return an EOF */ if (bp->b_blkno == maxsz) { bp->b_resid = bp->b_bcount; return(0); } /* or truncate if part of it fits */ sz = maxsz - bp->b_blkno; if (sz <= 0) { bp->b_error = EINVAL; goto bad; } bp->b_bcount = sz << DEV_BSHIFT; } bp->b_pblkno = bp->b_blkno + p->p_offset; return(1); bad: bp->b_flags |= B_ERROR; return(-1); } #ifdef DDB /* * Provide inb() and outb() as functions. They are normally only * available as macros calling inlined functions, thus cannot be * called inside DDB. * * The actual code is stolen from , and de-inlined. */ #undef inb #undef outb /* silence compiler warnings */ u_char inb(u_int); void outb(u_int, u_char); u_char inb(u_int port) { u_char data; /* * We use %%dx and not %1 here because i/o is done at %dx and not at * %edx, while gcc generates inferior code (movw instead of movl) * if we tell it to load (u_short) port. */ __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port)); return (data); } void outb(u_int port, u_char data) { u_char al; /* * Use an unnecessary assignment to help gcc's register allocator. * This make a large difference for gcc-1.40 and a tiny difference * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for * best results. gcc-2.6.0 can't handle this. */ al = data; __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port)); } #endif /* DDB */