/* $FreeBSD$ */ /* * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. * FreeBSD Version. * * Copyright (c) 1997, 1998, 1999, 2000 by Matthew Jacob * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static u_int16_t isp_pci_rd_reg __P((struct ispsoftc *, int)); static void isp_pci_wr_reg __P((struct ispsoftc *, int, u_int16_t)); static u_int16_t isp_pci_rd_reg_1080 __P((struct ispsoftc *, int)); static void isp_pci_wr_reg_1080 __P((struct ispsoftc *, int, u_int16_t)); static int isp_pci_mbxdma __P((struct ispsoftc *)); static int isp_pci_dmasetup __P((struct ispsoftc *, XS_T *, ispreq_t *, u_int16_t *, u_int16_t)); static void isp_pci_dmateardown __P((struct ispsoftc *, XS_T *, u_int32_t)); static void isp_pci_reset1 __P((struct ispsoftc *)); static void isp_pci_dumpregs __P((struct ispsoftc *, const char *)); #ifndef ISP_CODE_ORG #define ISP_CODE_ORG 0x1000 #endif static struct ispmdvec mdvec = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, NULL, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_1080 = { isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, NULL, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_12160 = { isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, NULL, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_2100 = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs }; static struct ispmdvec mdvec_2200 = { isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs }; #ifndef PCIM_CMD_INVEN #define PCIM_CMD_INVEN 0x10 #endif #ifndef PCIM_CMD_BUSMASTEREN #define PCIM_CMD_BUSMASTEREN 0x0004 #endif #ifndef PCIM_CMD_PERRESPEN #define PCIM_CMD_PERRESPEN 0x0040 #endif #ifndef PCIM_CMD_SEREN #define PCIM_CMD_SEREN 0x0100 #endif #ifndef PCIR_COMMAND #define PCIR_COMMAND 0x04 #endif #ifndef PCIR_CACHELNSZ #define PCIR_CACHELNSZ 0x0c #endif #ifndef PCIR_LATTIMER #define PCIR_LATTIMER 0x0d #endif #ifndef PCIR_ROMADDR #define PCIR_ROMADDR 0x30 #endif #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1020 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1080 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP12160 #define PCI_PRODUCT_QLOGIC_ISP12160 0x1216 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1240 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1280 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2100 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2200 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 #endif #define PCI_QLOGIC_ISP1020 \ ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1080 \ ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP12160 \ ((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1240 \ ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1280 \ ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2100 \ ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2200 \ ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) #define IO_MAP_REG 0x10 #define MEM_MAP_REG 0x14 #define PCI_DFLT_LTNCY 0x40 #define PCI_DFLT_LNSZ 0x10 static int isp_pci_probe (device_t); static int isp_pci_attach (device_t); struct isp_pcisoftc { struct ispsoftc pci_isp; device_t pci_dev; struct resource * pci_reg; bus_space_tag_t pci_st; bus_space_handle_t pci_sh; void * ih; int16_t pci_poff[_NREG_BLKS]; bus_dma_tag_t parent_dmat; bus_dma_tag_t cntrol_dmat; bus_dmamap_t cntrol_dmap; bus_dmamap_t *dmaps; }; ispfwfunc *isp_get_firmware_p = NULL; static device_method_t isp_pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, isp_pci_probe), DEVMETHOD(device_attach, isp_pci_attach), { 0, 0 } }; static driver_t isp_pci_driver = { "isp", isp_pci_methods, sizeof (struct isp_pcisoftc) }; static devclass_t isp_devclass; DRIVER_MODULE(isp, pci, isp_pci_driver, isp_devclass, 0, 0); MODULE_VERSION(isp, 1); static int isp_pci_probe(device_t dev) { switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) { case PCI_QLOGIC_ISP1020: device_set_desc(dev, "Qlogic ISP 1020/1040 PCI SCSI Adapter"); break; case PCI_QLOGIC_ISP1080: device_set_desc(dev, "Qlogic ISP 1080 PCI SCSI Adapter"); break; case PCI_QLOGIC_ISP1240: device_set_desc(dev, "Qlogic ISP 1240 PCI SCSI Adapter"); break; case PCI_QLOGIC_ISP1280: device_set_desc(dev, "Qlogic ISP 1280 PCI SCSI Adapter"); break; case PCI_QLOGIC_ISP12160: device_set_desc(dev, "Qlogic ISP 12160 PCI SCSI Adapter"); break; case PCI_QLOGIC_ISP2100: device_set_desc(dev, "Qlogic ISP 2100 PCI FC-AL Adapter"); break; case PCI_QLOGIC_ISP2200: device_set_desc(dev, "Qlogic ISP 2200 PCI FC-AL Adapter"); break; default: return (ENXIO); } if (device_get_unit(dev) == 0 && bootverbose) { printf("Qlogic ISP Driver, FreeBSD Version %d.%d, " "Core Version %d.%d\n", ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR, ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR); } /* * XXXX: Here is where we might load the f/w module * XXXX: (or increase a reference count to it). */ return (0); } static int isp_pci_attach(device_t dev) { struct resource *regs, *irq; int unit, bitmap, rtp, rgd, iqd, m1, m2, s, isp_debug; u_int32_t data, cmd, linesz, psize, basetype; struct isp_pcisoftc *pcs; struct ispsoftc *isp; struct ispmdvec *mdvp; bus_size_t lim; /* * Figure out if we're supposed to skip this one. */ unit = device_get_unit(dev); if (getenv_int("isp_disable", &bitmap)) { if (bitmap & (1 << unit)) { device_printf(dev, "not configuring\n"); return (ENODEV); } } pcs = malloc(sizeof (struct isp_pcisoftc), M_DEVBUF, M_NOWAIT); if (pcs == NULL) { device_printf(dev, "cannot allocate softc\n"); return (ENOMEM); } bzero(pcs, sizeof (struct isp_pcisoftc)); /* * Figure out which we should try first - memory mapping or i/o mapping? */ #ifdef __alpha__ m1 = PCIM_CMD_MEMEN; m2 = PCIM_CMD_PORTEN; #else m1 = PCIM_CMD_PORTEN; m2 = PCIM_CMD_MEMEN; #endif bitmap = 0; if (getenv_int("isp_mem_map", &bitmap)) { if (bitmap & (1 << unit)) { m1 = PCIM_CMD_MEMEN; m2 = PCIM_CMD_PORTEN; } } bitmap = 0; if (getenv_int("isp_io_map", &bitmap)) { if (bitmap & (1 << unit)) { m1 = PCIM_CMD_PORTEN; m2 = PCIM_CMD_MEMEN; } } linesz = PCI_DFLT_LNSZ; irq = regs = NULL; rgd = rtp = iqd = 0; cmd = pci_read_config(dev, PCIR_COMMAND, 1); if (cmd & m1) { rtp = (m1 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; rgd = (m1 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG; regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE); } if (regs == NULL && (cmd & m2)) { rtp = (m2 == PCIM_CMD_MEMEN)? SYS_RES_MEMORY : SYS_RES_IOPORT; rgd = (m2 == PCIM_CMD_MEMEN)? MEM_MAP_REG : IO_MAP_REG; regs = bus_alloc_resource(dev, rtp, &rgd, 0, ~0, 1, RF_ACTIVE); } if (regs == NULL) { device_printf(dev, "unable to map any ports\n"); goto bad; } if (bootverbose) printf("isp%d: using %s space register mapping\n", unit, (rgd == IO_MAP_REG)? "I/O" : "Memory"); pcs->pci_dev = dev; pcs->pci_reg = regs; pcs->pci_st = rman_get_bustag(regs); pcs->pci_sh = rman_get_bushandle(regs); pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; mdvp = &mdvec; basetype = ISP_HA_SCSI_UNKNOWN; psize = sizeof (sdparam); lim = BUS_SPACE_MAXSIZE_32BIT; if (pci_get_devid(dev) == PCI_QLOGIC_ISP1020) { mdvp = &mdvec; basetype = ISP_HA_SCSI_UNKNOWN; psize = sizeof (sdparam); lim = BUS_SPACE_MAXSIZE_24BIT; } if (pci_get_devid(dev) == PCI_QLOGIC_ISP1080) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1080; psize = sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pci_get_devid(dev) == PCI_QLOGIC_ISP1240) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1240; psize = 2 * sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pci_get_devid(dev) == PCI_QLOGIC_ISP1280) { mdvp = &mdvec_1080; basetype = ISP_HA_SCSI_1280; psize = 2 * sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pci_get_devid(dev) == PCI_QLOGIC_ISP12160) { mdvp = &mdvec_12160; basetype = ISP_HA_SCSI_12160; psize = 2 * sizeof (sdparam); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pci_get_devid(dev) == PCI_QLOGIC_ISP2100) { mdvp = &mdvec_2100; basetype = ISP_HA_FC_2100; psize = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; if (pci_get_revid(dev) < 3) { /* * XXX: Need to get the actual revision * XXX: number of the 2100 FB. At any rate, * XXX: lower cache line size for early revision * XXX; boards. */ linesz = 1; } } if (pci_get_devid(dev) == PCI_QLOGIC_ISP2200) { mdvp = &mdvec_2200; basetype = ISP_HA_FC_2200; psize = sizeof (fcparam); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; } isp = &pcs->pci_isp; isp->isp_param = malloc(psize, M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { device_printf(dev, "cannot allocate parameter data\n"); goto bad; } bzero(isp->isp_param, psize); isp->isp_mdvec = mdvp; isp->isp_type = basetype; isp->isp_revision = pci_get_revid(dev); (void) snprintf(isp->isp_name, sizeof (isp->isp_name), "isp%d", unit); isp->isp_osinfo.unit = unit; /* * Try and find firmware for this device. */ if (isp_get_firmware_p) { int device = (int) pci_get_device(dev); #ifdef ISP_TARGET_MODE (*isp_get_firmware_p)(0, 1, device, &mdvp->dv_ispfw); #else (*isp_get_firmware_p)(0, 0, device, &mdvp->dv_ispfw); #endif } /* * */ s = splbio(); /* * Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER * are set. */ cmd |= PCIM_CMD_SEREN | PCIM_CMD_PERRESPEN | PCIM_CMD_BUSMASTEREN | PCIM_CMD_INVEN; pci_write_config(dev, PCIR_COMMAND, cmd, 1); /* * Make sure the Cache Line Size register is set sensibly. */ data = pci_read_config(dev, PCIR_CACHELNSZ, 1); if (data != linesz) { data = PCI_DFLT_LNSZ; isp_prt(isp, ISP_LOGCONFIG, "set PCI line size to %d", data); pci_write_config(dev, PCIR_CACHELNSZ, data, 1); } /* * Make sure the Latency Timer is sane. */ data = pci_read_config(dev, PCIR_LATTIMER, 1); if (data < PCI_DFLT_LTNCY) { data = PCI_DFLT_LTNCY; isp_prt(isp, ISP_LOGCONFIG, "set PCI latency to %d", data); pci_write_config(dev, PCIR_LATTIMER, data, 1); } /* * Make sure we've disabled the ROM. */ data = pci_read_config(dev, PCIR_ROMADDR, 4); data &= ~1; pci_write_config(dev, PCIR_ROMADDR, data, 4); if (bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, lim + 1, 255, lim, 0, &pcs->parent_dmat) != 0) { splx(s); printf("%s: could not create master dma tag\n", isp->isp_name); free(isp->isp_param, M_DEVBUF); free(pcs, M_DEVBUF); return (ENXIO); } iqd = 0; irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (irq == NULL) { device_printf(dev, "could not allocate interrupt\n"); goto bad; } if (getenv_int("isp_no_fwload", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_NORELOAD; } if (getenv_int("isp_fwload", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_NORELOAD; } if (getenv_int("isp_no_nvram", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_NONVRAM; } if (getenv_int("isp_nvram", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_NONVRAM; } if (getenv_int("isp_fcduplex", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_FULL_DUPLEX; } if (getenv_int("isp_no_fcduplex", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts &= ~ISP_CFG_FULL_DUPLEX; } if (getenv_int("isp_nport", &bitmap)) { if (bitmap & (1 << unit)) isp->isp_confopts |= ISP_CFG_NPORT; } /* * Look for overriding WWN. This is a Node WWN so it binds to * all FC instances. A Port WWN will be constructed from it * as appropriate. */ if (!getenv_quad("isp_wwn", (quad_t *) &isp->isp_osinfo.default_wwn)) { int i; u_int64_t seed = (u_int64_t) (intptr_t) isp; seed <<= 16; seed &= ((1LL << 48) - 1LL); /* * This isn't very random, but it's the best we can do for * the real edge case of cards that don't have WWNs. If * you recompile a new vers.c, you'll get a different WWN. */ for (i = 0; version[i] != 0; i++) { seed += version[i]; } /* * Make sure the top nibble has something vaguely sensible * (NAA == Locally Administered) */ isp->isp_osinfo.default_wwn |= (3LL << 60) | seed; } else { isp->isp_confopts |= ISP_CFG_OWNWWN; } isp_debug = 0; (void) getenv_int("isp_debug", &isp_debug); if (bus_setup_intr(dev, irq, INTR_TYPE_CAM, (void (*)(void *))isp_intr, isp, &pcs->ih)) { splx(s); device_printf(dev, "could not setup interrupt\n"); goto bad; } /* * Set up logging levels. */ if (isp_debug) { isp->isp_dblev = isp_debug; } else { isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR; } if (bootverbose) isp->isp_dblev |= ISP_LOGCONFIG; /* * Make sure we're in reset state. */ isp_reset(isp); if (isp->isp_state != ISP_RESETSTATE) { splx(s); goto bad; } isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { /* If we're a Fibre Channel Card, we allow deferred attach */ if (IS_SCSI(isp)) { isp_uninit(isp); splx(s); goto bad; } } isp_attach(isp); if (isp->isp_state != ISP_RUNSTATE) { /* If we're a Fibre Channel Card, we allow deferred attach */ if (IS_SCSI(isp)) { isp_uninit(isp); splx(s); goto bad; } } splx(s); /* * XXXX: Here is where we might unload the f/w module * XXXX: (or decrease the reference count to it). */ return (0); bad: if (pcs && pcs->ih) { (void) bus_teardown_intr(dev, irq, pcs->ih); } if (irq) { (void) bus_release_resource(dev, SYS_RES_IRQ, iqd, irq); } if (regs) { (void) bus_release_resource(dev, rtp, rgd, regs); } if (pcs) { if (pcs->pci_isp.isp_param) free(pcs->pci_isp.isp_param, M_DEVBUF); free(pcs, M_DEVBUF); } /* * XXXX: Here is where we might unload the f/w module * XXXX: (or decrease the reference count to it). */ return (ENXIO); } static u_int16_t isp_pci_rd_reg(isp, regoff) struct ispsoftc *isp; int regoff; { u_int16_t rv; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { isp_pci_wr_reg(isp, BIU_CONF1, oldconf); } return (rv); } static void isp_pci_wr_reg(isp, regoff, val) struct ispsoftc *isp; int regoff; u_int16_t val; { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oldconf | BIU_PCI_CONF1_SXP); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { isp_pci_wr_reg(isp, BIU_CONF1, oldconf); } } static u_int16_t isp_pci_rd_reg_1080(isp, regoff) struct ispsoftc *isp; int regoff; { u_int16_t rv, oc = 0; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = isp_pci_rd_reg(isp, BIU_CONF1); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; isp_pci_wr_reg(isp, BIU_CONF1, tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); rv = bus_space_read_2(pcs->pci_st, pcs->pci_sh, offset); if (oc) { isp_pci_wr_reg(isp, BIU_CONF1, oc); } return (rv); } static void isp_pci_wr_reg_1080(isp, regoff, val) struct ispsoftc *isp; int regoff; u_int16_t val; { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int offset, oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = isp_pci_rd_reg(isp, BIU_CONF1); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; isp_pci_wr_reg(isp, BIU_CONF1, tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = isp_pci_rd_reg(isp, BIU_CONF1); isp_pci_wr_reg(isp, BIU_CONF1, oc | BIU_PCI1080_CONF1_DMA); } offset = pcs->pci_poff[(regoff & _BLK_REG_MASK) >> _BLK_REG_SHFT]; offset += (regoff & 0xff); bus_space_write_2(pcs->pci_st, pcs->pci_sh, offset, val); if (oc) { isp_pci_wr_reg(isp, BIU_CONF1, oc); } } static void isp_map_rquest __P((void *, bus_dma_segment_t *, int, int)); static void isp_map_result __P((void *, bus_dma_segment_t *, int, int)); static void isp_map_fcscrt __P((void *, bus_dma_segment_t *, int, int)); struct imush { struct ispsoftc *isp; int error; }; static void isp_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { imushp->isp->isp_rquest_dma = segs->ds_addr; } } static void isp_map_result(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { imushp->isp->isp_result_dma = segs->ds_addr; } } static void isp_map_fcscrt(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct imush *imushp = (struct imush *) arg; if (error) { imushp->error = error; } else { fcparam *fcp = imushp->isp->isp_param; fcp->isp_scdma = segs->ds_addr; } } static int isp_pci_mbxdma(struct ispsoftc *isp) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; caddr_t base; u_int32_t len; int i, error; bus_size_t lim; struct imush im; /* * Already been here? If so, leave... */ if (isp->isp_rquest) { return (0); } len = sizeof (XS_T **) * isp->isp_maxcmds; isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK); if (isp->isp_xflist == NULL) { isp_prt(isp, ISP_LOGERR, "cannot alloc xflist array"); return (1); } bzero(isp->isp_xflist, len); len = sizeof (bus_dmamap_t) * isp->isp_maxcmds; pci->dmaps = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK); if (pci->dmaps == NULL) { isp_prt(isp, ISP_LOGERR, "can't alloc dma maps"); free(isp->isp_xflist, M_DEVBUF); return (1); } if (IS_FC(isp) || IS_ULTRA2(isp)) lim = BUS_SPACE_MAXADDR + 1; else lim = BUS_SPACE_MAXADDR_24BIT + 1; /* * Allocate and map the request, result queues, plus FC scratch area. */ len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); if (IS_FC(isp)) { len += ISP2100_SCRLEN; } if (bus_dma_tag_create(pci->parent_dmat, PAGE_SIZE, lim, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, len, 1, BUS_SPACE_MAXSIZE_32BIT, 0, &pci->cntrol_dmat) != 0) { printf("%s: cannot create a dma tag for control spaces\n", isp->isp_name); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); return (1); } if (bus_dmamem_alloc(pci->cntrol_dmat, (void **)&base, BUS_DMA_NOWAIT, &pci->cntrol_dmap) != 0) { printf("%s: cannot allocate %d bytes of CCB memory\n", isp->isp_name, len); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); return (1); } isp->isp_rquest = base; im.isp = isp; im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_rquest, ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)), isp_map_rquest, &im, 0); if (im.error) { printf("%s: error %d loading dma map for DMA request queue\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } isp->isp_result = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, isp->isp_result, ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)), isp_map_result, &im, 0); if (im.error) { printf("%s: error %d loading dma map for DMA result queue\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } for (i = 0; i < isp->isp_maxcmds; i++) { error = bus_dmamap_create(pci->parent_dmat, 0, &pci->dmaps[i]); if (error) { printf("%s: error %d creating per-cmd DMA maps\n", isp->isp_name, error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } } if (IS_FC(isp)) { fcparam *fcp = (fcparam *) isp->isp_param; fcp->isp_scratch = base + ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)) + ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); im.error = 0; bus_dmamap_load(pci->cntrol_dmat, pci->cntrol_dmap, fcp->isp_scratch, ISP2100_SCRLEN, isp_map_fcscrt, &im, 0); if (im.error) { printf("%s: error %d loading FC scratch area\n", isp->isp_name, im.error); free(isp->isp_xflist, M_DEVBUF); free(pci->dmaps, M_DEVBUF); isp->isp_rquest = NULL; return (1); } } return (0); } typedef struct { struct ispsoftc *isp; void *cmd_token; void *rq; u_int16_t *iptrp; u_int16_t optr; u_int error; } mush_t; #define MUSHERR_NOQENTRIES -2 #ifdef ISP_TARGET_MODE /* * We need to handle DMA for target mode differently from initiator mode. * * DMA mapping and construction and submission of CTIO Request Entries * and rendevous for completion are very tightly coupled because we start * out by knowing (per platform) how much data we have to move, but we * don't know, up front, how many DMA mapping segments will have to be used * cover that data, so we don't know how many CTIO Request Entries we * will end up using. Further, for performance reasons we may want to * (on the last CTIO for Fibre Channel), send status too (if all went well). * * The standard vector still goes through isp_pci_dmasetup, but the callback * for the DMA mapping routines comes here instead with the whole transfer * mapped and a pointer to a partially filled in already allocated request * queue entry. We finish the job. */ static void tdma_mk __P((void *, bus_dma_segment_t *, int, int)); static void tdma_mkfc __P((void *, bus_dma_segment_t *, int, int)); static void tdma_mk(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; u_int8_t scsi_status; ct_entry_t *cto; u_int32_t handle, totxfr, sflags; int nctios, send_status; int32_t resid; mp = (mush_t *) arg; if (error) { mp->error = error; return; } csio = mp->cmd_token; cto = mp->rq; cto->ct_xfrlen = 0; cto->ct_seg_count = 0; cto->ct_header.rqs_entry_count = 1; MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg)); if (nseg == 0) { cto->ct_header.rqs_seqno = 1; ISP_TDQE(mp->isp, "tdma_mk[no data]", *mp->iptrp, cto); isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO lun %d->iid%d flgs 0x%x sts 0x%x ssts 0x%x res %d", csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_status, cto->ct_scsi_status, cto->ct_resid); ISP_SWIZ_CTIO(mp->isp, cto, cto); return; } nctios = nseg / ISP_RQDSEG; if (nseg % ISP_RQDSEG) { nctios++; } /* * Save handle, and potentially any SCSI status, which we'll reinsert * on the last CTIO we're going to send. */ handle = cto->ct_reserved; cto->ct_reserved = 0; cto->ct_header.rqs_seqno = 0; send_status = (cto->ct_flags & CT_SENDSTATUS) != 0; if (send_status) { sflags = cto->ct_flags & (CT_SENDSTATUS | CT_CCINCR); cto->ct_flags &= ~(CT_SENDSTATUS | CT_CCINCR); /* * Preserve residual. */ resid = cto->ct_resid; /* * Save actual SCSI status. */ scsi_status = cto->ct_scsi_status; /* * We can't do a status at the same time as a data CTIO, so * we need to synthesize an extra CTIO at this level. */ nctios++; } else { sflags = scsi_status = resid = 0; } totxfr = cto->ct_resid = 0; cto->ct_scsi_status = 0; pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[isp_handle_index(handle)]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } while (nctios--) { int seglim; seglim = nseg; if (seglim) { int seg; if (seglim > ISP_RQDSEG) seglim = ISP_RQDSEG; for (seg = 0; seg < seglim; seg++, nseg--) { /* * Unlike normal initiator commands, we don't * do any swizzling here. */ cto->ct_dataseg[seg].ds_count = dm_segs->ds_len; cto->ct_dataseg[seg].ds_base = dm_segs->ds_addr; cto->ct_xfrlen += dm_segs->ds_len; totxfr += dm_segs->ds_len; dm_segs++; } cto->ct_seg_count = seg; } else { /* * This case should only happen when we're sending an * extra CTIO with final status. */ if (send_status == 0) { printf("%s: tdma_mk ran out of segments\n", mp->isp->isp_name); mp->error = EINVAL; return; } } /* * At this point, the fields ct_lun, ct_iid, ct_tagval, * ct_tagtype, and ct_timeout have been carried over * unchanged from what our caller had set. * * The dataseg fields and the seg_count fields we just got * through setting. The data direction we've preserved all * along and only clear it if we're now sending status. */ if (nctios == 0) { /* * We're the last in a sequence of CTIOs, so mark * this CTIO and save the handle to the CCB such that * when this CTIO completes we can free dma resources * and do whatever else we need to do to finish the * rest of the command. */ cto->ct_reserved = handle; cto->ct_header.rqs_seqno = 1; if (send_status) { cto->ct_scsi_status = scsi_status; cto->ct_flags |= sflags | CT_NO_DATA;; cto->ct_resid = resid; } if (send_status) { isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO lun%d for ID %d ct_flags 0x%x scsi " "status %x resid %d", csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_scsi_status, cto->ct_resid); } else { isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO lun%d for ID%d ct_flags 0x%x", csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags); } ISP_TDQE(mp->isp, "last tdma_mk", *mp->iptrp, cto); ISP_SWIZ_CTIO(mp->isp, cto, cto); } else { ct_entry_t *octo = cto; /* * Make sure handle fields are clean */ cto->ct_reserved = 0; cto->ct_header.rqs_seqno = 0; isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO lun%d for ID%d ct_flags 0x%x", csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags); ISP_TDQE(mp->isp, "tdma_mk", *mp->iptrp, cto); /* * Get a new CTIO */ cto = (ct_entry_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); if (*mp->iptrp == mp->optr) { printf("%s: Queue Overflow in tdma_mk\n", mp->isp->isp_name); mp->error = MUSHERR_NOQENTRIES; return; } /* * Fill in the new CTIO with info from the old one. */ cto->ct_header.rqs_entry_type = RQSTYPE_CTIO; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_flags = 0; cto->ct_lun = octo->ct_lun; cto->ct_iid = octo->ct_iid; cto->ct_reserved2 = octo->ct_reserved2; cto->ct_tgt = octo->ct_tgt; cto->ct_flags = octo->ct_flags; cto->ct_status = 0; cto->ct_scsi_status = 0; cto->ct_tag_val = octo->ct_tag_val; cto->ct_tag_type = octo->ct_tag_type; cto->ct_xfrlen = 0; cto->ct_resid = 0; cto->ct_timeout = octo->ct_timeout; cto->ct_seg_count = 0; MEMZERO(cto->ct_dataseg, sizeof(cto->ct_dataseg)); /* * Now swizzle the old one for the consumption of the * chip. */ ISP_SWIZ_CTIO(mp->isp, octo, octo); } } } static void tdma_mkfc(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; ct2_entry_t *cto; u_int16_t scsi_status, send_status, send_sense; u_int32_t handle, totxfr, datalen; u_int8_t sense[QLTM_SENSELEN]; int nctios; mp = (mush_t *) arg; if (error) { mp->error = error; return; } csio = mp->cmd_token; cto = mp->rq; if (nseg == 0) { if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE1) { printf("%s: dma2_tgt_fc, a status CTIO2 without MODE1 " "set (0x%x)\n", mp->isp->isp_name, cto->ct_flags); mp->error = EINVAL; return; } cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_seqno = 1; /* ct_reserved contains the handle set by caller */ /* * We preserve ct_lun, ct_iid, ct_rxid. We set the data * flags to NO DATA and clear relative offset flags. * We preserve the ct_resid and the response area. */ cto->ct_flags |= CT2_NO_DATA; if (cto->ct_resid > 0) cto->ct_flags |= CT2_DATA_UNDER; else if (cto->ct_resid < 0) cto->ct_flags |= CT2_DATA_OVER; cto->ct_seg_count = 0; cto->ct_reloff = 0; ISP_TDQE(mp->isp, "dma2_tgt_fc[no data]", *mp->iptrp, cto); isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x ssts " "0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun, cto->ct_iid, cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status, cto->ct_resid); ISP_SWIZ_CTIO2(isp, cto, cto); return; } if ((cto->ct_flags & CT2_FLAG_MMASK) != CT2_FLAG_MODE0) { printf("%s: dma2_tgt_fc, a data CTIO2 without MODE0 set " "(0x%x)\n\n", mp->isp->isp_name, cto->ct_flags); mp->error = EINVAL; return; } nctios = nseg / ISP_RQDSEG_T2; if (nseg % ISP_RQDSEG_T2) { nctios++; } /* * Save the handle, status, reloff, and residual. We'll reinsert the * handle into the last CTIO2 we're going to send, and reinsert status * and residual (and possibly sense data) if that's to be sent as well. * * We preserve ct_reloff and adjust it for each data CTIO2 we send past * the first one. This is needed so that the FCP DATA IUs being sent * out have the correct offset (they can arrive at the other end out * of order). */ handle = cto->ct_reserved; cto->ct_reserved = 0; if ((send_status = (cto->ct_flags & CT2_SENDSTATUS)) != 0) { cto->ct_flags &= ~CT2_SENDSTATUS; /* * Preserve residual, which is actually the total count. */ datalen = cto->ct_resid; /* * Save actual SCSI status. We'll reinsert the * CT2_SNSLEN_VALID later if appropriate. */ scsi_status = cto->rsp.m0.ct_scsi_status & 0xff; send_sense = cto->rsp.m0.ct_scsi_status & CT2_SNSLEN_VALID; /* * If we're sending status and have a CHECK CONDTION and * have sense data, we send one more CTIO2 with just the * status and sense data. The upper layers have stashed * the sense data in the dataseg structure for us. */ if ((scsi_status & 0xf) == SCSI_STATUS_CHECK_COND && send_sense) { bcopy(cto->rsp.m0.ct_dataseg, sense, QLTM_SENSELEN); nctios++; } } else { scsi_status = send_sense = datalen = 0; } totxfr = cto->ct_resid = 0; cto->rsp.m0.ct_scsi_status = 0; bzero(&cto->rsp, sizeof (cto->rsp)); pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[isp_handle_index(handle)]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } while (nctios--) { int seg, seglim; seglim = nseg; if (seglim) { if (seglim > ISP_RQDSEG_T2) seglim = ISP_RQDSEG_T2; for (seg = 0; seg < seglim; seg++) { cto->rsp.m0.ct_dataseg[seg].ds_base = dm_segs->ds_addr; cto->rsp.m0.ct_dataseg[seg].ds_count = dm_segs->ds_len; cto->rsp.m0.ct_xfrlen += dm_segs->ds_len; totxfr += dm_segs->ds_len; dm_segs++; } cto->ct_seg_count = seg; } else { /* * This case should only happen when we're sending a * synthesized MODE1 final status with sense data. */ if (send_sense == 0) { printf("%s: dma2_tgt_fc ran out of segments, " "no SENSE DATA\n", mp->isp->isp_name); mp->error = EINVAL; return; } } /* * At this point, the fields ct_lun, ct_iid, ct_rxid, * ct_timeout have been carried over unchanged from what * our caller had set. * * The field ct_reloff is either what the caller set, or * what we've added to below. * * The dataseg fields and the seg_count fields we just got * through setting. The data direction we've preserved all * along and only clear it if we're sending a MODE1 status * as the last CTIO. * */ if (nctios == 0) { /* * We're the last in a sequence of CTIO2s, so mark this * CTIO2 and save the handle to the CCB such that when * this CTIO2 completes we can free dma resources and * do whatever else we need to do to finish the rest * of the command. */ cto->ct_reserved = handle; cto->ct_header.rqs_seqno = 1; if (send_status) { if (send_sense) { bcopy(sense, cto->rsp.m1.ct_resp, QLTM_SENSELEN); cto->rsp.m1.ct_senselen = QLTM_SENSELEN; scsi_status |= CT2_SNSLEN_VALID; cto->rsp.m1.ct_scsi_status = scsi_status; cto->ct_flags &= CT2_FLAG_MMASK; cto->ct_flags |= CT2_FLAG_MODE1 | CT2_NO_DATA| CT2_SENDSTATUS; } else { cto->rsp.m0.ct_scsi_status = scsi_status; cto->ct_flags |= CT2_SENDSTATUS; } /* * Get 'real' residual and set flags based * on it. */ cto->ct_resid = datalen - totxfr; if (cto->ct_resid > 0) cto->ct_flags |= CT2_DATA_UNDER; else if (cto->ct_resid < 0) cto->ct_flags |= CT2_DATA_OVER; } ISP_TDQE(mp->isp, "last dma2_tgt_fc", *mp->iptrp, cto); isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x sts 0x%x" " ssts 0x%x res %d", cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid, cto->ct_flags, cto->ct_status, cto->rsp.m1.ct_scsi_status, cto->ct_resid); ISP_SWIZ_CTIO2(isp, cto, cto); } else { ct2_entry_t *octo = cto; /* * Make sure handle fields are clean */ cto->ct_reserved = 0; cto->ct_header.rqs_seqno = 0; ISP_TDQE(mp->isp, "dma2_tgt_fc", *mp->iptrp, cto); isp_prt(mp->isp, ISP_LOGTDEBUG1, "CTIO2 RX_ID 0x%x lun %d->iid%d flgs 0x%x", cto->ct_rxid, csio->ccb_h.target_lun, (int) cto->ct_iid, cto->ct_flags); /* * Get a new CTIO2 */ cto = (ct2_entry_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); if (*mp->iptrp == mp->optr) { printf("%s: Queue Overflow in dma2_tgt_fc\n", mp->isp->isp_name); mp->error = MUSHERR_NOQENTRIES; return; } /* * Fill in the new CTIO2 with info from the old one. */ cto->ct_header.rqs_entry_type = RQSTYPE_CTIO2; cto->ct_header.rqs_entry_count = 1; cto->ct_header.rqs_flags = 0; /* ct_header.rqs_seqno && ct_reserved done later */ cto->ct_lun = octo->ct_lun; cto->ct_iid = octo->ct_iid; cto->ct_rxid = octo->ct_rxid; cto->ct_flags = octo->ct_flags; cto->ct_status = 0; cto->ct_resid = 0; cto->ct_timeout = octo->ct_timeout; cto->ct_seg_count = 0; /* * Adjust the new relative offset by the amount which * is recorded in the data segment of the old CTIO2 we * just finished filling out. */ cto->ct_reloff += octo->rsp.m0.ct_xfrlen; bzero(&cto->rsp, sizeof (cto->rsp)); ISP_SWIZ_CTIO2(isp, cto, cto); } } } #endif static void dma2 __P((void *, bus_dma_segment_t *, int, int)); static void dma2(void *arg, bus_dma_segment_t *dm_segs, int nseg, int error) { mush_t *mp; struct ccb_scsiio *csio; struct isp_pcisoftc *pci; bus_dmamap_t *dp; bus_dma_segment_t *eseg; ispreq_t *rq; ispcontreq_t *crq; int seglim, datalen; mp = (mush_t *) arg; if (error) { mp->error = error; return; } if (nseg < 1) { printf("%s: bad segment count (%d)\n", mp->isp->isp_name, nseg); mp->error = EFAULT; return; } csio = mp->cmd_token; rq = mp->rq; pci = (struct isp_pcisoftc *)mp->isp; dp = &pci->dmaps[isp_handle_index(rq->req_handle)]; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_PREWRITE); } datalen = XS_XFRLEN(csio); /* * We're passed an initial partially filled in entry that * has most fields filled in except for data transfer * related values. * * Our job is to fill in the initial request queue entry and * then to start allocating and filling in continuation entries * until we've covered the entire transfer. */ if (IS_FC(mp->isp)) { seglim = ISP_RQDSEG_T2; ((ispreqt2_t *)rq)->req_totalcnt = datalen; if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_IN; } else { ((ispreqt2_t *)rq)->req_flags |= REQFLAG_DATA_OUT; } } else { if (csio->cdb_len > 12) { seglim = 0; } else { seglim = ISP_RQDSEG; } if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { rq->req_flags |= REQFLAG_DATA_IN; } else { rq->req_flags |= REQFLAG_DATA_OUT; } } eseg = dm_segs + nseg; while (datalen != 0 && rq->req_seg_count < seglim && dm_segs != eseg) { if (IS_FC(mp->isp)) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; rq2->req_dataseg[rq2->req_seg_count].ds_base = dm_segs->ds_addr; rq2->req_dataseg[rq2->req_seg_count].ds_count = dm_segs->ds_len; } else { rq->req_dataseg[rq->req_seg_count].ds_base = dm_segs->ds_addr; rq->req_dataseg[rq->req_seg_count].ds_count = dm_segs->ds_len; } datalen -= dm_segs->ds_len; #if 0 if (IS_FC(mp->isp)) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_seg_count, rq2->req_dataseg[rq2->req_seg_count].ds_count, rq2->req_dataseg[rq2->req_seg_count].ds_base); } else { printf("%s: seg0[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_seg_count, rq->req_dataseg[rq->req_seg_count].ds_count, rq->req_dataseg[rq->req_seg_count].ds_base); } #endif rq->req_seg_count++; dm_segs++; } while (datalen > 0 && dm_segs != eseg) { crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(mp->isp->isp_rquest, *mp->iptrp); *mp->iptrp = ISP_NXT_QENTRY(*mp->iptrp, RQUEST_QUEUE_LEN(isp)); if (*mp->iptrp == mp->optr) { #if 0 printf("%s: Request Queue Overflow++\n", mp->isp->isp_name); #endif mp->error = MUSHERR_NOQENTRIES; return; } rq->req_header.rqs_entry_count++; bzero((void *)crq, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; seglim = 0; while (datalen > 0 && seglim < ISP_CDSEG && dm_segs != eseg) { crq->req_dataseg[seglim].ds_base = dm_segs->ds_addr; crq->req_dataseg[seglim].ds_count = dm_segs->ds_len; #if 0 printf("%s: seg%d[%d] cnt 0x%x paddr 0x%08x\n", mp->isp->isp_name, rq->req_header.rqs_entry_count-1, seglim, crq->req_dataseg[seglim].ds_count, crq->req_dataseg[seglim].ds_base); #endif rq->req_seg_count++; dm_segs++; seglim++; datalen -= dm_segs->ds_len; } } } static int isp_pci_dmasetup(struct ispsoftc *isp, struct ccb_scsiio *csio, ispreq_t *rq, u_int16_t *iptrp, u_int16_t optr) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t *dp = NULL; mush_t mush, *mp; void (*eptr) __P((void *, bus_dma_segment_t *, int, int)); #ifdef ISP_TARGET_MODE if (csio->ccb_h.func_code == XPT_CONT_TARGET_IO) { if (IS_FC(isp)) { eptr = tdma_mkfc; } else { eptr = tdma_mk; } if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE || (csio->dxfer_len == 0)) { rq->req_seg_count = 1; mp = &mush; mp->isp = isp; mp->cmd_token = csio; mp->rq = rq; mp->iptrp = iptrp; mp->optr = optr; mp->error = 0; (*eptr)(mp, NULL, 0, 0); goto exit; } } else #endif eptr = dma2; /* * NB: if we need to do request queue entry swizzling, * NB: this is where it would need to be done for cmds * NB: that move no data. For commands that move data, * NB: swizzling would take place in those functions. */ if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_NONE || (csio->dxfer_len == 0)) { rq->req_seg_count = 1; return (CMD_QUEUED); } /* * Do a virtual grapevine step to collect info for * the callback dma allocation that we have to use... */ mp = &mush; mp->isp = isp; mp->cmd_token = csio; mp->rq = rq; mp->iptrp = iptrp; mp->optr = optr; mp->error = 0; if ((csio->ccb_h.flags & CAM_SCATTER_VALID) == 0) { if ((csio->ccb_h.flags & CAM_DATA_PHYS) == 0) { int error, s; dp = &pci->dmaps[isp_handle_index(rq->req_handle)]; s = splsoftvm(); error = bus_dmamap_load(pci->parent_dmat, *dp, csio->data_ptr, csio->dxfer_len, eptr, mp, 0); if (error == EINPROGRESS) { bus_dmamap_unload(pci->parent_dmat, *dp); mp->error = EINVAL; printf("%s: deferred dma allocation not " "supported\n", isp->isp_name); } else if (error && mp->error == 0) { #ifdef DIAGNOSTIC printf("%s: error %d in dma mapping code\n", isp->isp_name, error); #endif mp->error = error; } splx(s); } else { /* Pointer to physical buffer */ struct bus_dma_segment seg; seg.ds_addr = (bus_addr_t)csio->data_ptr; seg.ds_len = csio->dxfer_len; (*eptr)(mp, &seg, 1, 0); } } else { struct bus_dma_segment *segs; if ((csio->ccb_h.flags & CAM_DATA_PHYS) != 0) { printf("%s: Physical segment pointers unsupported", isp->isp_name); mp->error = EINVAL; } else if ((csio->ccb_h.flags & CAM_SG_LIST_PHYS) == 0) { printf("%s: Virtual segment addresses unsupported", isp->isp_name); mp->error = EINVAL; } else { /* Just use the segments provided */ segs = (struct bus_dma_segment *) csio->data_ptr; (*eptr)(mp, segs, csio->sglist_cnt, 0); } } #ifdef ISP_TARGET_MODE exit: #endif if (mp->error) { int retval = CMD_COMPLETE; if (mp->error == MUSHERR_NOQENTRIES) { retval = CMD_EAGAIN; } else if (mp->error == EFBIG) { XS_SETERR(csio, CAM_REQ_TOO_BIG); } else if (mp->error == EINVAL) { XS_SETERR(csio, CAM_REQ_INVALID); } else { XS_SETERR(csio, CAM_UNREC_HBA_ERROR); } return (retval); } else { /* * Check to see if we weren't cancelled while sleeping on * getting DMA resources... */ if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) { if (dp) { bus_dmamap_unload(pci->parent_dmat, *dp); } return (CMD_COMPLETE); } return (CMD_QUEUED); } } static void isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int32_t handle) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t *dp = &pci->dmaps[isp_handle_index(handle)]; if ((xs->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN) { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTREAD); } else { bus_dmamap_sync(pci->parent_dmat, *dp, BUS_DMASYNC_POSTWRITE); } bus_dmamap_unload(pci->parent_dmat, *dp); } static void isp_pci_reset1(struct ispsoftc *isp) { /* Make sure the BIOS is disabled */ isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); /* and enable interrupts */ ENABLE_INTS(isp); } static void isp_pci_dumpregs(struct ispsoftc *isp, const char *msg) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; if (msg) printf("%s: %s\n", isp->isp_name, msg); if (IS_SCSI(isp)) printf(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); else printf(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); printf(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); printf("risc_hccr=%x\n", ISP_READ(isp, HCCR)); if (IS_SCSI(isp)) { ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); printf(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n", ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS), ISP_READ(isp, CDMA_FIFO_STS)); printf(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n", ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS), ISP_READ(isp, DDMA_FIFO_STS)); printf(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n", ISP_READ(isp, SXP_INTERRUPT), ISP_READ(isp, SXP_GROSS_ERR), ISP_READ(isp, SXP_PINS_CTRL)); ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); } printf(" mbox regs: %x %x %x %x %x\n", ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1), ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3), ISP_READ(isp, OUTMAILBOX4)); printf(" PCI Status Command/Status=%x\n", pci_read_config(pci->pci_dev, PCIR_COMMAND, 1)); }