/* * Copyright (c) 1994,1997 John S. Dyson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Absolutely no warranty of function or purpose is made by the author * John S. Dyson. * * $Id: vfs_bio.c,v 1.220 1999/07/04 00:25:27 mckusick Exp $ */ /* * this file contains a new buffer I/O scheme implementing a coherent * VM object and buffer cache scheme. Pains have been taken to make * sure that the performance degradation associated with schemes such * as this is not realized. * * Author: John S. Dyson * Significant help during the development and debugging phases * had been provided by David Greenman, also of the FreeBSD core team. * * see man buf(9) for more info. */ #define VMIO #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer"); struct bio_ops bioops; /* I/O operation notification */ struct buf *buf; /* buffer header pool */ struct swqueue bswlist; static void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to); static void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to); static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m); static void vfs_clean_pages(struct buf * bp); static void vfs_setdirty(struct buf *bp); static void vfs_vmio_release(struct buf *bp); static int flushbufqueues(void); static int bd_request; static void buf_daemon __P((void)); /* * bogus page -- for I/O to/from partially complete buffers * this is a temporary solution to the problem, but it is not * really that bad. it would be better to split the buffer * for input in the case of buffers partially already in memory, * but the code is intricate enough already. */ vm_page_t bogus_page; int runningbufspace; static vm_offset_t bogus_offset; static int bufspace, maxbufspace, vmiospace, bufmallocspace, maxbufmallocspace, hibufspace; #if 0 static int maxvmiobufspace; #endif static int maxbdrun; static int needsbuffer; static int numdirtybuffers, lodirtybuffers, hidirtybuffers; static int numfreebuffers, lofreebuffers, hifreebuffers; static int getnewbufcalls; static int getnewbufrestarts; static int kvafreespace; SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW, &maxbufspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW, &maxbdrun, 0, ""); #if 0 SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW, &maxvmiobufspace, 0, ""); #endif SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD, &vmiospace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD, &kvafreespace, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0, ""); SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0, ""); static int bufhashmask; static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } }; char *buf_wmesg = BUF_WMESG; extern int vm_swap_size; #define BUF_MAXUSE 24 #define VFS_BIO_NEED_ANY 0x01 /* any freeable buffer */ #define VFS_BIO_NEED_DIRTYFLUSH 0x02 /* waiting for dirty buffer flush */ #define VFS_BIO_NEED_FREE 0x04 /* wait for free bufs, hi hysteresis */ #define VFS_BIO_NEED_BUFSPACE 0x08 /* wait for buf space, lo hysteresis */ #define VFS_BIO_NEED_KVASPACE 0x10 /* wait for buffer_map space, emerg */ /* * Buffer hash table code. Note that the logical block scans linearly, which * gives us some L1 cache locality. */ static __inline struct bufhashhdr * bufhash(struct vnode *vnp, daddr_t bn) { return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]); } /* * kvaspacewakeup: * * Called when kva space is potential available for recovery or when * kva space is recovered in the buffer_map. This function wakes up * anyone waiting for buffer_map kva space. Even though the buffer_map * is larger then maxbufspace, this situation will typically occur * when the buffer_map gets fragmented. */ static __inline void kvaspacewakeup(void) { /* * If someone is waiting for KVA space, wake them up. Even * though we haven't freed the kva space yet, the waiting * process will be able to now. */ if (needsbuffer & VFS_BIO_NEED_KVASPACE) { needsbuffer &= ~VFS_BIO_NEED_KVASPACE; wakeup(&needsbuffer); } } /* * numdirtywakeup: * * If someone is blocked due to there being too many dirty buffers, * and numdirtybuffers is now reasonable, wake them up. */ static __inline void numdirtywakeup(void) { if (numdirtybuffers < hidirtybuffers) { if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) { needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH; wakeup(&needsbuffer); } } } /* * bufspacewakeup: * * Called when buffer space is potentially available for recovery or when * buffer space is recovered. getnewbuf() will block on this flag when * it is unable to free sufficient buffer space. Buffer space becomes * recoverable when bp's get placed back in the queues. */ static __inline void bufspacewakeup(void) { /* * If someone is waiting for BUF space, wake them up. Even * though we haven't freed the kva space yet, the waiting * process will be able to now. */ if (needsbuffer & VFS_BIO_NEED_BUFSPACE) { needsbuffer &= ~VFS_BIO_NEED_BUFSPACE; wakeup(&needsbuffer); } } /* * bufcountwakeup: * * Called when a buffer has been added to one of the free queues to * account for the buffer and to wakeup anyone waiting for free buffers. * This typically occurs when large amounts of metadata are being handled * by the buffer cache ( else buffer space runs out first, usually ). */ static __inline void bufcountwakeup(void) { ++numfreebuffers; if (needsbuffer) { needsbuffer &= ~VFS_BIO_NEED_ANY; if (numfreebuffers >= hifreebuffers) needsbuffer &= ~VFS_BIO_NEED_FREE; wakeup(&needsbuffer); } } /* * vfs_buf_test_cache: * * Called when a buffer is extended. This function clears the B_CACHE * bit if the newly extended portion of the buffer does not contain * valid data. */ static __inline__ void vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off, vm_offset_t size, vm_page_t m) { if (bp->b_flags & B_CACHE) { int base = (foff + off) & PAGE_MASK; if (vm_page_is_valid(m, base, size) == 0) bp->b_flags &= ~B_CACHE; } } static __inline__ void bd_wakeup(int dirtybuflevel) { if (numdirtybuffers >= dirtybuflevel && bd_request == 0) { bd_request = 1; wakeup(&bd_request); } } /* * Initialize buffer headers and related structures. */ vm_offset_t bufhashinit(vm_offset_t vaddr) { /* first, make a null hash table */ for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1) ; bufhashtbl = (void *)vaddr; vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask; --bufhashmask; return(vaddr); } void bufinit(void) { struct buf *bp; int i; TAILQ_INIT(&bswlist); LIST_INIT(&invalhash); simple_lock_init(&buftimelock); for (i = 0; i <= bufhashmask; i++) LIST_INIT(&bufhashtbl[i]); /* next, make a null set of free lists */ for (i = 0; i < BUFFER_QUEUES; i++) TAILQ_INIT(&bufqueues[i]); /* finally, initialize each buffer header and stick on empty q */ for (i = 0; i < nbuf; i++) { bp = &buf[i]; bzero(bp, sizeof *bp); bp->b_flags = B_INVAL; /* we're just an empty header */ bp->b_dev = NODEV; bp->b_rcred = NOCRED; bp->b_wcred = NOCRED; bp->b_qindex = QUEUE_EMPTY; bp->b_xflags = 0; LIST_INIT(&bp->b_dep); BUF_LOCKINIT(bp); TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist); LIST_INSERT_HEAD(&invalhash, bp, b_hash); } /* * maxbufspace is currently calculated to support all filesystem * blocks to be 8K. If you happen to use a 16K filesystem, the size * of the buffer cache is still the same as it would be for 8K * filesystems. This keeps the size of the buffer cache "in check" * for big block filesystems. * * maxbufspace is calculated as around 50% of the KVA available in * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the * effect of fragmentation. */ maxbufspace = (nbuf + 8) * DFLTBSIZE; if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE) hibufspace = 3 * maxbufspace / 4; #if 0 /* * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed */ maxvmiobufspace = 2 * hibufspace / 3; #endif /* * Limit the amount of malloc memory since it is wired permanently into * the kernel space. Even though this is accounted for in the buffer * allocation, we don't want the malloced region to grow uncontrolled. * The malloc scheme improves memory utilization significantly on average * (small) directories. */ maxbufmallocspace = hibufspace / 20; /* * Reduce the chance of a deadlock occuring by limiting the number * of delayed-write dirty buffers we allow to stack up. */ lodirtybuffers = nbuf / 7 + 10; hidirtybuffers = nbuf / 4 + 20; numdirtybuffers = 0; /* * Try to keep the number of free buffers in the specified range, * and give the syncer access to an emergency reserve. */ lofreebuffers = nbuf / 18 + 5; hifreebuffers = 2 * lofreebuffers; numfreebuffers = nbuf; /* * Maximum number of async ops initiated per buf_daemon loop. This is * somewhat of a hack at the moment, we really need to limit ourselves * based on the number of bytes of I/O in-transit that were initiated * from buf_daemon. */ if ((maxbdrun = nswbuf / 4) < 4) maxbdrun = 4; kvafreespace = 0; bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE); bogus_page = vm_page_alloc(kernel_object, ((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), VM_ALLOC_NORMAL); } /* * Free the kva allocation for a buffer * Must be called only at splbio or higher, * as this is the only locking for buffer_map. */ static void bfreekva(struct buf * bp) { if (bp->b_kvasize) { vm_map_delete(buffer_map, (vm_offset_t) bp->b_kvabase, (vm_offset_t) bp->b_kvabase + bp->b_kvasize ); bp->b_kvasize = 0; kvaspacewakeup(); } } /* * bremfree: * * Remove the buffer from the appropriate free list. */ void bremfree(struct buf * bp) { int s = splbio(); int old_qindex = bp->b_qindex; if (bp->b_qindex != QUEUE_NONE) { if (bp->b_qindex == QUEUE_EMPTYKVA) { kvafreespace -= bp->b_kvasize; } KASSERT(BUF_REFCNT(bp) == 0, ("bremfree: bp %p not locked",bp)); TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist); bp->b_qindex = QUEUE_NONE; runningbufspace += bp->b_bufsize; } else { #if !defined(MAX_PERF) if (BUF_REFCNT(bp) <= 1) panic("bremfree: removing a buffer not on a queue"); #endif } /* * Fixup numfreebuffers count. If the buffer is invalid or not * delayed-write, and it was on the EMPTY, LRU, or AGE queues, * the buffer was free and we must decrement numfreebuffers. */ if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) { switch(old_qindex) { case QUEUE_DIRTY: case QUEUE_CLEAN: case QUEUE_EMPTY: case QUEUE_EMPTYKVA: --numfreebuffers; break; default: break; } } splx(s); } /* * Get a buffer with the specified data. Look in the cache first. We * must clear B_ERROR and B_INVAL prior to initiating I/O. If B_CACHE * is set, the buffer is valid and we do not have to do anything ( see * getblk() ). */ int bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred, struct buf ** bpp) { struct buf *bp; bp = getblk(vp, blkno, size, 0, 0); *bpp = bp; /* if not found in cache, do some I/O */ if ((bp->b_flags & B_CACHE) == 0) { if (curproc != NULL) curproc->p_stats->p_ru.ru_inblock++; KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp)); bp->b_flags |= B_READ; bp->b_flags &= ~(B_ERROR | B_INVAL); if (bp->b_rcred == NOCRED) { if (cred != NOCRED) crhold(cred); bp->b_rcred = cred; } vfs_busy_pages(bp, 0); VOP_STRATEGY(vp, bp); return (biowait(bp)); } return (0); } /* * Operates like bread, but also starts asynchronous I/O on * read-ahead blocks. We must clear B_ERROR and B_INVAL prior * to initiating I/O . If B_CACHE is set, the buffer is valid * and we do not have to do anything. */ int breadn(struct vnode * vp, daddr_t blkno, int size, daddr_t * rablkno, int *rabsize, int cnt, struct ucred * cred, struct buf ** bpp) { struct buf *bp, *rabp; int i; int rv = 0, readwait = 0; *bpp = bp = getblk(vp, blkno, size, 0, 0); /* if not found in cache, do some I/O */ if ((bp->b_flags & B_CACHE) == 0) { if (curproc != NULL) curproc->p_stats->p_ru.ru_inblock++; bp->b_flags |= B_READ; bp->b_flags &= ~(B_ERROR | B_INVAL); if (bp->b_rcred == NOCRED) { if (cred != NOCRED) crhold(cred); bp->b_rcred = cred; } vfs_busy_pages(bp, 0); VOP_STRATEGY(vp, bp); ++readwait; } for (i = 0; i < cnt; i++, rablkno++, rabsize++) { if (inmem(vp, *rablkno)) continue; rabp = getblk(vp, *rablkno, *rabsize, 0, 0); if ((rabp->b_flags & B_CACHE) == 0) { if (curproc != NULL) curproc->p_stats->p_ru.ru_inblock++; rabp->b_flags |= B_READ | B_ASYNC; rabp->b_flags &= ~(B_ERROR | B_INVAL); if (rabp->b_rcred == NOCRED) { if (cred != NOCRED) crhold(cred); rabp->b_rcred = cred; } vfs_busy_pages(rabp, 0); BUF_KERNPROC(rabp); VOP_STRATEGY(vp, rabp); } else { brelse(rabp); } } if (readwait) { rv = biowait(bp); } return (rv); } /* * Write, release buffer on completion. (Done by iodone * if async). Do not bother writing anything if the buffer * is invalid. * * Note that we set B_CACHE here, indicating that buffer is * fully valid and thus cacheable. This is true even of NFS * now so we set it generally. This could be set either here * or in biodone() since the I/O is synchronous. We put it * here. */ int bwrite(struct buf * bp) { int oldflags, s; struct vnode *vp; struct mount *mp; if (bp->b_flags & B_INVAL) { brelse(bp); return (0); } oldflags = bp->b_flags; #if !defined(MAX_PERF) if (BUF_REFCNT(bp) == 0) panic("bwrite: buffer is not busy???"); #endif s = splbio(); bundirty(bp); bp->b_flags &= ~(B_READ | B_DONE | B_ERROR); bp->b_flags |= B_WRITEINPROG | B_CACHE; bp->b_vp->v_numoutput++; vfs_busy_pages(bp, 1); if (curproc != NULL) curproc->p_stats->p_ru.ru_oublock++; splx(s); if (oldflags & B_ASYNC) BUF_KERNPROC(bp); VOP_STRATEGY(bp->b_vp, bp); /* * Collect statistics on synchronous and asynchronous writes. * Writes to block devices are charged to their associated * filesystem (if any). */ if ((vp = bp->b_vp) != NULL) { if (vp->v_type == VBLK) mp = vp->v_specmountpoint; else mp = vp->v_mount; if (mp != NULL) { if ((oldflags & B_ASYNC) == 0) mp->mnt_stat.f_syncwrites++; else mp->mnt_stat.f_asyncwrites++; } } if ((oldflags & B_ASYNC) == 0) { int rtval = biowait(bp); brelse(bp); return (rtval); } return (0); } /* * Delayed write. (Buffer is marked dirty). Do not bother writing * anything if the buffer is marked invalid. * * Note that since the buffer must be completely valid, we can safely * set B_CACHE. In fact, we have to set B_CACHE here rather then in * biodone() in order to prevent getblk from writing the buffer * out synchronously. */ void bdwrite(struct buf * bp) { #if 0 struct vnode *vp; #endif #if !defined(MAX_PERF) if (BUF_REFCNT(bp) == 0) panic("bdwrite: buffer is not busy"); #endif if (bp->b_flags & B_INVAL) { brelse(bp); return; } bdirty(bp); /* * Set B_CACHE, indicating that the buffer is fully valid. This is * true even of NFS now. */ bp->b_flags |= B_CACHE; /* * This bmap keeps the system from needing to do the bmap later, * perhaps when the system is attempting to do a sync. Since it * is likely that the indirect block -- or whatever other datastructure * that the filesystem needs is still in memory now, it is a good * thing to do this. Note also, that if the pageout daemon is * requesting a sync -- there might not be enough memory to do * the bmap then... So, this is important to do. */ if (bp->b_lblkno == bp->b_blkno) { VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL); } /* * Set the *dirty* buffer range based upon the VM system dirty pages. */ vfs_setdirty(bp); /* * We need to do this here to satisfy the vnode_pager and the * pageout daemon, so that it thinks that the pages have been * "cleaned". Note that since the pages are in a delayed write * buffer -- the VFS layer "will" see that the pages get written * out on the next sync, or perhaps the cluster will be completed. */ vfs_clean_pages(bp); bqrelse(bp); /* * Wakeup the buffer flushing daemon if we have saturated the * buffer cache. */ bd_wakeup(hidirtybuffers); /* * note: we cannot initiate I/O from a bdwrite even if we wanted to, * due to the softdep code. */ #if 0 /* * XXX The soft dependency code is not prepared to * have I/O done when a bdwrite is requested. For * now we just let the write be delayed if it is * requested by the soft dependency code. */ if ((vp = bp->b_vp) && ((vp->v_type == VBLK && vp->v_specmountpoint && (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) || (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP)))) return; #endif } /* * bdirty: * * Turn buffer into delayed write request. We must clear B_READ and * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to * itself to properly update it in the dirty/clean lists. We mark it * B_DONE to ensure that any asynchronization of the buffer properly * clears B_DONE ( else a panic will occur later ). * * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty() * should only be called if the buffer is known-good. * * Since the buffer is not on a queue, we do not update the numfreebuffers * count. * * Must be called at splbio(). * The buffer must be on QUEUE_NONE. */ void bdirty(bp) struct buf *bp; { KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex)); bp->b_flags &= ~(B_READ|B_RELBUF); if ((bp->b_flags & B_DELWRI) == 0) { bp->b_flags |= B_DONE | B_DELWRI; reassignbuf(bp, bp->b_vp); ++numdirtybuffers; bd_wakeup(hidirtybuffers); } } /* * bundirty: * * Clear B_DELWRI for buffer. * * Since the buffer is not on a queue, we do not update the numfreebuffers * count. * * Must be called at splbio(). * The buffer must be on QUEUE_NONE. */ void bundirty(bp) struct buf *bp; { KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex)); if (bp->b_flags & B_DELWRI) { bp->b_flags &= ~B_DELWRI; reassignbuf(bp, bp->b_vp); --numdirtybuffers; numdirtywakeup(); } } /* * bawrite: * * Asynchronous write. Start output on a buffer, but do not wait for * it to complete. The buffer is released when the output completes. * * bwrite() ( or the VOP routine anyway ) is responsible for handling * B_INVAL buffers. Not us. */ void bawrite(struct buf * bp) { bp->b_flags |= B_ASYNC; (void) VOP_BWRITE(bp->b_vp, bp); } /* * bowrite: * * Ordered write. Start output on a buffer, and flag it so that the * device will write it in the order it was queued. The buffer is * released when the output completes. bwrite() ( or the VOP routine * anyway ) is responsible for handling B_INVAL buffers. */ int bowrite(struct buf * bp) { bp->b_flags |= B_ORDERED | B_ASYNC; return (VOP_BWRITE(bp->b_vp, bp)); } /* * bwillwrite: * * Called prior to the locking of any vnodes when we are expecting to * write. We do not want to starve the buffer cache with too many * dirty buffers so we block here. By blocking prior to the locking * of any vnodes we attempt to avoid the situation where a locked vnode * prevents the various system daemons from flushing related buffers. */ void bwillwrite(void) { int twenty = (hidirtybuffers - lodirtybuffers) / 5; if (numdirtybuffers > hidirtybuffers + twenty) { int s; s = splbio(); while (numdirtybuffers > hidirtybuffers) { bd_wakeup(hidirtybuffers); needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH; tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0); } splx(s); } } /* * brelse: * * Release a busy buffer and, if requested, free its resources. The * buffer will be stashed in the appropriate bufqueue[] allowing it * to be accessed later as a cache entity or reused for other purposes. */ void brelse(struct buf * bp) { int s; KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); #if 0 if (bp->b_flags & B_CLUSTER) { relpbuf(bp, NULL); return; } #endif s = splbio(); if (bp->b_flags & B_LOCKED) bp->b_flags &= ~B_ERROR; if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) { /* * Failed write, redirty. Must clear B_ERROR to prevent * pages from being scrapped. Note: B_INVAL is ignored * here but will presumably be dealt with later. */ bp->b_flags &= ~B_ERROR; bdirty(bp); } else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) || (bp->b_bufsize <= 0)) { /* * Either a failed I/O or we were asked to free or not * cache the buffer. */ bp->b_flags |= B_INVAL; if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) (*bioops.io_deallocate)(bp); if (bp->b_flags & B_DELWRI) { --numdirtybuffers; numdirtywakeup(); } bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF); if ((bp->b_flags & B_VMIO) == 0) { if (bp->b_bufsize) allocbuf(bp, 0); if (bp->b_vp) brelvp(bp); } } /* * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_release() * is called with B_DELWRI set, the underlying pages may wind up * getting freed causing a previous write (bdwrite()) to get 'lost' * because pages associated with a B_DELWRI bp are marked clean. * * We still allow the B_INVAL case to call vfs_vmio_release(), even * if B_DELWRI is set. */ if (bp->b_flags & B_DELWRI) bp->b_flags &= ~B_RELBUF; /* * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer * constituted, not even NFS buffers now. Two flags effect this. If * B_INVAL, the struct buf is invalidated but the VM object is kept * around ( i.e. so it is trivial to reconstitute the buffer later ). * * If B_ERROR or B_NOCACHE is set, pages in the VM object will be * invalidated. B_ERROR cannot be set for a failed write unless the * buffer is also B_INVAL because it hits the re-dirtying code above. * * Normally we can do this whether a buffer is B_DELWRI or not. If * the buffer is an NFS buffer, it is tracking piecemeal writes or * the commit state and we cannot afford to lose the buffer. */ if ((bp->b_flags & B_VMIO) && !(bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK && (bp->b_flags & B_DELWRI)) ) { int i, j, resid; vm_page_t m; off_t foff; vm_pindex_t poff; vm_object_t obj; struct vnode *vp; vp = bp->b_vp; /* * Get the base offset and length of the buffer. Note that * for block sizes that are less then PAGE_SIZE, the b_data * base of the buffer does not represent exactly b_offset and * neither b_offset nor b_size are necessarily page aligned. * Instead, the starting position of b_offset is: * * b_data + (b_offset & PAGE_MASK) * * block sizes less then DEV_BSIZE (usually 512) are not * supported due to the page granularity bits (m->valid, * m->dirty, etc...). * * See man buf(9) for more information */ resid = bp->b_bufsize; foff = bp->b_offset; for (i = 0; i < bp->b_npages; i++) { m = bp->b_pages[i]; vm_page_flag_clear(m, PG_ZERO); if (m == bogus_page) { obj = (vm_object_t) vp->v_object; poff = OFF_TO_IDX(bp->b_offset); for (j = i; j < bp->b_npages; j++) { m = bp->b_pages[j]; if (m == bogus_page) { m = vm_page_lookup(obj, poff + j); #if !defined(MAX_PERF) if (!m) { panic("brelse: page missing\n"); } #endif bp->b_pages[j] = m; } } if ((bp->b_flags & B_INVAL) == 0) { pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } } if (bp->b_flags & (B_NOCACHE|B_ERROR)) { int poffset = foff & PAGE_MASK; int presid = resid > (PAGE_SIZE - poffset) ? (PAGE_SIZE - poffset) : resid; KASSERT(presid >= 0, ("brelse: extra page")); vm_page_set_invalid(m, poffset, presid); } resid -= PAGE_SIZE - (foff & PAGE_MASK); foff = (foff + PAGE_SIZE) & ~PAGE_MASK; } if (bp->b_flags & (B_INVAL | B_RELBUF)) vfs_vmio_release(bp); } else if (bp->b_flags & B_VMIO) { if (bp->b_flags & (B_INVAL | B_RELBUF)) vfs_vmio_release(bp); } #if !defined(MAX_PERF) if (bp->b_qindex != QUEUE_NONE) panic("brelse: free buffer onto another queue???"); #endif if (BUF_REFCNT(bp) > 1) { /* Temporary panic to verify exclusive locking */ /* This panic goes away when we allow shared refs */ panic("brelse: multiple refs"); /* do not release to free list */ BUF_UNLOCK(bp); splx(s); return; } /* enqueue */ /* buffers with no memory */ if (bp->b_bufsize == 0) { bp->b_flags |= B_INVAL; if (bp->b_kvasize) bp->b_qindex = QUEUE_EMPTYKVA; else bp->b_qindex = QUEUE_EMPTY; TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist); LIST_REMOVE(bp, b_hash); LIST_INSERT_HEAD(&invalhash, bp, b_hash); bp->b_dev = NODEV; kvafreespace += bp->b_kvasize; if (bp->b_kvasize) kvaspacewakeup(); /* buffers with junk contents */ } else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) { bp->b_flags |= B_INVAL; bp->b_qindex = QUEUE_CLEAN; TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); LIST_REMOVE(bp, b_hash); LIST_INSERT_HEAD(&invalhash, bp, b_hash); bp->b_dev = NODEV; /* buffers that are locked */ } else if (bp->b_flags & B_LOCKED) { bp->b_qindex = QUEUE_LOCKED; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); /* remaining buffers */ } else { switch(bp->b_flags & (B_DELWRI|B_AGE)) { case B_DELWRI | B_AGE: bp->b_qindex = QUEUE_DIRTY; TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist); break; case B_DELWRI: bp->b_qindex = QUEUE_DIRTY; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); break; case B_AGE: bp->b_qindex = QUEUE_CLEAN; TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist); break; default: bp->b_qindex = QUEUE_CLEAN; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); break; } } /* * If B_INVAL, clear B_DELWRI. We've already placed the buffer * on the correct queue. */ if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) { bp->b_flags &= ~B_DELWRI; --numdirtybuffers; numdirtywakeup(); } runningbufspace -= bp->b_bufsize; /* * Fixup numfreebuffers count. The bp is on an appropriate queue * unless locked. We then bump numfreebuffers if it is not B_DELWRI. * We've already handled the B_INVAL case ( B_DELWRI will be clear * if B_INVAL is set ). */ if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI)) bufcountwakeup(); /* * Something we can maybe free. */ if (bp->b_bufsize) bufspacewakeup(); /* unlock */ BUF_UNLOCK(bp); bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); splx(s); } /* * Release a buffer back to the appropriate queue but do not try to free * it. * * bqrelse() is used by bdwrite() to requeue a delayed write, and used by * biodone() to requeue an async I/O on completion. It is also used when * known good buffers need to be requeued but we think we may need the data * again soon. */ void bqrelse(struct buf * bp) { int s; s = splbio(); KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp)); #if !defined(MAX_PERF) if (bp->b_qindex != QUEUE_NONE) panic("bqrelse: free buffer onto another queue???"); #endif if (BUF_REFCNT(bp) > 1) { /* do not release to free list */ panic("bqrelse: multiple refs"); BUF_UNLOCK(bp); splx(s); return; } if (bp->b_flags & B_LOCKED) { bp->b_flags &= ~B_ERROR; bp->b_qindex = QUEUE_LOCKED; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist); /* buffers with stale but valid contents */ } else if (bp->b_flags & B_DELWRI) { bp->b_qindex = QUEUE_DIRTY; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist); } else { bp->b_qindex = QUEUE_CLEAN; TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist); } runningbufspace -= bp->b_bufsize; if ((bp->b_flags & B_LOCKED) == 0 && ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) { bufcountwakeup(); } /* * Something we can maybe wakeup */ if (bp->b_bufsize && !(bp->b_flags & B_DELWRI)) bufspacewakeup(); /* unlock */ BUF_UNLOCK(bp); bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF); splx(s); } static void vfs_vmio_release(bp) struct buf *bp; { int i, s; vm_page_t m; s = splvm(); for (i = 0; i < bp->b_npages; i++) { m = bp->b_pages[i]; bp->b_pages[i] = NULL; /* * In order to keep page LRU ordering consistent, put * everything on the inactive queue. */ vm_page_unwire(m, 0); /* * We don't mess with busy pages, it is * the responsibility of the process that * busied the pages to deal with them. */ if ((m->flags & PG_BUSY) || (m->busy != 0)) continue; if (m->wire_count == 0) { vm_page_flag_clear(m, PG_ZERO); /* * Might as well free the page if we can and it has * no valid data. */ if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) { vm_page_busy(m); vm_page_protect(m, VM_PROT_NONE); vm_page_free(m); } } } bufspace -= bp->b_bufsize; vmiospace -= bp->b_bufsize; runningbufspace -= bp->b_bufsize; splx(s); pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages); if (bp->b_bufsize) bufspacewakeup(); bp->b_npages = 0; bp->b_bufsize = 0; bp->b_flags &= ~B_VMIO; if (bp->b_vp) brelvp(bp); } /* * Check to see if a block is currently memory resident. */ struct buf * gbincore(struct vnode * vp, daddr_t blkno) { struct buf *bp; struct bufhashhdr *bh; bh = bufhash(vp, blkno); bp = bh->lh_first; /* Search hash chain */ while (bp != NULL) { /* hit */ if (bp->b_vp == vp && bp->b_lblkno == blkno && (bp->b_flags & B_INVAL) == 0) { break; } bp = bp->b_hash.le_next; } return (bp); } /* * vfs_bio_awrite: * * Implement clustered async writes for clearing out B_DELWRI buffers. * This is much better then the old way of writing only one buffer at * a time. Note that we may not be presented with the buffers in the * correct order, so we search for the cluster in both directions. */ int vfs_bio_awrite(struct buf * bp) { int i; int j; daddr_t lblkno = bp->b_lblkno; struct vnode *vp = bp->b_vp; int s; int ncl; struct buf *bpa; int nwritten; int size; int maxcl; s = splbio(); /* * right now we support clustered writing only to regular files. If * we find a clusterable block we could be in the middle of a cluster * rather then at the beginning. */ if ((vp->v_type == VREG) && (vp->v_mount != 0) && /* Only on nodes that have the size info */ (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) { size = vp->v_mount->mnt_stat.f_iosize; maxcl = MAXPHYS / size; for (i = 1; i < maxcl; i++) { if ((bpa = gbincore(vp, lblkno + i)) && BUF_REFCNT(bpa) == 0 && ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == (B_DELWRI | B_CLUSTEROK)) && (bpa->b_bufsize == size)) { if ((bpa->b_blkno == bpa->b_lblkno) || (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT))) break; } else { break; } } for (j = 1; i + j <= maxcl && j <= lblkno; j++) { if ((bpa = gbincore(vp, lblkno - j)) && BUF_REFCNT(bpa) == 0 && ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) == (B_DELWRI | B_CLUSTEROK)) && (bpa->b_bufsize == size)) { if ((bpa->b_blkno == bpa->b_lblkno) || (bpa->b_blkno != bp->b_blkno - ((j * size) >> DEV_BSHIFT))) break; } else { break; } } --j; ncl = i + j; /* * this is a possible cluster write */ if (ncl != 1) { nwritten = cluster_wbuild(vp, size, lblkno - j, ncl); splx(s); return nwritten; } } BUF_LOCK(bp, LK_EXCLUSIVE); bremfree(bp); bp->b_flags |= B_ASYNC; splx(s); /* * default (old) behavior, writing out only one block * * XXX returns b_bufsize instead of b_bcount for nwritten? */ nwritten = bp->b_bufsize; (void) VOP_BWRITE(bp->b_vp, bp); return nwritten; } /* * getnewbuf: * * Find and initialize a new buffer header, freeing up existing buffers * in the bufqueues as necessary. The new buffer is returned locked. * * Important: B_INVAL is not set. If the caller wishes to throw the * buffer away, the caller must set B_INVAL prior to calling brelse(). * * We block if: * We have insufficient buffer headers * We have insufficient buffer space * buffer_map is too fragmented ( space reservation fails ) * If we have to flush dirty buffers ( but we try to avoid this ) * * To avoid VFS layer recursion we do not flush dirty buffers ourselves. * Instead we ask the buf daemon to do it for us. We attempt to * avoid piecemeal wakeups of the pageout daemon. */ static struct buf * getnewbuf(int slpflag, int slptimeo, int size, int maxsize) { struct buf *bp; struct buf *nbp; struct buf *dbp; int outofspace; int nqindex; int defrag = 0; ++getnewbufcalls; --getnewbufrestarts; restart: ++getnewbufrestarts; /* * Calculate whether we are out of buffer space. This state is * recalculated on every restart. If we are out of space, we * have to turn off defragmentation. Setting defrag to -1 when * outofspace is positive means "defrag while freeing buffers". * The looping conditional will be muffed up if defrag is left * positive when outofspace is positive. */ dbp = NULL; outofspace = 0; if (bufspace >= hibufspace) { if ((curproc->p_flag & P_BUFEXHAUST) == 0 || bufspace >= maxbufspace) { outofspace = 1; if (defrag > 0) defrag = -1; } } /* * defrag state is semi-persistant. 1 means we are flagged for * defragging. -1 means we actually defragged something. */ /* nop */ /* * Setup for scan. If we do not have enough free buffers, * we setup a degenerate case that immediately fails. Note * that if we are specially marked process, we are allowed to * dip into our reserves. * * Normally we want to find an EMPTYKVA buffer. That is, a * buffer with kva already allocated. If there are no EMPTYKVA * buffers we back up to the truely EMPTY buffers. When defragging * we do not bother backing up since we have to locate buffers with * kva to defrag. If we are out of space we skip both EMPTY and * EMPTYKVA and dig right into the CLEAN queue. * * In this manner we avoid scanning unnecessary buffers. It is very * important for us to do this because the buffer cache is almost * constantly out of space or in need of defragmentation. */ if ((curproc->p_flag & P_BUFEXHAUST) == 0 && numfreebuffers < lofreebuffers) { nqindex = QUEUE_CLEAN; nbp = NULL; } else { nqindex = QUEUE_EMPTYKVA; nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]); if (nbp == NULL) { if (defrag <= 0) { nqindex = QUEUE_EMPTY; nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]); } } if (outofspace || nbp == NULL) { nqindex = QUEUE_CLEAN; nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]); } } /* * Run scan, possibly freeing data and/or kva mappings on the fly * depending. */ while ((bp = nbp) != NULL) { int qindex = nqindex; /* * Calculate next bp ( we can only use it if we do not block * or do other fancy things ). */ if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) { switch(qindex) { case QUEUE_EMPTY: nqindex = QUEUE_EMPTYKVA; if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]))) break; /* fall through */ case QUEUE_EMPTYKVA: nqindex = QUEUE_CLEAN; if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]))) break; /* fall through */ case QUEUE_CLEAN: /* * nbp is NULL. */ break; } } /* * Sanity Checks */ KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp)); /* * Note: we no longer distinguish between VMIO and non-VMIO * buffers. */ KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex)); /* * If we are defragging and the buffer isn't useful for fixing * that problem we continue. If we are out of space and the * buffer isn't useful for fixing that problem we continue. */ if (defrag > 0 && bp->b_kvasize == 0) continue; if (outofspace > 0 && bp->b_bufsize == 0) continue; /* * Start freeing the bp. This is somewhat involved. nbp * remains valid only for QUEUE_EMPTY[KVA] bp's. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) panic("getnewbuf: locked buf"); bremfree(bp); if (qindex == QUEUE_CLEAN) { if (bp->b_flags & B_VMIO) { bp->b_flags &= ~B_ASYNC; vfs_vmio_release(bp); } if (bp->b_vp) brelvp(bp); } /* * NOTE: nbp is now entirely invalid. We can only restart * the scan from this point on. * * Get the rest of the buffer freed up. b_kva* is still * valid after this operation. */ if (bp->b_rcred != NOCRED) { crfree(bp->b_rcred); bp->b_rcred = NOCRED; } if (bp->b_wcred != NOCRED) { crfree(bp->b_wcred); bp->b_wcred = NOCRED; } if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) (*bioops.io_deallocate)(bp); LIST_REMOVE(bp, b_hash); LIST_INSERT_HEAD(&invalhash, bp, b_hash); if (bp->b_bufsize) allocbuf(bp, 0); bp->b_flags = 0; bp->b_dev = NODEV; bp->b_vp = NULL; bp->b_blkno = bp->b_lblkno = 0; bp->b_offset = NOOFFSET; bp->b_iodone = 0; bp->b_error = 0; bp->b_resid = 0; bp->b_bcount = 0; bp->b_npages = 0; bp->b_dirtyoff = bp->b_dirtyend = 0; LIST_INIT(&bp->b_dep); /* * Ok, now that we have a free buffer, if we are defragging * we have to recover the kvaspace. If we are out of space * we have to free the buffer (which we just did), but we * do not have to recover kva space unless we hit a defrag * hicup. Being able to avoid freeing the kva space leads * to a significant reduction in overhead. */ if (defrag > 0) { defrag = -1; bp->b_flags |= B_INVAL; bfreekva(bp); brelse(bp); goto restart; } if (outofspace > 0) { outofspace = -1; bp->b_flags |= B_INVAL; if (defrag < 0) bfreekva(bp); brelse(bp); goto restart; } /* * We are done */ break; } /* * If we exhausted our list, sleep as appropriate. We may have to * wakeup various daemons and write out some dirty buffers. * * Generally we are sleeping due to insufficient buffer space. */ if (bp == NULL) { int flags; char *waitmsg; dosleep: if (defrag > 0) { flags = VFS_BIO_NEED_KVASPACE; waitmsg = "nbufkv"; } else if (outofspace > 0) { waitmsg = "nbufbs"; flags = VFS_BIO_NEED_BUFSPACE; } else { waitmsg = "newbuf"; flags = VFS_BIO_NEED_ANY; } /* XXX */ (void) speedup_syncer(); needsbuffer |= flags; while (needsbuffer & flags) { if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) return (NULL); } } else { /* * We finally have a valid bp. We aren't quite out of the * woods, we still have to reserve kva space. */ vm_offset_t addr = 0; maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK; if (maxsize != bp->b_kvasize) { bfreekva(bp); if (vm_map_findspace(buffer_map, vm_map_min(buffer_map), maxsize, &addr)) { /* * Uh oh. Buffer map is to fragmented. Try * to defragment. */ if (defrag <= 0) { defrag = 1; bp->b_flags |= B_INVAL; brelse(bp); goto restart; } /* * Uh oh. We couldn't seem to defragment */ bp = NULL; goto dosleep; } } if (addr) { vm_map_insert(buffer_map, NULL, 0, addr, addr + maxsize, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT); bp->b_kvabase = (caddr_t) addr; bp->b_kvasize = maxsize; } bp->b_data = bp->b_kvabase; } return(bp); } /* * waitfreebuffers: * * Wait for sufficient free buffers. Only called from normal processes. */ static void waitfreebuffers(int slpflag, int slptimeo) { while (numfreebuffers < hifreebuffers) { if (numfreebuffers >= hifreebuffers) break; needsbuffer |= VFS_BIO_NEED_FREE; if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo)) break; } } /* * buf_daemon: * * buffer flushing daemon. Buffers are normally flushed by the * update daemon but if it cannot keep up this process starts to * take the load in an attempt to prevent getnewbuf() from blocking. */ static struct proc *bufdaemonproc; static int bd_interval; static int bd_flushto; static struct kproc_desc buf_kp = { "bufdaemon", buf_daemon, &bufdaemonproc }; SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp) static void buf_daemon() { int s; /* * This process is allowed to take the buffer cache to the limit */ curproc->p_flag |= P_BUFEXHAUST; s = splbio(); bd_interval = 5 * hz; /* dynamically adjusted */ bd_flushto = hidirtybuffers; /* dynamically adjusted */ while (TRUE) { bd_request = 0; /* * Do the flush. Limit the number of buffers we flush in one * go. The failure condition occurs when processes are writing * buffers faster then we can dispose of them. In this case * we may be flushing so often that the previous set of flushes * have not had time to complete, causing us to run out of * physical buffers and block. */ { int runcount = maxbdrun; while (numdirtybuffers > bd_flushto && runcount) { --runcount; if (flushbufqueues() == 0) break; } } /* * If nobody is requesting anything we sleep */ if (bd_request == 0) tsleep(&bd_request, PVM, "psleep", bd_interval); /* * We calculate how much to add or subtract from bd_flushto * and bd_interval based on how far off we are from the * optimal number of dirty buffers, which is 20% below the * hidirtybuffers mark. We cannot use hidirtybuffers straight * because being right on the mark will cause getnewbuf() * to oscillate our wakeup. * * The larger the error in either direction, the more we adjust * bd_flushto and bd_interval. The time interval is adjusted * by 2 seconds per whole-buffer-range of error. This is an * exponential convergence algorithm, with large errors * producing large changes and small errors producing small * changes. */ { int brange = hidirtybuffers - lodirtybuffers; int middb = hidirtybuffers - brange / 5; int deltabuf = middb - numdirtybuffers; bd_flushto += deltabuf / 20; bd_interval += deltabuf * (2 * hz) / (brange * 1); } if (bd_flushto < lodirtybuffers) bd_flushto = lodirtybuffers; if (bd_flushto > hidirtybuffers) bd_flushto = hidirtybuffers; if (bd_interval < hz / 10) bd_interval = hz / 10; if (bd_interval > 5 * hz) bd_interval = 5 * hz; } } /* * flushbufqueues: * * Try to flush a buffer in the dirty queue. We must be careful to * free up B_INVAL buffers instead of write them, which NFS is * particularly sensitive to. */ static int flushbufqueues(void) { struct buf *bp; int r = 0; bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]); while (bp) { KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp)); if ((bp->b_flags & B_DELWRI) != 0) { if (bp->b_flags & B_INVAL) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) panic("flushbufqueues: locked buf"); bremfree(bp); brelse(bp); ++r; break; } vfs_bio_awrite(bp); ++r; break; } bp = TAILQ_NEXT(bp, b_freelist); } return(r); } /* * Check to see if a block is currently memory resident. */ struct buf * incore(struct vnode * vp, daddr_t blkno) { struct buf *bp; int s = splbio(); bp = gbincore(vp, blkno); splx(s); return (bp); } /* * Returns true if no I/O is needed to access the * associated VM object. This is like incore except * it also hunts around in the VM system for the data. */ int inmem(struct vnode * vp, daddr_t blkno) { vm_object_t obj; vm_offset_t toff, tinc, size; vm_page_t m; vm_ooffset_t off; if (incore(vp, blkno)) return 1; if (vp->v_mount == NULL) return 0; if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0) return 0; obj = vp->v_object; size = PAGE_SIZE; if (size > vp->v_mount->mnt_stat.f_iosize) size = vp->v_mount->mnt_stat.f_iosize; off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize; for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) { m = vm_page_lookup(obj, OFF_TO_IDX(off + toff)); if (!m) return 0; tinc = size; if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK)) tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK); if (vm_page_is_valid(m, (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0) return 0; } return 1; } /* * vfs_setdirty: * * Sets the dirty range for a buffer based on the status of the dirty * bits in the pages comprising the buffer. * * The range is limited to the size of the buffer. * * This routine is primarily used by NFS, but is generalized for the * B_VMIO case. */ static void vfs_setdirty(struct buf *bp) { int i; vm_object_t object; /* * Degenerate case - empty buffer */ if (bp->b_bufsize == 0) return; /* * We qualify the scan for modified pages on whether the * object has been flushed yet. The OBJ_WRITEABLE flag * is not cleared simply by protecting pages off. */ if ((bp->b_flags & B_VMIO) == 0) return; object = bp->b_pages[0]->object; if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY)) printf("Warning: object %p writeable but not mightbedirty\n", object); if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY)) printf("Warning: object %p mightbedirty but not writeable\n", object); if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) { vm_offset_t boffset; vm_offset_t eoffset; /* * test the pages to see if they have been modified directly * by users through the VM system. */ for (i = 0; i < bp->b_npages; i++) { vm_page_flag_clear(bp->b_pages[i], PG_ZERO); vm_page_test_dirty(bp->b_pages[i]); } /* * Calculate the encompassing dirty range, boffset and eoffset, * (eoffset - boffset) bytes. */ for (i = 0; i < bp->b_npages; i++) { if (bp->b_pages[i]->dirty) break; } boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); for (i = bp->b_npages - 1; i >= 0; --i) { if (bp->b_pages[i]->dirty) { break; } } eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK); /* * Fit it to the buffer. */ if (eoffset > bp->b_bcount) eoffset = bp->b_bcount; /* * If we have a good dirty range, merge with the existing * dirty range. */ if (boffset < eoffset) { if (bp->b_dirtyoff > boffset) bp->b_dirtyoff = boffset; if (bp->b_dirtyend < eoffset) bp->b_dirtyend = eoffset; } } } /* * getblk: * * Get a block given a specified block and offset into a file/device. * The buffers B_DONE bit will be cleared on return, making it almost * ready for an I/O initiation. B_INVAL may or may not be set on * return. The caller should clear B_INVAL prior to initiating a * READ. * * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for * an existing buffer. * * For a VMIO buffer, B_CACHE is modified according to the backing VM. * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set * and then cleared based on the backing VM. If the previous buffer is * non-0-sized but invalid, B_CACHE will be cleared. * * If getblk() must create a new buffer, the new buffer is returned with * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which * case it is returned with B_INVAL clear and B_CACHE set based on the * backing VM. * * getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos * B_CACHE bit is clear. * * What this means, basically, is that the caller should use B_CACHE to * determine whether the buffer is fully valid or not and should clear * B_INVAL prior to issuing a read. If the caller intends to validate * the buffer by loading its data area with something, the caller needs * to clear B_INVAL. If the caller does this without issuing an I/O, * the caller should set B_CACHE ( as an optimization ), else the caller * should issue the I/O and biodone() will set B_CACHE if the I/O was * a write attempt or if it was a successfull read. If the caller * intends to issue a READ, the caller must clear B_INVAL and B_ERROR * prior to issuing the READ. biodone() will *not* clear B_INVAL. */ struct buf * getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo) { struct buf *bp; int s; struct bufhashhdr *bh; #if !defined(MAX_PERF) if (size > MAXBSIZE) panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE); #endif s = splbio(); loop: /* * Block if we are low on buffers. Certain processes are allowed * to completely exhaust the buffer cache. */ if (curproc->p_flag & P_BUFEXHAUST) { if (numfreebuffers == 0) { needsbuffer |= VFS_BIO_NEED_ANY; tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf", slptimeo); } } else if (numfreebuffers < lofreebuffers) { waitfreebuffers(slpflag, slptimeo); } if ((bp = gbincore(vp, blkno))) { /* * Buffer is in-core. If the buffer is not busy, it must * be on a queue. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) { if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL, "getblk", slpflag, slptimeo) == ENOLCK) goto loop; splx(s); return (struct buf *) NULL; } /* * The buffer is locked. B_CACHE is cleared if the buffer is * invalid. Ohterwise, for a non-VMIO buffer, B_CACHE is set * and for a VMIO buffer B_CACHE is adjusted according to the * backing VM cache. */ if (bp->b_flags & B_INVAL) bp->b_flags &= ~B_CACHE; else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0) bp->b_flags |= B_CACHE; bremfree(bp); /* * check for size inconsistancies for non-VMIO case. */ if (bp->b_bcount != size) { if ((bp->b_flags & B_VMIO) == 0 || (size > bp->b_kvasize)) { if (bp->b_flags & B_DELWRI) { bp->b_flags |= B_NOCACHE; VOP_BWRITE(bp->b_vp, bp); } else { if ((bp->b_flags & B_VMIO) && (LIST_FIRST(&bp->b_dep) == NULL)) { bp->b_flags |= B_RELBUF; brelse(bp); } else { bp->b_flags |= B_NOCACHE; VOP_BWRITE(bp->b_vp, bp); } } goto loop; } } /* * If the size is inconsistant in the VMIO case, we can resize * the buffer. This might lead to B_CACHE getting set or * cleared. If the size has not changed, B_CACHE remains * unchanged from its previous state. */ if (bp->b_bcount != size) allocbuf(bp, size); KASSERT(bp->b_offset != NOOFFSET, ("getblk: no buffer offset")); /* * A buffer with B_DELWRI set and B_CACHE clear must * be committed before we can return the buffer in * order to prevent the caller from issuing a read * ( due to B_CACHE not being set ) and overwriting * it. * * Most callers, including NFS and FFS, need this to * operate properly either because they assume they * can issue a read if B_CACHE is not set, or because * ( for example ) an uncached B_DELWRI might loop due * to softupdates re-dirtying the buffer. In the latter * case, B_CACHE is set after the first write completes, * preventing further loops. */ if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) { VOP_BWRITE(bp->b_vp, bp); goto loop; } splx(s); bp->b_flags &= ~B_DONE; } else { /* * Buffer is not in-core, create new buffer. The buffer * returned by getnewbuf() is locked. Note that the returned * buffer is also considered valid (not marked B_INVAL). */ int bsize, maxsize, vmio; off_t offset; if (vp->v_type == VBLK) bsize = DEV_BSIZE; else if (vp->v_mountedhere) bsize = vp->v_mountedhere->mnt_stat.f_iosize; else if (vp->v_mount) bsize = vp->v_mount->mnt_stat.f_iosize; else bsize = size; offset = (off_t)blkno * bsize; vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF); maxsize = vmio ? size + (offset & PAGE_MASK) : size; maxsize = imax(maxsize, bsize); if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) { if (slpflag || slptimeo) { splx(s); return NULL; } goto loop; } /* * This code is used to make sure that a buffer is not * created while the getnewbuf routine is blocked. * This can be a problem whether the vnode is locked or not. * If the buffer is created out from under us, we have to * throw away the one we just created. There is now window * race because we are safely running at splbio() from the * point of the duplicate buffer creation through to here, * and we've locked the buffer. */ if (gbincore(vp, blkno)) { bp->b_flags |= B_INVAL; brelse(bp); goto loop; } /* * Insert the buffer into the hash, so that it can * be found by incore. */ bp->b_blkno = bp->b_lblkno = blkno; bp->b_offset = offset; bgetvp(vp, bp); LIST_REMOVE(bp, b_hash); bh = bufhash(vp, blkno); LIST_INSERT_HEAD(bh, bp, b_hash); /* * set B_VMIO bit. allocbuf() the buffer bigger. Since the * buffer size starts out as 0, B_CACHE will be set by * allocbuf() for the VMIO case prior to it testing the * backing store for validity. */ if (vmio) { bp->b_flags |= B_VMIO; #if defined(VFS_BIO_DEBUG) if (vp->v_type != VREG && vp->v_type != VBLK) printf("getblk: vmioing file type %d???\n", vp->v_type); #endif } else { bp->b_flags &= ~B_VMIO; } allocbuf(bp, size); splx(s); bp->b_flags &= ~B_DONE; } return (bp); } /* * Get an empty, disassociated buffer of given size. The buffer is initially * set to B_INVAL. */ struct buf * geteblk(int size) { struct buf *bp; int s; s = splbio(); while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0); splx(s); allocbuf(bp, size); bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */ return (bp); } /* * This code constitutes the buffer memory from either anonymous system * memory (in the case of non-VMIO operations) or from an associated * VM object (in the case of VMIO operations). This code is able to * resize a buffer up or down. * * Note that this code is tricky, and has many complications to resolve * deadlock or inconsistant data situations. Tread lightly!!! * There are B_CACHE and B_DELWRI interactions that must be dealt with by * the caller. Calling this code willy nilly can result in the loss of data. * * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with * B_CACHE for the non-VMIO case. */ int allocbuf(struct buf *bp, int size) { int newbsize, mbsize; int i; #if !defined(MAX_PERF) if (BUF_REFCNT(bp) == 0) panic("allocbuf: buffer not busy"); if (bp->b_kvasize < size) panic("allocbuf: buffer too small"); #endif if ((bp->b_flags & B_VMIO) == 0) { caddr_t origbuf; int origbufsize; /* * Just get anonymous memory from the kernel. Don't * mess with B_CACHE. */ mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); #if !defined(NO_B_MALLOC) if (bp->b_flags & B_MALLOC) newbsize = mbsize; else #endif newbsize = round_page(size); if (newbsize < bp->b_bufsize) { #if !defined(NO_B_MALLOC) /* * malloced buffers are not shrunk */ if (bp->b_flags & B_MALLOC) { if (newbsize) { bp->b_bcount = size; } else { free(bp->b_data, M_BIOBUF); bufspace -= bp->b_bufsize; bufmallocspace -= bp->b_bufsize; runningbufspace -= bp->b_bufsize; if (bp->b_bufsize) bufspacewakeup(); bp->b_data = bp->b_kvabase; bp->b_bufsize = 0; bp->b_bcount = 0; bp->b_flags &= ~B_MALLOC; } return 1; } #endif vm_hold_free_pages( bp, (vm_offset_t) bp->b_data + newbsize, (vm_offset_t) bp->b_data + bp->b_bufsize); } else if (newbsize > bp->b_bufsize) { #if !defined(NO_B_MALLOC) /* * We only use malloced memory on the first allocation. * and revert to page-allocated memory when the buffer * grows. */ if ( (bufmallocspace < maxbufmallocspace) && (bp->b_bufsize == 0) && (mbsize <= PAGE_SIZE/2)) { bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK); bp->b_bufsize = mbsize; bp->b_bcount = size; bp->b_flags |= B_MALLOC; bufspace += mbsize; bufmallocspace += mbsize; runningbufspace += bp->b_bufsize; return 1; } #endif origbuf = NULL; origbufsize = 0; #if !defined(NO_B_MALLOC) /* * If the buffer is growing on its other-than-first allocation, * then we revert to the page-allocation scheme. */ if (bp->b_flags & B_MALLOC) { origbuf = bp->b_data; origbufsize = bp->b_bufsize; bp->b_data = bp->b_kvabase; bufspace -= bp->b_bufsize; bufmallocspace -= bp->b_bufsize; runningbufspace -= bp->b_bufsize; if (bp->b_bufsize) bufspacewakeup(); bp->b_bufsize = 0; bp->b_flags &= ~B_MALLOC; newbsize = round_page(newbsize); } #endif vm_hold_load_pages( bp, (vm_offset_t) bp->b_data + bp->b_bufsize, (vm_offset_t) bp->b_data + newbsize); #if !defined(NO_B_MALLOC) if (origbuf) { bcopy(origbuf, bp->b_data, origbufsize); free(origbuf, M_BIOBUF); } #endif } } else { vm_page_t m; int desiredpages; newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1); desiredpages = (size == 0) ? 0 : num_pages((bp->b_offset & PAGE_MASK) + newbsize); #if !defined(NO_B_MALLOC) if (bp->b_flags & B_MALLOC) panic("allocbuf: VMIO buffer can't be malloced"); #endif /* * Set B_CACHE initially if buffer is 0 length or will become * 0-length. */ if (size == 0 || bp->b_bufsize == 0) bp->b_flags |= B_CACHE; if (newbsize < bp->b_bufsize) { /* * DEV_BSIZE aligned new buffer size is less then the * DEV_BSIZE aligned existing buffer size. Figure out * if we have to remove any pages. */ if (desiredpages < bp->b_npages) { for (i = desiredpages; i < bp->b_npages; i++) { /* * the page is not freed here -- it * is the responsibility of * vnode_pager_setsize */ m = bp->b_pages[i]; KASSERT(m != bogus_page, ("allocbuf: bogus page found")); while (vm_page_sleep_busy(m, TRUE, "biodep")) ; bp->b_pages[i] = NULL; vm_page_unwire(m, 0); } pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) + (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages)); bp->b_npages = desiredpages; } } else if (size > bp->b_bcount) { /* * We are growing the buffer, possibly in a * byte-granular fashion. */ struct vnode *vp; vm_object_t obj; vm_offset_t toff; vm_offset_t tinc; /* * Step 1, bring in the VM pages from the object, * allocating them if necessary. We must clear * B_CACHE if these pages are not valid for the * range covered by the buffer. */ vp = bp->b_vp; obj = vp->v_object; while (bp->b_npages < desiredpages) { vm_page_t m; vm_pindex_t pi; pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages; if ((m = vm_page_lookup(obj, pi)) == NULL) { m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL); if (m == NULL) { VM_WAIT; vm_pageout_deficit += desiredpages - bp->b_npages; } else { vm_page_wire(m); vm_page_wakeup(m); bp->b_flags &= ~B_CACHE; bp->b_pages[bp->b_npages] = m; ++bp->b_npages; } continue; } /* * We found a page. If we have to sleep on it, * retry because it might have gotten freed out * from under us. * * We can only test PG_BUSY here. Blocking on * m->busy might lead to a deadlock: * * vm_fault->getpages->cluster_read->allocbuf * */ if (vm_page_sleep_busy(m, FALSE, "pgtblk")) continue; /* * We have a good page. Should we wakeup the * page daemon? */ if ((curproc != pageproc) && ((m->queue - m->pc) == PQ_CACHE) && ((cnt.v_free_count + cnt.v_cache_count) < (cnt.v_free_min + cnt.v_cache_min))) { pagedaemon_wakeup(); } vm_page_flag_clear(m, PG_ZERO); vm_page_wire(m); bp->b_pages[bp->b_npages] = m; ++bp->b_npages; } /* * Step 2. We've loaded the pages into the buffer, * we have to figure out if we can still have B_CACHE * set. Note that B_CACHE is set according to the * byte-granular range ( bcount and size ), new the * aligned range ( newbsize ). * * The VM test is against m->valid, which is DEV_BSIZE * aligned. Needless to say, the validity of the data * needs to also be DEV_BSIZE aligned. Note that this * fails with NFS if the server or some other client * extends the file's EOF. If our buffer is resized, * B_CACHE may remain set! XXX */ toff = bp->b_bcount; tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK); while ((bp->b_flags & B_CACHE) && toff < size) { vm_pindex_t pi; if (tinc > (size - toff)) tinc = size - toff; pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT; vfs_buf_test_cache( bp, bp->b_offset, toff, tinc, bp->b_pages[pi] ); toff += tinc; tinc = PAGE_SIZE; } /* * Step 3, fixup the KVM pmap. Remember that * bp->b_data is relative to bp->b_offset, but * bp->b_offset may be offset into the first page. */ bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data); pmap_qenter( (vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages ); bp->b_data = (caddr_t)((vm_offset_t)bp->b_data | (vm_offset_t)(bp->b_offset & PAGE_MASK)); } } if (bp->b_flags & B_VMIO) vmiospace += (newbsize - bp->b_bufsize); bufspace += (newbsize - bp->b_bufsize); runningbufspace += (newbsize - bp->b_bufsize); if (newbsize < bp->b_bufsize) bufspacewakeup(); bp->b_bufsize = newbsize; /* actual buffer allocation */ bp->b_bcount = size; /* requested buffer size */ return 1; } /* * biowait: * * Wait for buffer I/O completion, returning error status. The buffer * is left locked and B_DONE on return. B_EINTR is converted into a EINTR * error and cleared. */ int biowait(register struct buf * bp) { int s; s = splbio(); while ((bp->b_flags & B_DONE) == 0) { #if defined(NO_SCHEDULE_MODS) tsleep(bp, PRIBIO, "biowait", 0); #else if (bp->b_flags & B_READ) tsleep(bp, PRIBIO, "biord", 0); else tsleep(bp, PRIBIO, "biowr", 0); #endif } splx(s); if (bp->b_flags & B_EINTR) { bp->b_flags &= ~B_EINTR; return (EINTR); } if (bp->b_flags & B_ERROR) { return (bp->b_error ? bp->b_error : EIO); } else { return (0); } } /* * biodone: * * Finish I/O on a buffer, optionally calling a completion function. * This is usually called from an interrupt so process blocking is * not allowed. * * biodone is also responsible for setting B_CACHE in a B_VMIO bp. * In a non-VMIO bp, B_CACHE will be set on the next getblk() * assuming B_INVAL is clear. * * For the VMIO case, we set B_CACHE if the op was a read and no * read error occured, or if the op was a write. B_CACHE is never * set if the buffer is invalid or otherwise uncacheable. * * biodone does not mess with B_INVAL, allowing the I/O routine or the * initiator to leave B_INVAL set to brelse the buffer out of existance * in the biodone routine. */ void biodone(register struct buf * bp) { int s; s = splbio(); KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp))); KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp)); bp->b_flags |= B_DONE; if (bp->b_flags & B_FREEBUF) { brelse(bp); splx(s); return; } if ((bp->b_flags & B_READ) == 0) { vwakeup(bp); } /* call optional completion function if requested */ if (bp->b_flags & B_CALL) { bp->b_flags &= ~B_CALL; (*bp->b_iodone) (bp); splx(s); return; } if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) (*bioops.io_complete)(bp); if (bp->b_flags & B_VMIO) { int i, resid; vm_ooffset_t foff; vm_page_t m; vm_object_t obj; int iosize; struct vnode *vp = bp->b_vp; obj = vp->v_object; #if defined(VFS_BIO_DEBUG) if (vp->v_usecount == 0) { panic("biodone: zero vnode ref count"); } if (vp->v_object == NULL) { panic("biodone: missing VM object"); } if ((vp->v_flag & VOBJBUF) == 0) { panic("biodone: vnode is not setup for merged cache"); } #endif foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("biodone: no buffer offset")); #if !defined(MAX_PERF) if (!obj) { panic("biodone: no object"); } #endif #if defined(VFS_BIO_DEBUG) if (obj->paging_in_progress < bp->b_npages) { printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n", obj->paging_in_progress, bp->b_npages); } #endif /* * Set B_CACHE if the op was a normal read and no error * occured. B_CACHE is set for writes in the b*write() * routines. */ iosize = bp->b_bcount; if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) { bp->b_flags |= B_CACHE; } for (i = 0; i < bp->b_npages; i++) { int bogusflag = 0; m = bp->b_pages[i]; if (m == bogus_page) { bogusflag = 1; m = vm_page_lookup(obj, OFF_TO_IDX(foff)); if (!m) { #if defined(VFS_BIO_DEBUG) printf("biodone: page disappeared\n"); #endif vm_object_pip_subtract(obj, 1); bp->b_flags &= ~B_CACHE; continue; } bp->b_pages[i] = m; pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } #if defined(VFS_BIO_DEBUG) if (OFF_TO_IDX(foff) != m->pindex) { printf( "biodone: foff(%lu)/m->pindex(%d) mismatch\n", (unsigned long)foff, m->pindex); } #endif resid = IDX_TO_OFF(m->pindex + 1) - foff; if (resid > iosize) resid = iosize; /* * In the write case, the valid and clean bits are * already changed correctly ( see bdwrite() ), so we * only need to do this here in the read case. */ if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) { vfs_page_set_valid(bp, foff, i, m); } vm_page_flag_clear(m, PG_ZERO); /* * when debugging new filesystems or buffer I/O methods, this * is the most common error that pops up. if you see this, you * have not set the page busy flag correctly!!! */ if (m->busy == 0) { #if !defined(MAX_PERF) printf("biodone: page busy < 0, " "pindex: %d, foff: 0x(%x,%x), " "resid: %d, index: %d\n", (int) m->pindex, (int)(foff >> 32), (int) foff & 0xffffffff, resid, i); #endif if (vp->v_type != VBLK) #if !defined(MAX_PERF) printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n", bp->b_vp->v_mount->mnt_stat.f_iosize, (int) bp->b_lblkno, bp->b_flags, bp->b_npages); else printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n", (int) bp->b_lblkno, bp->b_flags, bp->b_npages); printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n", m->valid, m->dirty, m->wire_count); #endif panic("biodone: page busy < 0\n"); } vm_page_io_finish(m); vm_object_pip_subtract(obj, 1); foff += resid; iosize -= resid; } if (obj) vm_object_pip_wakeupn(obj, 0); } /* * For asynchronous completions, release the buffer now. The brelse * will do a wakeup there if necessary - so no need to do a wakeup * here in the async case. The sync case always needs to do a wakeup. */ if (bp->b_flags & B_ASYNC) { if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0) brelse(bp); else bqrelse(bp); } else { wakeup(bp); } splx(s); } /* * This routine is called in lieu of iodone in the case of * incomplete I/O. This keeps the busy status for pages * consistant. */ void vfs_unbusy_pages(struct buf * bp) { int i; if (bp->b_flags & B_VMIO) { struct vnode *vp = bp->b_vp; vm_object_t obj = vp->v_object; for (i = 0; i < bp->b_npages; i++) { vm_page_t m = bp->b_pages[i]; if (m == bogus_page) { m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i); #if !defined(MAX_PERF) if (!m) { panic("vfs_unbusy_pages: page missing\n"); } #endif bp->b_pages[i] = m; pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } vm_object_pip_subtract(obj, 1); vm_page_flag_clear(m, PG_ZERO); vm_page_io_finish(m); } vm_object_pip_wakeupn(obj, 0); } } /* * vfs_page_set_valid: * * Set the valid bits in a page based on the supplied offset. The * range is restricted to the buffer's size. * * This routine is typically called after a read completes. */ static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m) { vm_ooffset_t soff, eoff; /* * Start and end offsets in buffer. eoff - soff may not cross a * page boundry or cross the end of the buffer. The end of the * buffer, in this case, is our file EOF, not the allocation size * of the buffer. */ soff = off; eoff = (off + PAGE_SIZE) & ~PAGE_MASK; if (eoff > bp->b_offset + bp->b_bcount) eoff = bp->b_offset + bp->b_bcount; /* * Set valid range. This is typically the entire buffer and thus the * entire page. */ if (eoff > soff) { vm_page_set_validclean( m, (vm_offset_t) (soff & PAGE_MASK), (vm_offset_t) (eoff - soff) ); } } /* * This routine is called before a device strategy routine. * It is used to tell the VM system that paging I/O is in * progress, and treat the pages associated with the buffer * almost as being PG_BUSY. Also the object paging_in_progress * flag is handled to make sure that the object doesn't become * inconsistant. * * Since I/O has not been initiated yet, certain buffer flags * such as B_ERROR or B_INVAL may be in an inconsistant state * and should be ignored. */ void vfs_busy_pages(struct buf * bp, int clear_modify) { int i, bogus; if (bp->b_flags & B_VMIO) { struct vnode *vp = bp->b_vp; vm_object_t obj = vp->v_object; vm_ooffset_t foff; foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("vfs_busy_pages: no buffer offset")); vfs_setdirty(bp); retry: for (i = 0; i < bp->b_npages; i++) { vm_page_t m = bp->b_pages[i]; if (vm_page_sleep_busy(m, FALSE, "vbpage")) goto retry; } bogus = 0; for (i = 0; i < bp->b_npages; i++) { vm_page_t m = bp->b_pages[i]; vm_page_flag_clear(m, PG_ZERO); if ((bp->b_flags & B_CLUSTER) == 0) { vm_object_pip_add(obj, 1); vm_page_io_start(m); } /* * When readying a buffer for a read ( i.e * clear_modify == 0 ), it is important to do * bogus_page replacement for valid pages in * partially instantiated buffers. Partially * instantiated buffers can, in turn, occur when * reconstituting a buffer from its VM backing store * base. We only have to do this if B_CACHE is * clear ( which causes the I/O to occur in the * first place ). The replacement prevents the read * I/O from overwriting potentially dirty VM-backed * pages. XXX bogus page replacement is, uh, bogus. * It may not work properly with small-block devices. * We need to find a better way. */ vm_page_protect(m, VM_PROT_NONE); if (clear_modify) vfs_page_set_valid(bp, foff, i, m); else if (m->valid == VM_PAGE_BITS_ALL && (bp->b_flags & B_CACHE) == 0) { bp->b_pages[i] = bogus_page; bogus++; } foff = (foff + PAGE_SIZE) & ~PAGE_MASK; } if (bogus) pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages); } } /* * Tell the VM system that the pages associated with this buffer * are clean. This is used for delayed writes where the data is * going to go to disk eventually without additional VM intevention. * * Note that while we only really need to clean through to b_bcount, we * just go ahead and clean through to b_bufsize. */ static void vfs_clean_pages(struct buf * bp) { int i; if (bp->b_flags & B_VMIO) { vm_ooffset_t foff; foff = bp->b_offset; KASSERT(bp->b_offset != NOOFFSET, ("vfs_clean_pages: no buffer offset")); for (i = 0; i < bp->b_npages; i++) { vm_page_t m = bp->b_pages[i]; vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK; vm_ooffset_t eoff = noff; if (eoff > bp->b_offset + bp->b_bufsize) eoff = bp->b_offset + bp->b_bufsize; vfs_page_set_valid(bp, foff, i, m); /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */ foff = noff; } } } /* * vfs_bio_set_validclean: * * Set the range within the buffer to valid and clean. The range is * relative to the beginning of the buffer, b_offset. Note that b_offset * itself may be offset from the beginning of the first page. */ void vfs_bio_set_validclean(struct buf *bp, int base, int size) { if (bp->b_flags & B_VMIO) { int i; int n; /* * Fixup base to be relative to beginning of first page. * Set initial n to be the maximum number of bytes in the * first page that can be validated. */ base += (bp->b_offset & PAGE_MASK); n = PAGE_SIZE - (base & PAGE_MASK); for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) { vm_page_t m = bp->b_pages[i]; if (n > size) n = size; vm_page_set_validclean(m, base & PAGE_MASK, n); base += n; size -= n; n = PAGE_SIZE; } } } /* * vfs_bio_clrbuf: * * clear a buffer. This routine essentially fakes an I/O, so we need * to clear B_ERROR and B_INVAL. * * Note that while we only theoretically need to clear through b_bcount, * we go ahead and clear through b_bufsize. */ void vfs_bio_clrbuf(struct buf *bp) { int i, mask = 0; caddr_t sa, ea; if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) { bp->b_flags &= ~(B_INVAL|B_ERROR); if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) && (bp->b_offset & PAGE_MASK) == 0) { mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1; if (((bp->b_pages[0]->flags & PG_ZERO) == 0) && ((bp->b_pages[0]->valid & mask) != mask)) { bzero(bp->b_data, bp->b_bufsize); } bp->b_pages[0]->valid |= mask; bp->b_resid = 0; return; } ea = sa = bp->b_data; for(i=0;ib_npages;i++,sa=ea) { int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE; ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE); ea = (caddr_t)ulmin((u_long)ea, (u_long)bp->b_data + bp->b_bufsize); mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j; if ((bp->b_pages[i]->valid & mask) == mask) continue; if ((bp->b_pages[i]->valid & mask) == 0) { if ((bp->b_pages[i]->flags & PG_ZERO) == 0) { bzero(sa, ea - sa); } } else { for (; sa < ea; sa += DEV_BSIZE, j++) { if (((bp->b_pages[i]->flags & PG_ZERO) == 0) && (bp->b_pages[i]->valid & (1<b_pages[i]->valid |= mask; vm_page_flag_clear(bp->b_pages[i], PG_ZERO); } bp->b_resid = 0; } else { clrbuf(bp); } } /* * vm_hold_load_pages and vm_hold_unload pages get pages into * a buffers address space. The pages are anonymous and are * not associated with a file object. */ void vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) { vm_offset_t pg; vm_page_t p; int index; to = round_page(to); from = round_page(from); index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; for (pg = from; pg < to; pg += PAGE_SIZE, index++) { tryagain: p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT), VM_ALLOC_NORMAL); if (!p) { vm_pageout_deficit += (to - from) >> PAGE_SHIFT; VM_WAIT; goto tryagain; } vm_page_wire(p); p->valid = VM_PAGE_BITS_ALL; vm_page_flag_clear(p, PG_ZERO); pmap_kenter(pg, VM_PAGE_TO_PHYS(p)); bp->b_pages[index] = p; vm_page_wakeup(p); } bp->b_npages = index; } void vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to) { vm_offset_t pg; vm_page_t p; int index, newnpages; from = round_page(from); to = round_page(to); newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT; for (pg = from; pg < to; pg += PAGE_SIZE, index++) { p = bp->b_pages[index]; if (p && (index < bp->b_npages)) { #if !defined(MAX_PERF) if (p->busy) { printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n", bp->b_blkno, bp->b_lblkno); } #endif bp->b_pages[index] = NULL; pmap_kremove(pg); vm_page_busy(p); vm_page_unwire(p, 0); vm_page_free(p); } } bp->b_npages = newnpages; } #include "opt_ddb.h" #ifdef DDB #include DB_SHOW_COMMAND(buffer, db_show_buffer) { /* get args */ struct buf *bp = (struct buf *)addr; if (!have_addr) { db_printf("usage: show buffer \n"); return; } db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS); db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, " "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, " "b_blkno = %d, b_pblkno = %d\n", bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid, major(bp->b_dev), minor(bp->b_dev), bp->b_data, bp->b_blkno, bp->b_pblkno); if (bp->b_npages) { int i; db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages); for (i = 0; i < bp->b_npages; i++) { vm_page_t m; m = bp->b_pages[i]; db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object, (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m)); if ((i + 1) < bp->b_npages) db_printf(","); } db_printf("\n"); } } #endif /* DDB */