/* * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * RealTek 8129/8139/8139C+/8169 PCI NIC driver * * Supports several extremely cheap PCI 10/100 and 10/100/1000 adapters * based on RealTek chipsets. Datasheets can be obtained from * www.realtek.com.tw. * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is * probably the worst PCI ethernet controller ever made, with the possible * exception of the FEAST chip made by SMC. The 8139 supports bus-master * DMA, but it has a terrible interface that nullifies any performance * gains that bus-master DMA usually offers. * * For transmission, the chip offers a series of four TX descriptor * registers. Each transmit frame must be in a contiguous buffer, aligned * on a longword (32-bit) boundary. This means we almost always have to * do mbuf copies in order to transmit a frame, except in the unlikely * case where a) the packet fits into a single mbuf, and b) the packet * is 32-bit aligned within the mbuf's data area. The presence of only * four descriptor registers means that we can never have more than four * packets queued for transmission at any one time. * * Reception is not much better. The driver has to allocate a single large * buffer area (up to 64K in size) into which the chip will DMA received * frames. Because we don't know where within this region received packets * will begin or end, we have no choice but to copy data from the buffer * area into mbufs in order to pass the packets up to the higher protocol * levels. * * It's impossible given this rotten design to really achieve decent * performance at 100Mbps, unless you happen to have a 400Mhz PII or * some equally overmuscled CPU to drive it. * * On the bright side, the 8139 does have a built-in PHY, although * rather than using an MDIO serial interface like most other NICs, the * PHY registers are directly accessible through the 8139's register * space. The 8139 supports autonegotiation, as well as a 64-bit multicast * filter. * * The 8129 chip is an older version of the 8139 that uses an external PHY * chip. The 8129 has a serial MDIO interface for accessing the MII where * the 8139 lets you directly access the on-board PHY registers. We need * to select which interface to use depending on the chip type. * * Fast forward a few years. RealTek how has a new chip called the * 8139C+ which at long last implements descriptor-based DMA. Not * only that, in supports RX and TX TCP/IP checksum offload, VLAN * tagging and insertion, TCP large send and 64-bit addressing. * Better still, it allows arbitrary byte alignments for RX and * TX buffers, meaning no copying is necessary on any architecture. * There are a few limitations however: the RX and TX descriptor * rings must be aligned on 256 byte boundaries, they must be in * contiguous RAM, and each ring can have a maximum of 64 descriptors. * There are two TX descriptor queues: one normal priority and one * high. Descriptor ring addresses and DMA buffer addresses are * 64 bits wide. The 8139C+ is also backwards compatible with the * 8139, so the chip will still function with older drivers: C+ * mode has to be enabled by setting the appropriate bits in the C+ * command register. The PHY access mechanism appears to be unchanged. * * The 8169 is a 10/100/1000 ethernet MAC with built-in tri-speed * copper PHY. It has almost the same programming API as the C+ mode * of the 8139C+, with a couple of minor changes and additions: the * TX start register is located at a different offset, and there are * additional registers for GMII PHY status and control, as well as * TBI-mode status and control. There is also a maximum RX packet * size register to allow the chip to receive jumbo frames. The * 8169 can only be programmed in C+ mode: the old 8139 programming * method isn't supported with this chip. Also, RealTek has a LOM * (LAN On Motherboard) gigabit MAC chip called the RTL8110S which * I believe to be register compatible with the 8169. * * Unfortunately, RealTek has not released a programming manual for * the 8169 or 8110 yet. The datasheet for the 8139C+ provides most * of the information, but you must refer to RealTek's 8169 Linux * driver to fill in the gaps. * * This driver now supports both the old 8139 and new 8139C+ * programming models. We detect the 8139C+ by looking for a PCI * revision ID of 0x20 or higher, and we detect the 8169 by its * PCI ID. Two new NIC type codes, RL_8139CPLUS and RL_8169 have * been added to distinguish the chips at runtime. Separate RX and * TX handling routines have been added to handle C+ mode, which * are selected via function pointers that are initialized during * the driver attach phase. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(rl, pci, 1, 1, 1); MODULE_DEPEND(rl, ether, 1, 1, 1); MODULE_DEPEND(rl, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Default to using PIO access for this driver. On SMP systems, * there appear to be problems with memory mapped mode: it looks like * doing too many memory mapped access back to back in rapid succession * can hang the bus. I'm inclined to blame this on crummy design/construction * on the part of RealTek. Memory mapped mode does appear to work on * uniprocessor systems though. */ #define RL_USEIOSPACE #include __FBSDID("$FreeBSD$"); #define RL_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct rl_type rl_devs[] = { { RT_VENDORID, RT_DEVICEID_8129, RL_8129, "RealTek 8129 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8139, RL_8139, "RealTek 8139 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8138, RL_8139, "RealTek 8139 10/100BaseTX CardBus" }, { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139, "Accton MPX 5030/5038 10/100BaseTX" }, { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139, "Delta Electronics 8139 10/100BaseTX" }, { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139, "Addtron Technolgy 8139 10/100BaseTX" }, { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139, "D-Link DFE-530TX+ 10/100BaseTX" }, { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139, "D-Link DFE-690TXD 10/100BaseTX" }, { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139, "Nortel Networks 10/100BaseTX" }, { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139, "Corega FEther CB-TXD" }, { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139, "Corega FEtherII CB-TXD" }, /* XXX what type of realtek is PEPPERCON_DEVICEID_ROLF ? */ { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139, "Peppercon AG ROL-F" }, { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139, "Planex FNW-3800-TX" }, { CP_VENDORID, RT_DEVICEID_8139, RL_8139, "Compaq HNE-300" }, { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139, "LevelOne FPC-0106TX" }, { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139, "Edimax EP-4103DL CardBus" }, { 0, 0, 0, NULL } }; static struct rl_hwrev rl_hwrevs[] = { { RL_HWREV_8139, RL_8139, "" }, { RL_HWREV_8139A, RL_8139, "A" }, { RL_HWREV_8139AG, RL_8139, "A-G" }, { RL_HWREV_8139B, RL_8139, "B" }, { RL_HWREV_8130, RL_8139, "8130" }, { RL_HWREV_8139C, RL_8139, "C" }, { RL_HWREV_8139D, RL_8139, "D" }, { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, { 0, 0, NULL } }; static int rl_probe (device_t); static int rl_attach (device_t); static int rl_detach (device_t); static int rl_encap (struct rl_softc *, struct mbuf *); static int rl_encapcplus (struct rl_softc *, struct mbuf *, int *); static void rl_dma_map_addr (void *, bus_dma_segment_t *, int, int); static void rl_dma_map_desc (void *, bus_dma_segment_t *, int, bus_size_t, int); static int rl_allocmem (device_t, struct rl_softc *); static int rl_allocmemcplus (device_t, struct rl_softc *); static int rl_newbuf (struct rl_softc *, int, struct mbuf *); static int rl_rx_list_init (struct rl_softc *); static int rl_tx_list_init (struct rl_softc *); static void rl_rxeof (struct rl_softc *); static void rl_rxeofcplus (struct rl_softc *); static void rl_txeof (struct rl_softc *); static void rl_txeofcplus (struct rl_softc *); static void rl_intr (void *); static void rl_intrcplus (void *); static void rl_tick (void *); static void rl_start (struct ifnet *); static void rl_startcplus (struct ifnet *); static int rl_ioctl (struct ifnet *, u_long, caddr_t); static void rl_init (void *); static void rl_stop (struct rl_softc *); static void rl_watchdog (struct ifnet *); static int rl_suspend (device_t); static int rl_resume (device_t); static void rl_shutdown (device_t); static int rl_ifmedia_upd (struct ifnet *); static void rl_ifmedia_sts (struct ifnet *, struct ifmediareq *); static void rl_eeprom_putbyte (struct rl_softc *, int); static void rl_eeprom_getword (struct rl_softc *, int, u_int16_t *); static void rl_read_eeprom (struct rl_softc *, caddr_t, int, int, int); static void rl_mii_sync (struct rl_softc *); static void rl_mii_send (struct rl_softc *, u_int32_t, int); static int rl_mii_readreg (struct rl_softc *, struct rl_mii_frame *); static int rl_mii_writereg (struct rl_softc *, struct rl_mii_frame *); static int rl_miibus_readreg (device_t, int, int); static int rl_miibus_writereg (device_t, int, int, int); static void rl_miibus_statchg (device_t); static u_int8_t rl_calchash (caddr_t); static void rl_setmulti (struct rl_softc *); static void rl_reset (struct rl_softc *); static int rl_list_tx_init (struct rl_softc *); static void rl_dma_map_rxbuf (void *, bus_dma_segment_t *, int, int); static void rl_dma_map_txbuf (void *, bus_dma_segment_t *, int, int); #ifdef RL_USEIOSPACE #define RL_RES SYS_RES_IOPORT #define RL_RID RL_PCI_LOIO #else #define RL_RES SYS_RES_MEMORY #define RL_RID RL_PCI_LOMEM #endif static device_method_t rl_methods[] = { /* Device interface */ DEVMETHOD(device_probe, rl_probe), DEVMETHOD(device_attach, rl_attach), DEVMETHOD(device_detach, rl_detach), DEVMETHOD(device_suspend, rl_suspend), DEVMETHOD(device_resume, rl_resume), DEVMETHOD(device_shutdown, rl_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, rl_miibus_readreg), DEVMETHOD(miibus_writereg, rl_miibus_writereg), DEVMETHOD(miibus_statchg, rl_miibus_statchg), { 0, 0 } }; static driver_t rl_driver = { "rl", rl_methods, sizeof(struct rl_softc) }; static devclass_t rl_devclass; DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0); DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0); DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0); #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) static void rl_dma_map_rxbuf(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg, error; { struct rl_softc *sc; sc = arg; CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF); return; } static void rl_dma_map_txbuf(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg, error; { struct rl_softc *sc; sc = arg; CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF); return; } /* * Send a read command and address to the EEPROM, check for ACK. */ static void rl_eeprom_putbyte(sc, addr) struct rl_softc *sc; int addr; { register int d, i; d = addr | sc->rl_eecmd_read; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { EE_SET(RL_EE_DATAIN); } else { EE_CLR(RL_EE_DATAIN); } DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void rl_eeprom_getword(sc, addr, dest) struct rl_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Send address of word we want to read. */ rl_eeprom_putbyte(sc, addr); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ static void rl_read_eeprom(sc, dest, off, cnt, swap) struct rl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { rl_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } /* * MII access routines are provided for the 8129, which * doesn't have a built-in PHY. For the 8139, we fake things * up by diverting rl_phy_readreg()/rl_phy_writereg() to the * direct access PHY registers. */ #define MII_SET(x) \ CSR_WRITE_1(sc, RL_MII, \ CSR_READ_1(sc, RL_MII) | (x)) #define MII_CLR(x) \ CSR_WRITE_1(sc, RL_MII, \ CSR_READ_1(sc, RL_MII) & ~(x)) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void rl_mii_sync(sc) struct rl_softc *sc; { register int i; MII_SET(RL_MII_DIR|RL_MII_DATAOUT); for (i = 0; i < 32; i++) { MII_SET(RL_MII_CLK); DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ static void rl_mii_send(sc, bits, cnt) struct rl_softc *sc; u_int32_t bits; int cnt; { int i; MII_CLR(RL_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { MII_SET(RL_MII_DATAOUT); } else { MII_CLR(RL_MII_DATAOUT); } DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); } } /* * Read an PHY register through the MII. */ static int rl_mii_readreg(sc, frame) struct rl_softc *sc; struct rl_mii_frame *frame; { int i, ack; RL_LOCK(sc); /* * Set up frame for RX. */ frame->mii_stdelim = RL_MII_STARTDELIM; frame->mii_opcode = RL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_2(sc, RL_MII, 0); /* * Turn on data xmit. */ MII_SET(RL_MII_DIR); rl_mii_sync(sc); /* * Send command/address info. */ rl_mii_send(sc, frame->mii_stdelim, 2); rl_mii_send(sc, frame->mii_opcode, 2); rl_mii_send(sc, frame->mii_phyaddr, 5); rl_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ MII_CLR((RL_MII_CLK|RL_MII_DATAOUT)); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); /* Turn off xmit. */ MII_CLR(RL_MII_DIR); /* Check for ack */ MII_CLR(RL_MII_CLK); DELAY(1); ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN; MII_SET(RL_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(RL_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN) frame->mii_data |= i; DELAY(1); } MII_SET(RL_MII_CLK); DELAY(1); } fail: MII_CLR(RL_MII_CLK); DELAY(1); MII_SET(RL_MII_CLK); DELAY(1); RL_UNLOCK(sc); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int rl_mii_writereg(sc, frame) struct rl_softc *sc; struct rl_mii_frame *frame; { RL_LOCK(sc); /* * Set up frame for TX. */ frame->mii_stdelim = RL_MII_STARTDELIM; frame->mii_opcode = RL_MII_WRITEOP; frame->mii_turnaround = RL_MII_TURNAROUND; /* * Turn on data output. */ MII_SET(RL_MII_DIR); rl_mii_sync(sc); rl_mii_send(sc, frame->mii_stdelim, 2); rl_mii_send(sc, frame->mii_opcode, 2); rl_mii_send(sc, frame->mii_phyaddr, 5); rl_mii_send(sc, frame->mii_regaddr, 5); rl_mii_send(sc, frame->mii_turnaround, 2); rl_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(RL_MII_CLK); DELAY(1); MII_CLR(RL_MII_CLK); DELAY(1); /* * Turn off xmit. */ MII_CLR(RL_MII_DIR); RL_UNLOCK(sc); return(0); } static int rl_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct rl_softc *sc; struct rl_mii_frame frame; u_int16_t rval = 0; u_int16_t rl8139_reg = 0; sc = device_get_softc(dev); RL_LOCK(sc); if (sc->rl_type == RL_8139 || sc->rl_type == RL_8139CPLUS) { /* Pretend the internal PHY is only at address 0 */ if (phy) { RL_UNLOCK(sc); return(0); } switch(reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: RL_UNLOCK(sc); return(0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: rval = CSR_READ_1(sc, RL_MEDIASTAT); RL_UNLOCK(sc); return(rval); default: printf("rl%d: bad phy register\n", sc->rl_unit); RL_UNLOCK(sc); return(0); } rval = CSR_READ_2(sc, rl8139_reg); RL_UNLOCK(sc); return(rval); } bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; rl_mii_readreg(sc, &frame); RL_UNLOCK(sc); return(frame.mii_data); } static int rl_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct rl_softc *sc; struct rl_mii_frame frame; u_int16_t rl8139_reg = 0; sc = device_get_softc(dev); RL_LOCK(sc); if (sc->rl_type == RL_8139 || sc->rl_type == RL_8139CPLUS) { /* Pretend the internal PHY is only at address 0 */ if (phy) { RL_UNLOCK(sc); return(0); } switch(reg) { case MII_BMCR: rl8139_reg = RL_BMCR; break; case MII_BMSR: rl8139_reg = RL_BMSR; break; case MII_ANAR: rl8139_reg = RL_ANAR; break; case MII_ANER: rl8139_reg = RL_ANER; break; case MII_ANLPAR: rl8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: RL_UNLOCK(sc); return(0); break; default: printf("rl%d: bad phy register\n", sc->rl_unit); RL_UNLOCK(sc); return(0); } CSR_WRITE_2(sc, rl8139_reg, data); RL_UNLOCK(sc); return(0); } bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; rl_mii_writereg(sc, &frame); RL_UNLOCK(sc); return(0); } static void rl_miibus_statchg(dev) device_t dev; { return; } /* * Calculate CRC of a multicast group address, return the upper 6 bits. */ static u_int8_t rl_calchash(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc >> 26); } /* * Program the 64-bit multicast hash filter. */ static void rl_setmulti(sc) struct rl_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct ifmultiaddr *ifma; u_int32_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; rxfilt = CSR_READ_4(sc, RL_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, RL_MAR0, 0); CSR_WRITE_4(sc, RL_MAR4, 0); /* now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = rl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; } if (mcnt) rxfilt |= RL_RXCFG_RX_MULTI; else rxfilt &= ~RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); return; } static void rl_reset(sc) struct rl_softc *sc; { register int i; CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) printf("rl%d: reset never completed!\n", sc->rl_unit); return; } /* * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int rl_probe(dev) device_t dev; { struct rl_type *t; struct rl_softc *sc; struct rl_hwrev *hw_rev; int rid; u_int32_t hwrev; char desc[64]; t = rl_devs; sc = device_get_softc(dev); while(t->rl_name != NULL) { if ((pci_get_vendor(dev) == t->rl_vid) && (pci_get_device(dev) == t->rl_did)) { /* * Temporarily map the I/O space * so we can read the chip ID register. */ rid = RL_RID; sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->rl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); return(ENXIO); } sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); RL_LOCK(sc); if (t->rl_basetype == RL_8139) { hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; hw_rev = rl_hwrevs; while (hw_rev->rl_desc != NULL) { if (hw_rev->rl_rev == hwrev) { sprintf(desc, "%s, rev. %s", t->rl_name, hw_rev->rl_desc); sc->rl_type = hw_rev->rl_type; break; } hw_rev++; } if (hw_rev->rl_desc == NULL) sprintf(desc, "%s, rev. %s", t->rl_name, "unknown"); } bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res); RL_UNLOCK(sc); mtx_destroy(&sc->rl_mtx); device_set_desc_copy(dev, desc); return(0); } t++; } return(ENXIO); } /* * This routine takes the segment list provided as the result of * a bus_dma_map_load() operation and assigns the addresses/lengths * to RealTek DMA descriptors. This can be called either by the RX * code or the TX code. In the RX case, we'll probably wind up mapping * at most one segment. For the TX case, there could be any number of * segments since TX packets may span multiple mbufs. In either case, * if the number of segments is larger than the rl_maxsegs limit * specified by the caller, we abort the mapping operation. Sadly, * whoever designed the buffer mapping API did not provide a way to * return an error from here, so we have to fake it a bit. */ static void rl_dma_map_desc(arg, segs, nseg, mapsize, error) void *arg; bus_dma_segment_t *segs; int nseg; bus_size_t mapsize; int error; { struct rl_dmaload_arg *ctx; struct rl_desc *d = NULL; int i = 0, idx; if (error) return; ctx = arg; /* Signal error to caller if there's too many segments */ if (nseg > ctx->rl_maxsegs) { ctx->rl_maxsegs = 0; return; } /* * Map the segment array into descriptors. Note that we set the * start-of-frame and end-of-frame markers for either TX or RX, but * they really only have meaning in the TX case. (In the RX case, * it's the chip that tells us where packets begin and end.) * We also keep track of the end of the ring and set the * end-of-ring bits as needed, and we set the ownership bits * in all except the very first descriptor. (The caller will * set this descriptor later when it start transmission or * reception.) */ idx = ctx->rl_idx; while(1) { u_int32_t cmdstat; d = &ctx->rl_ring[idx]; if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) { ctx->rl_maxsegs = 0; return; } cmdstat = segs[i].ds_len; d->rl_bufaddr_lo = htole32(segs[i].ds_addr); d->rl_bufaddr_hi = 0; if (i == 0) cmdstat |= RL_TDESC_CMD_SOF; else cmdstat |= RL_TDESC_CMD_OWN; if (idx == RL_RX_DESC_CNT) cmdstat |= RL_TDESC_CMD_EOR; d->rl_cmdstat = htole32(cmdstat); i++; if (i == nseg) break; RL_DESC_INC(idx); } d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); ctx->rl_maxsegs = nseg; ctx->rl_idx = idx; return; } /* * Map a single buffer address. */ static void rl_dma_map_addr(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg; int error; { u_int32_t *addr; if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); addr = arg; *addr = segs->ds_addr; return; } static int rl_allocmem(dev, sc) device_t dev; struct rl_softc *sc; { int error; /* * Now allocate a tag for the DMA descriptor lists. * All of our lists are allocated as a contiguous block * of memory. */ error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ RL_RXBUFLEN + 1518, 1, /* maxsize,nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_tag); if (error) return(error); /* * Now allocate a chunk of DMA-able memory based on the * tag we just created. */ error = bus_dmamem_alloc(sc->rl_tag, (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT, &sc->rl_cdata.rl_rx_dmamap); if (error) { printf("rl%d: no memory for list buffers!\n", sc->rl_unit); bus_dma_tag_destroy(sc->rl_tag); sc->rl_tag = NULL; return(error); } /* Leave a few bytes before the start of the RX ring buffer. */ sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf; sc->rl_cdata.rl_rx_buf += sizeof(u_int64_t); return(0); } static int rl_allocmemcplus(dev, sc) device_t dev; struct rl_softc *sc; { int error; int nseg; int i; /* * Allocate map for RX mbufs. */ nseg = 32; error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * nseg, nseg, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_mtag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* * Allocate map for TX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0, NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the TX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rl_ldata.rl_tx_list_map); if (error) return (ENOMEM); /* Load the map for the TX ring. */ error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ, rl_dma_map_addr, &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for TX buffers */ for (i = 0; i < RL_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, &sc->rl_ldata.rl_tx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for TX\n"); return(ENOMEM); } } /* * Allocate map for RX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0, NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rl_ldata.rl_rx_list_map); if (error) return (ENOMEM); /* Load the map for the RX ring. */ error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, RL_TX_LIST_SZ, rl_dma_map_addr, &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for RX buffers */ for (i = 0; i < RL_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, &sc->rl_ldata.rl_rx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for RX\n"); return(ENOMEM); } } return(0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int rl_attach(dev) device_t dev; { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[3]; struct rl_softc *sc; struct ifnet *ifp; struct rl_type *t; struct rl_hwrev *hw_rev; int hwrev; u_int16_t rl_did = 0; int unit, error = 0, rid, i; sc = device_get_softc(dev); unit = device_get_unit(dev); mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); #ifndef BURN_BRIDGES /* * Handle power management nonsense. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, RL_PCI_LOIO, 4); membase = pci_read_config(dev, RL_PCI_LOMEM, 4); irq = pci_read_config(dev, RL_PCI_INTLINE, 4); /* Reset the power state. */ printf("rl%d: chip is is in D%d power mode " "-- setting to D0\n", unit, pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, RL_PCI_LOIO, iobase, 4); pci_write_config(dev, RL_PCI_LOMEM, membase, 4); pci_write_config(dev, RL_PCI_INTLINE, irq, 4); } #endif /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = RL_RID; sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->rl_res == NULL) { printf ("rl%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } #ifdef notdef /* Detect the Realtek 8139B. For some reason, this chip is very * unstable when left to autoselect the media * The best workaround is to set the device to the required * media type or to set it to the 10 Meg speed. */ if ((rman_get_end(sc->rl_res)-rman_get_start(sc->rl_res))==0xff) { printf("rl%d: Realtek 8139B detected. Warning," " this may be unstable in autoselect mode\n", unit); } #endif sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); /* Allocate interrupt */ rid = 0; sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->rl_irq == NULL) { printf("rl%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } /* Reset the adapter. */ rl_reset(sc); sc->rl_eecmd_read = RL_EECMD_READ_6BIT; rl_read_eeprom(sc, (caddr_t)&rl_did, 0, 1, 0); if (rl_did != 0x8129) sc->rl_eecmd_read = RL_EECMD_READ_8BIT; /* * Get station address from the EEPROM. */ rl_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0); for (i = 0; i < 3; i++) { eaddr[(i * 2) + 0] = as[i] & 0xff; eaddr[(i * 2) + 1] = as[i] >> 8; } /* * A RealTek chip was detected. Inform the world. */ printf("rl%d: Ethernet address: %6D\n", unit, eaddr, ":"); sc->rl_unit = unit; bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); /* * Now read the exact device type from the EEPROM to find * out if it's an 8129 or 8139. */ rl_read_eeprom(sc, (caddr_t)&rl_did, RL_EE_PCI_DID, 1, 0); t = rl_devs; while(t->rl_name != NULL) { if (rl_did == t->rl_did) { sc->rl_type = t->rl_basetype; break; } t++; } if (t->rl_name == NULL) { printf("rl%d: unknown device ID: %x\n", unit, rl_did); error = ENXIO; goto fail; } if (sc->rl_type == RL_8139) { hw_rev = rl_hwrevs; hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; while (hw_rev->rl_desc != NULL) { if (hw_rev->rl_rev == hwrev) { sc->rl_type = hw_rev->rl_type; break; } hw_rev++; } if (hw_rev->rl_desc == NULL) { printf("rl%d: unknown hwrev: %x\n", unit, hwrev); } } else if (rl_did == RT_DEVICEID_8129) { sc->rl_type = RL_8129; } else if (rl_did == RT_DEVICEID_8169) { sc->rl_type = RL_8169; } /* * Allocate the parent bus DMA tag appropriate for PCI. */ #define RL_NSEG_NEW 32 error = bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_parent_tag); if (error) goto fail; /* * If this is an 8139C+ or 8169 chip, we have to allocate * our busdma tags/memory differently. We need to allocate * a chunk of DMA'able memory for the RX and TX descriptor * lists. */ if (sc->rl_type == RL_8139CPLUS || sc->rl_type == RL_8169) error = rl_allocmemcplus(dev, sc); else error = rl_allocmem(dev, sc); if (error) goto fail; /* Do MII setup */ if (mii_phy_probe(dev, &sc->rl_miibus, rl_ifmedia_upd, rl_ifmedia_sts)) { printf("rl%d: MII without any phy!\n", sc->rl_unit); error = ENXIO; goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = unit; ifp->if_name = "rl"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = rl_ioctl; ifp->if_output = ether_output; ifp->if_capabilities = IFCAP_VLAN_MTU; if (RL_ISCPLUS(sc)) { ifp->if_start = rl_startcplus; ifp->if_hwassist = RL_CSUM_FEATURES; ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; } else ifp->if_start = rl_start; ifp->if_watchdog = rl_watchdog; ifp->if_init = rl_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN; ifp->if_capenable = ifp->if_capabilities; callout_handle_init(&sc->rl_stat_ch); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET, RL_ISCPLUS(sc) ? rl_intrcplus : rl_intr, sc, &sc->rl_intrhand); if (error) { printf("rl%d: couldn't set up irq\n", unit); ether_ifdetach(ifp); goto fail; } fail: if (error) rl_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int rl_detach(dev) device_t dev; { struct rl_softc *sc; struct ifnet *ifp; int i; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized")); RL_LOCK(sc); ifp = &sc->arpcom.ac_if; /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { rl_stop(sc); ether_ifdetach(ifp); } if (sc->rl_miibus) device_delete_child(dev, sc->rl_miibus); bus_generic_detach(dev); if (sc->rl_intrhand) bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand); if (sc->rl_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq); if (sc->rl_res) bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res); if (RL_ISCPLUS(sc)) { /* Unload and free the RX DMA ring memory and map */ if (sc->rl_ldata.rl_rx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list, sc->rl_ldata.rl_rx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); } /* Unload and free the TX DMA ring memory and map */ if (sc->rl_ldata.rl_tx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map); bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list, sc->rl_ldata.rl_tx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); } /* Destroy all the RX and TX buffer maps */ if (sc->rl_ldata.rl_mtag) { for (i = 0; i < RL_TX_DESC_CNT; i++) bus_dmamap_destroy(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[i]); for (i = 0; i < RL_RX_DESC_CNT; i++) bus_dmamap_destroy(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); bus_dma_tag_destroy(sc->rl_ldata.rl_mtag); } /* Unload and free the stats buffer and map */ if (sc->rl_ldata.rl_stag) { bus_dmamap_unload(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); bus_dma_tag_destroy(sc->rl_ldata.rl_stag); } } else { if (sc->rl_tag) { bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap); bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf, sc->rl_cdata.rl_rx_dmamap); bus_dma_tag_destroy(sc->rl_tag); } } if (sc->rl_parent_tag) bus_dma_tag_destroy(sc->rl_parent_tag); RL_UNLOCK(sc); mtx_destroy(&sc->rl_mtx); return(0); } /* * Initialize the transmit descriptors. */ static int rl_list_tx_init(sc) struct rl_softc *sc; { struct rl_chain_data *cd; int i; cd = &sc->rl_cdata; for (i = 0; i < RL_TX_LIST_CNT; i++) { cd->rl_tx_chain[i] = NULL; CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(u_int32_t)), 0x0000000); } sc->rl_cdata.cur_tx = 0; sc->rl_cdata.last_tx = 0; return(0); } static int rl_newbuf (sc, idx, m) struct rl_softc *sc; int idx; struct mbuf *m; { struct rl_dmaload_arg arg; struct mbuf *n = NULL; int error; if (m == NULL) { n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (n == NULL) return(ENOBUFS); m = n; } else m->m_data = m->m_ext.ext_buf; /* * Initialize mbuf length fields and fixup * alignment so that the frame payload is * longword aligned. */ m->m_len = m->m_pkthdr.len = 1536; m_adj(m, ETHER_ALIGN); arg.sc = sc; arg.rl_idx = idx; arg.rl_maxsegs = 1; arg.rl_ring = sc->rl_ldata.rl_rx_list; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[idx], m, rl_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error || arg.rl_maxsegs != 1) { if (n != NULL) m_freem(n); return (ENOMEM); } sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN); sc->rl_ldata.rl_rx_mbuf[idx] = m; bus_dmamap_sync(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[idx], BUS_DMASYNC_PREREAD); return(0); } static int rl_tx_list_init(sc) struct rl_softc *sc; { bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ); bzero ((char *)&sc->rl_ldata.rl_tx_mbuf, (RL_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_tx_prodidx = 0; sc->rl_ldata.rl_tx_considx = 0; sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT; return(0); } static int rl_rx_list_init(sc) struct rl_softc *sc; { int i; bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ); bzero ((char *)&sc->rl_ldata.rl_rx_mbuf, (RL_RX_DESC_CNT * sizeof(struct mbuf *))); for (i = 0; i < RL_RX_DESC_CNT; i++) { if (rl_newbuf(sc, i, NULL) == ENOBUFS) return(ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = 0; return(0); } /* * RX handler for C+. This is pretty much like any other * descriptor-based RX handler. */ static void rl_rxeofcplus(sc) struct rl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int i, total_len; struct rl_desc *cur_rx; u_int32_t rxstat, rxvlan; ifp = &sc->arpcom.ac_if; i = sc->rl_ldata.rl_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_POSTREAD); while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) { cur_rx = &sc->rl_ldata.rl_rx_list[i]; m = sc->rl_ldata.rl_rx_mbuf[i]; total_len = RL_RXBYTES(cur_rx) - ETHER_CRC_LEN; rxstat = le32toh(cur_rx->rl_cmdstat); rxvlan = le32toh(cur_rx->rl_vlanctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i], BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); if (rxstat & RL_RDESC_STAT_RXERRSUM) { ifp->if_ierrors++; rl_newbuf(sc, i, m); RL_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (rl_newbuf(sc, i, NULL)) { ifp->if_ierrors++; rl_newbuf(sc, i, m); RL_DESC_INC(i); continue; } RL_DESC_INC(i); ifp->if_ipackets++; m->m_pkthdr.len = m->m_len = total_len; m->m_pkthdr.rcvif = ifp; /* Check IP header checksum */ if (rxstat & RL_RDESC_STAT_PROTOID) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; /* Check TCP/UDP checksum */ if ((RL_TCPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || (RL_UDPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } if (rxvlan & RL_RDESC_VLANCTL_TAG) VLAN_INPUT_TAG(ifp, m, ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue); (*ifp->if_input)(ifp, m); } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = i; return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. * * You know there's something wrong with a PCI bus-master chip design * when you have to use m_devget(). * * The receive operation is badly documented in the datasheet, so I'll * attempt to document it here. The driver provides a buffer area and * places its base address in the RX buffer start address register. * The chip then begins copying frames into the RX buffer. Each frame * is preceded by a 32-bit RX status word which specifies the length * of the frame and certain other status bits. Each frame (starting with * the status word) is also 32-bit aligned. The frame length is in the * first 16 bits of the status word; the lower 15 bits correspond with * the 'rx status register' mentioned in the datasheet. * * Note: to make the Alpha happy, the frame payload needs to be aligned * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes) * as the offset argument to m_devget(). */ static void rl_rxeof(sc) struct rl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int total_len = 0; u_int32_t rxstat; caddr_t rxbufpos; int wrap = 0; u_int16_t cur_rx; u_int16_t limit; u_int16_t rx_bytes = 0, max_bytes; ifp = &sc->arpcom.ac_if; bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap, BUS_DMASYNC_POSTREAD); cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN; /* Do not try to read past this point. */ limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN; if (limit < cur_rx) max_bytes = (RL_RXBUFLEN - cur_rx) + limit; else max_bytes = limit - cur_rx; while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) { #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) { if (sc->rxcycles <= 0) break; sc->rxcycles--; } #endif /* DEVICE_POLLING */ rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx; rxstat = le32toh(*(u_int32_t *)rxbufpos); /* * Here's a totally undocumented fact for you. When the * RealTek chip is in the process of copying a packet into * RAM for you, the length will be 0xfff0. If you spot a * packet header with this value, you need to stop. The * datasheet makes absolutely no mention of this and * RealTek should be shot for this. */ if ((u_int16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED) break; if (!(rxstat & RL_RXSTAT_RXOK)) { ifp->if_ierrors++; rl_init(sc); return; } /* No errors; receive the packet. */ total_len = rxstat >> 16; rx_bytes += total_len + 4; /* * XXX The RealTek chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; /* * Avoid trying to read more bytes than we know * the chip has prepared for us. */ if (rx_bytes > max_bytes) break; rxbufpos = sc->rl_cdata.rl_rx_buf + ((cur_rx + sizeof(u_int32_t)) % RL_RXBUFLEN); if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN)) rxbufpos = sc->rl_cdata.rl_rx_buf; wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos; if (total_len > wrap) { m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, NULL); if (m == NULL) { ifp->if_ierrors++; } else { m_copyback(m, wrap, total_len - wrap, sc->rl_cdata.rl_rx_buf); } cur_rx = (total_len - wrap + ETHER_CRC_LEN); } else { m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, NULL); if (m == NULL) { ifp->if_ierrors++; } cur_rx += total_len + 4 + ETHER_CRC_LEN; } /* * Round up to 32-bit boundary. */ cur_rx = (cur_rx + 3) & ~3; CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16); if (m == NULL) continue; ifp->if_ipackets++; (*ifp->if_input)(ifp, m); } return; } static void rl_txeofcplus(sc) struct rl_softc *sc; { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = &sc->arpcom.ac_if; idx = sc->rl_ldata.rl_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_POSTREAD); while (idx != sc->rl_ldata.rl_tx_prodidx) { txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat); if (txstat & RL_TDESC_CMD_OWN) break; /* * We only stash mbufs in the last descriptor * in a fragment chain, which also happens to * be the only place where the TX status bits * are valid. */ if (txstat & RL_TDESC_CMD_EOF) { m_freem(sc->rl_ldata.rl_tx_mbuf[idx]); sc->rl_ldata.rl_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[idx]); if (txstat & (RL_TDESC_STAT_EXCESSCOL| RL_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RL_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; } sc->rl_ldata.rl_tx_free++; RL_DESC_INC(idx); } /* No changes made to the TX ring, so no flush needed */ if (idx != sc->rl_ldata.rl_tx_considx) { sc->rl_ldata.rl_tx_considx = idx; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; } return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void rl_txeof(sc) struct rl_softc *sc; { struct ifnet *ifp; u_int32_t txstat; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been uploaded. */ do { txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc)); if (!(txstat & (RL_TXSTAT_TX_OK| RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT))) break; ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24; if (RL_LAST_TXMBUF(sc) != NULL) { bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc)); bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc)); m_freem(RL_LAST_TXMBUF(sc)); RL_LAST_TXMBUF(sc) = NULL; } if (txstat & RL_TXSTAT_TX_OK) ifp->if_opackets++; else { int oldthresh; ifp->if_oerrors++; if ((txstat & RL_TXSTAT_TXABRT) || (txstat & RL_TXSTAT_OUTOFWIN)) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); oldthresh = sc->rl_txthresh; /* error recovery */ rl_reset(sc); rl_init(sc); /* * If there was a transmit underrun, * bump the TX threshold. */ if (txstat & RL_TXSTAT_TX_UNDERRUN) sc->rl_txthresh = oldthresh + 32; return; } RL_INC(sc->rl_cdata.last_tx); ifp->if_flags &= ~IFF_OACTIVE; } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx); ifp->if_timer = (sc->rl_cdata.last_tx == sc->rl_cdata.cur_tx) ? 0 : 5; return; } static void rl_tick(xsc) void *xsc; { struct rl_softc *sc; struct mii_data *mii; sc = xsc; RL_LOCK(sc); mii = device_get_softc(sc->rl_miibus); mii_tick(mii); sc->rl_stat_ch = timeout(rl_tick, sc, hz); RL_UNLOCK(sc); return; } #ifdef DEVICE_POLLING static void rl_poll (struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; RL_LOCK(sc); if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */ if (RL_ISCPLUS(sc)) CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); else CSR_WRITE_2(sc, RL_IMR, RL_INTRS); goto done; } sc->rxcycles = count; if (RL_ISCPLUS(sc)) { rl_rxeofcplus(sc); rl_txeofcplus(sc); } else { rl_rxeof(sc); rl_txeof(sc); } if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int16_t status; status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff) goto done; if (status) CSR_WRITE_2(sc, RL_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & RL_ISR_SYSTEM_ERR) { rl_reset(sc); rl_init(sc); } } done: RL_UNLOCK(sc); } #endif /* DEVICE_POLLING */ static void rl_intrcplus(arg) void *arg; { struct rl_softc *sc; struct ifnet *ifp; u_int16_t status; sc = arg; if (sc->suspended) { return; } RL_LOCK(sc); ifp = &sc->arpcom.ac_if; #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if (ether_poll_register(rl_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); rl_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ for (;;) { status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) break; if (status) CSR_WRITE_2(sc, RL_ISR, status); if ((status & RL_INTRS_CPLUS) == 0) break; if (status & RL_ISR_RX_OK) rl_rxeofcplus(sc); if (status & RL_ISR_RX_ERR) rl_rxeofcplus(sc); if ((status & RL_ISR_TIMEOUT_EXPIRED) || (status & RL_ISR_TX_ERR) || (status & RL_ISR_TX_DESC_UNAVAIL)) rl_txeofcplus(sc); if (status & RL_ISR_SYSTEM_ERR) { rl_reset(sc); rl_init(sc); } } if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); #ifdef DEVICE_POLLING done: #endif RL_UNLOCK(sc); return; } static void rl_intr(arg) void *arg; { struct rl_softc *sc; struct ifnet *ifp; u_int16_t status; sc = arg; if (sc->suspended) { return; } RL_LOCK(sc); ifp = &sc->arpcom.ac_if; #ifdef DEVICE_POLLING if (ifp->if_flags & IFF_POLLING) goto done; if (ether_poll_register(rl_poll, ifp)) { /* ok, disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); rl_poll(ifp, 0, 1); goto done; } #endif /* DEVICE_POLLING */ for (;;) { status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) break; if (status) CSR_WRITE_2(sc, RL_ISR, status); if ((status & RL_INTRS) == 0) break; if (status & RL_ISR_RX_OK) rl_rxeof(sc); if (status & RL_ISR_RX_ERR) rl_rxeof(sc); if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR)) rl_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) { rl_reset(sc); rl_init(sc); } } if (ifp->if_snd.ifq_head != NULL) (*ifp->if_start)(ifp); #ifdef DEVICE_POLLING done: #endif RL_UNLOCK(sc); return; } static int rl_encapcplus(sc, m_head, idx) struct rl_softc *sc; struct mbuf *m_head; int *idx; { struct mbuf *m_new = NULL; struct rl_dmaload_arg arg; bus_dmamap_t map; int error; u_int32_t csumcmd = RL_TDESC_CMD_OWN; struct m_tag *mtag; if (sc->rl_ldata.rl_tx_free < 4) return(EFBIG); arg.sc = sc; arg.rl_idx = *idx; arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; arg.rl_ring = sc->rl_ldata.rl_tx_list; map = sc->rl_ldata.rl_tx_dmamap[*idx]; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, m_head, rl_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error && error != EFBIG) { printf("rl%d: can't map mbuf (error %d)\n", sc->rl_unit, error); return(ENOBUFS); } /* Too many segments to map, coalesce into a single mbuf */ if (error || arg.rl_maxsegs == 0) { m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) return(1); else m_head = m_new; arg.sc = sc; arg.rl_idx = *idx; arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; arg.rl_ring = sc->rl_ldata.rl_tx_list; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, m_head, rl_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error) { printf("rl%d: can't map mbuf (error %d)\n", sc->rl_unit, error); return(EFBIG); } } /* * Insure that the map for this transmission * is placed at the array index of the last descriptor * in this chain. */ sc->rl_ldata.rl_tx_dmamap[*idx] = sc->rl_ldata.rl_tx_dmamap[arg.rl_idx]; sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map; sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head; sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs; /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in the first descriptor of a multi-descriptor * transmission attempt. */ mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head); if (mtag != NULL) sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl = htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG); /* * Set up checksum offload. Note: checksum offload bits must * appear in the first descriptor of a multi-descriptor * transmission attempt. */ if (m_head->m_pkthdr.csum_flags & CSUM_IP) csumcmd |= RL_TDESC_CMD_IPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) csumcmd |= RL_TDESC_CMD_TCPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_UDP) csumcmd |= RL_TDESC_CMD_UDPCSUM; /* Transfer ownership of packet to the chip. */ sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |= htole32(csumcmd); if (*idx != arg.rl_idx) sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |= htole32(csumcmd); RL_DESC_INC(arg.rl_idx); *idx = arg.rl_idx; return(0); } /* * Main transmit routine for C+ and gigE NICs. */ static void rl_startcplus(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mbuf *m_head = NULL; int idx; sc = ifp->if_softc; RL_LOCK(sc); idx = sc->rl_ldata.rl_tx_prodidx; while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (rl_encapcplus(sc, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } /* Flush the TX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_tx_prodidx = idx; /* * RealTek put the TX poll request register in a different * location on the 8169 gigE chip. I don't know why. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START); else CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START); /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the TIMERINT register, and then trigger an * interrupt. Each time we write to the TIMERCNT register, * the timer count is reset to 0. */ CSR_WRITE_4(sc, RL_TIMERCNT, 1); RL_UNLOCK(sc); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int rl_encap(sc, m_head) struct rl_softc *sc; struct mbuf *m_head; { struct mbuf *m_new = NULL; /* * The RealTek is brain damaged and wants longword-aligned * TX buffers, plus we can only have one fragment buffer * per packet. We have to copy pretty much all the time. */ m_new = m_defrag(m_head, M_DONTWAIT); if (m_new == NULL) { m_freem(m_head); return(1); } m_head = m_new; /* Pad frames to at least 60 bytes. */ if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) { /* * Make security concious people happy: zero out the * bytes in the pad area, since we don't know what * this mbuf cluster buffer's previous user might * have left in it. */ bzero(mtod(m_head, char *) + m_head->m_pkthdr.len, RL_MIN_FRAMELEN - m_head->m_pkthdr.len); m_head->m_pkthdr.len += (RL_MIN_FRAMELEN - m_head->m_pkthdr.len); m_head->m_len = m_head->m_pkthdr.len; } RL_CUR_TXMBUF(sc) = m_head; return(0); } /* * Main transmit routine. */ static void rl_start(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; RL_LOCK(sc); while(RL_CUR_TXMBUF(sc) == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (rl_encap(sc, m_head)) { break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, RL_CUR_TXMBUF(sc)); /* * Transmit the frame. */ bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc)); bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc), mtod(RL_CUR_TXMBUF(sc), void *), RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc), BUS_DMASYNC_PREREAD); CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc), RL_TXTHRESH(sc->rl_txthresh) | RL_CUR_TXMBUF(sc)->m_pkthdr.len); RL_INC(sc->rl_cdata.cur_tx); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } /* * We broke out of the loop because all our TX slots are * full. Mark the NIC as busy until it drains some of the * packets from the queue. */ if (RL_CUR_TXMBUF(sc) != NULL) ifp->if_flags |= IFF_OACTIVE; RL_UNLOCK(sc); return; } static void rl_init(xsc) void *xsc; { struct rl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; u_int32_t rxcfg = 0; RL_LOCK(sc); mii = device_get_softc(sc->rl_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ rl_stop(sc); /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); CSR_WRITE_4(sc, RL_IDR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, RL_IDR4, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ if (RL_ISCPLUS(sc)) { rl_rx_list_init(sc); rl_tx_list_init(sc); } else { /* Init the RX buffer pointer register. */ bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, BUS_DMA_NOWAIT); bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap, BUS_DMASYNC_PREWRITE); /* Init TX descriptors. */ rl_list_tx_init(sc); } /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Set the individual bit to receive frames for this host only. */ rxcfg = CSR_READ_4(sc, RL_RXCFG); rxcfg |= RL_RXCFG_RX_INDIV; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { rxcfg |= RL_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); } else { rxcfg &= ~RL_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); } /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { rxcfg |= RL_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); } else { rxcfg &= ~RL_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); } /* * Program the multicast filter, if necessary. */ rl_setmulti(sc); #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_flags & IFF_POLLING) CSR_WRITE_2(sc, RL_IMR, 0); else /* otherwise ... */ #endif /* DEVICE_POLLING */ /* * Enable interrupts. */ if (RL_ISCPLUS(sc)) CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); else CSR_WRITE_2(sc, RL_IMR, RL_INTRS); /* Set initial TX threshold */ sc->rl_txthresh = RL_TX_THRESH_INIT; /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); #endif /* * If this is a C+ capable chip, enable C+ RX and TX mode, * and load the addresses of the RX and TX lists into the chip. */ if (RL_ISCPLUS(sc)) { CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB| RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW| RL_CPLUSCMD_VLANSTRIP| (ifp->if_capenable & IFCAP_RXCSUM ? RL_CPLUSCMD_RXCSUM_ENB : 0)); CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 0); CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, sc->rl_ldata.rl_rx_list_addr); CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 0); CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, sc->rl_ldata.rl_tx_list_addr); CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, RL_EARLYTXTHRESH_CNT); /* * Initialize the timer interrupt register so that * a timer interrupt will be generated once the timer * reaches a certain number of ticks. The timer is * reloaded on each transmit. This gives us TX interrupt * moderation, which dramatically improves TX frame rate. */ CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RL_PKTSZ(16384)); } mii_mediachg(mii); CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; sc->rl_stat_ch = timeout(rl_tick, sc, hz); RL_UNLOCK(sc); return; } /* * Set media options. */ static int rl_ifmedia_upd(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); mii_mediachg(mii); return(0); } /* * Report current media status. */ static void rl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct rl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int rl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; RL_LOCK(sc); switch(command) { case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { rl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) rl_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: rl_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->rl_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: ifp->if_capenable = ifr->ifr_reqcap; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = RL_CSUM_FEATURES; else ifp->if_hwassist = 0; if (ifp->if_flags & IFF_RUNNING) rl_init(sc); break; default: error = ether_ioctl(ifp, command, data); break; } RL_UNLOCK(sc); return(error); } static void rl_watchdog(ifp) struct ifnet *ifp; { struct rl_softc *sc; sc = ifp->if_softc; RL_LOCK(sc); printf("rl%d: watchdog timeout\n", sc->rl_unit); ifp->if_oerrors++; if (RL_ISCPLUS(sc)) { rl_txeofcplus(sc); rl_rxeofcplus(sc); } else { rl_txeof(sc); rl_rxeof(sc); } rl_init(sc); RL_UNLOCK(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void rl_stop(sc) struct rl_softc *sc; { register int i; struct ifnet *ifp; RL_LOCK(sc); ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; untimeout(rl_tick, sc, sc->rl_stat_ch); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); #ifdef DEVICE_POLLING ether_poll_deregister(ifp); #endif /* DEVICE_POLLING */ CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); if (RL_ISCPLUS(sc)) { /* Free the TX list buffers. */ for (i = 0; i < RL_TX_DESC_CNT; i++) { if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[i]); m_freem(sc->rl_ldata.rl_tx_mbuf[i]); sc->rl_ldata.rl_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < RL_RX_DESC_CNT; i++) { if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); m_freem(sc->rl_ldata.rl_rx_mbuf[i]); sc->rl_ldata.rl_rx_mbuf[i] = NULL; } } } else { bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap); /* * Free the TX list buffers. */ for (i = 0; i < RL_TX_LIST_CNT; i++) { if (sc->rl_cdata.rl_tx_chain[i] != NULL) { bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_tx_dmamap[i]); bus_dmamap_destroy(sc->rl_tag, sc->rl_cdata.rl_tx_dmamap[i]); m_freem(sc->rl_cdata.rl_tx_chain[i]); sc->rl_cdata.rl_tx_chain[i] = NULL; CSR_WRITE_4(sc, RL_TXADDR0 + i, 0x0000000); } } } RL_UNLOCK(sc); return; } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int rl_suspend(dev) device_t dev; { register int i; struct rl_softc *sc; sc = device_get_softc(dev); rl_stop(sc); for (i = 0; i < 5; i++) sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4); sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4); sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1); sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); sc->suspended = 1; return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int rl_resume(dev) device_t dev; { register int i; struct rl_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; /* better way to do this? */ for (i = 0; i < 5; i++) pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4); pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4); pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1); pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1); /* reenable busmastering */ pci_enable_busmaster(dev); pci_enable_io(dev, RL_RES); /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) rl_init(sc); sc->suspended = 0; return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void rl_shutdown(dev) device_t dev; { struct rl_softc *sc; sc = device_get_softc(dev); rl_stop(sc); return; }