/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * National Semiconductor DP83820/DP83821 gigabit ethernet driver * for FreeBSD. Datasheets are available from: * * http://www.national.com/ds/DP/DP83820.pdf * http://www.national.com/ds/DP/DP83821.pdf * * These chips are used on several low cost gigabit ethernet NICs * sold by D-Link, Addtron, SMC and Asante. Both parts are * virtually the same, except the 83820 is a 64-bit/32-bit part, * while the 83821 is 32-bit only. * * Many cards also use National gigE transceivers, such as the * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet * contains a full register description that applies to all of these * components: * * http://www.national.com/ds/DP/DP83861.pdf * * Written by Bill Paul * BSDi Open Source Solutions */ /* * The NatSemi DP83820 and 83821 controllers are enhanced versions * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP * hardware checksum offload (IPv4 only), VLAN tagging and filtering, * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern * matching buffers, one perfect address filter buffer and interrupt * moderation. The 83820 supports both 64-bit and 32-bit addressing * and data transfers: the 64-bit support can be toggled on or off * via software. This affects the size of certain fields in the DMA * descriptors. * * There are two bugs/misfeatures in the 83820/83821 that I have * discovered so far: * * - Receive buffers must be aligned on 64-bit boundaries, which means * you must resort to copying data in order to fix up the payload * alignment. * * - In order to transmit jumbo frames larger than 8170 bytes, you have * to turn off transmit checksum offloading, because the chip can't * compute the checksum on an outgoing frame unless it fits entirely * within the TX FIFO, which is only 8192 bytes in size. If you have * TX checksum offload enabled and you transmit attempt to transmit a * frame larger than 8170 bytes, the transmitter will wedge. * * To work around the latter problem, TX checksum offload is disabled * if the user selects an MTU larger than 8152 (8170 - 18). */ #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NVLAN > 0 #include #include #endif #include #include /* for vtophys */ #include /* for vtophys */ #include /* for DELAY */ #include #include #include #include #include #include #include #include #include #include #define NGE_USEIOSPACE #include MODULE_DEPEND(nge, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif #define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct nge_type nge_devs[] = { { NGE_VENDORID, NGE_DEVICEID, "National Semiconductor Gigabit Ethernet" }, { 0, 0, NULL } }; static int nge_probe __P((device_t)); static int nge_attach __P((device_t)); static int nge_detach __P((device_t)); static int nge_alloc_jumbo_mem __P((struct nge_softc *)); static void nge_free_jumbo_mem __P((struct nge_softc *)); static void *nge_jalloc __P((struct nge_softc *)); static void nge_jfree __P((caddr_t, void *)); static int nge_newbuf __P((struct nge_softc *, struct nge_desc *, struct mbuf *)); static int nge_encap __P((struct nge_softc *, struct mbuf *, u_int32_t *)); static void nge_rxeof __P((struct nge_softc *)); static void nge_rxeoc __P((struct nge_softc *)); static void nge_txeof __P((struct nge_softc *)); static void nge_intr __P((void *)); static void nge_tick __P((void *)); static void nge_start __P((struct ifnet *)); static int nge_ioctl __P((struct ifnet *, u_long, caddr_t)); static void nge_init __P((void *)); static void nge_stop __P((struct nge_softc *)); static void nge_watchdog __P((struct ifnet *)); static void nge_shutdown __P((device_t)); static int nge_ifmedia_upd __P((struct ifnet *)); static void nge_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void nge_delay __P((struct nge_softc *)); static void nge_eeprom_idle __P((struct nge_softc *)); static void nge_eeprom_putbyte __P((struct nge_softc *, int)); static void nge_eeprom_getword __P((struct nge_softc *, int, u_int16_t *)); static void nge_read_eeprom __P((struct nge_softc *, caddr_t, int, int, int)); static void nge_mii_sync __P((struct nge_softc *)); static void nge_mii_send __P((struct nge_softc *, u_int32_t, int)); static int nge_mii_readreg __P((struct nge_softc *, struct nge_mii_frame *)); static int nge_mii_writereg __P((struct nge_softc *, struct nge_mii_frame *)); static int nge_miibus_readreg __P((device_t, int, int)); static int nge_miibus_writereg __P((device_t, int, int, int)); static void nge_miibus_statchg __P((device_t)); static void nge_setmulti __P((struct nge_softc *)); static u_int32_t nge_crc __P((struct nge_softc *, caddr_t)); static void nge_reset __P((struct nge_softc *)); static int nge_list_rx_init __P((struct nge_softc *)); static int nge_list_tx_init __P((struct nge_softc *)); #ifdef NGE_USEIOSPACE #define NGE_RES SYS_RES_IOPORT #define NGE_RID NGE_PCI_LOIO #else #define NGE_RES SYS_RES_MEMORY #define NGE_RID NGE_PCI_LOMEM #endif static device_method_t nge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, nge_probe), DEVMETHOD(device_attach, nge_attach), DEVMETHOD(device_detach, nge_detach), DEVMETHOD(device_shutdown, nge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, nge_miibus_readreg), DEVMETHOD(miibus_writereg, nge_miibus_writereg), DEVMETHOD(miibus_statchg, nge_miibus_statchg), { 0, 0 } }; static driver_t nge_driver = { "nge", nge_methods, sizeof(struct nge_softc) }; static devclass_t nge_devclass; DRIVER_MODULE(if_nge, pci, nge_driver, nge_devclass, 0, 0); DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0); #define NGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define NGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~x) static void nge_delay(sc) struct nge_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, NGE_CSR); return; } static void nge_eeprom_idle(sc) struct nge_softc *sc; { register int i; SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); } SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CSEL); nge_delay(sc); CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); return; } /* * Send a read command and address to the EEPROM, check for ACK. */ static void nge_eeprom_putbyte(sc, addr) struct nge_softc *sc; int addr; { register int d, i; d = addr | NGE_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(NGE_MEAR_EE_DIN); } else { SIO_CLR(NGE_MEAR_EE_DIN); } nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void nge_eeprom_getword(sc, addr, dest) struct nge_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ nge_eeprom_idle(sc); /* Enter EEPROM access mode. */ nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); /* * Send address of word we want to read. */ nge_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) word |= i; nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } /* Turn off EEPROM access mode. */ nge_eeprom_idle(sc); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ static void nge_read_eeprom(sc, dest, off, cnt, swap) struct nge_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { nge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void nge_mii_sync(sc) struct nge_softc *sc; { register int i; SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ static void nge_mii_send(sc, bits, cnt) struct nge_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(NGE_MEAR_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(NGE_MEAR_MII_DATA); } else { SIO_CLR(NGE_MEAR_MII_DATA); } DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); } } /* * Read an PHY register through the MII. */ static int nge_mii_readreg(sc, frame) struct nge_softc *sc; struct nge_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_4(sc, NGE_MEAR, 0); /* * Turn on data xmit. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); /* * Send command/address info. */ nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA)); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); /* Check for ack */ SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } fail: SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int nge_mii_writereg(sc, frame) struct nge_softc *sc; struct nge_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_WRITEOP; frame->mii_turnaround = NGE_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); nge_mii_send(sc, frame->mii_turnaround, 2); nge_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); splx(s); return(0); } static int nge_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct nge_softc *sc; struct nge_mii_frame frame; sc = device_get_softc(dev); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; nge_mii_readreg(sc, &frame); return(frame.mii_data); } static int nge_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct nge_softc *sc; struct nge_mii_frame frame; sc = device_get_softc(dev); bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; nge_mii_writereg(sc, &frame); return(0); } static void nge_miibus_statchg(dev) device_t dev; { struct nge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->nge_miibus); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } /* If we have a 1000Mbps link, set the mode_1000 bit. */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) { NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } else { NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } return; } static u_int32_t nge_crc(sc, addr) struct nge_softc *sc; caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* * return the filter bit position */ return((crc >> 21) & 0x00000FFF); } static void nge_setmulti(sc) struct nge_softc *sc; { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h = 0, i, filtsave; int bit, index; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); return; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. * We also have to tell it that we don't want to use the * hash table for matching unicast addresses. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH); filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); /* first, zot all the existing hash bits */ for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); } /* * From the 11 bits returned by the crc routine, the top 7 * bits represent the 16-bit word in the mcast hash table * that needs to be updated, and the lower 4 bits represent * which bit within that byte needs to be set. */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = nge_crc(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); index = (h >> 4) & 0x7F; bit = h & 0xF; CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2)); NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); } CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); return; } static void nge_reset(sc) struct nge_softc *sc; { register int i; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); for (i = 0; i < NGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) break; } if (i == NGE_TIMEOUT) printf("nge%d: reset never completed\n", sc->nge_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); CSR_WRITE_4(sc, NGE_CLKRUN, 0); return; } /* * Probe for an NatSemi chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int nge_probe(dev) device_t dev; { struct nge_type *t; t = nge_devs; while(t->nge_name != NULL) { if ((pci_get_vendor(dev) == t->nge_vid) && (pci_get_device(dev) == t->nge_did)) { device_set_desc(dev, t->nge_name); return(0); } t++; } return(ENXIO); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int nge_attach(dev) device_t dev; { int s; u_char eaddr[ETHER_ADDR_LEN]; u_int32_t command; struct nge_softc *sc; struct ifnet *ifp; int unit, error = 0, rid; s = splimp(); sc = device_get_softc(dev); unit = device_get_unit(dev); bzero(sc, sizeof(struct nge_softc)); mtx_init(&sc->nge_mtx, device_get_nameunit(dev), MTX_DEF|MTX_RECURSE); /* * Handle power management nonsense. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_read_config(dev, NGE_PCI_LOIO, 4); membase = pci_read_config(dev, NGE_PCI_LOMEM, 4); irq = pci_read_config(dev, NGE_PCI_INTLINE, 4); /* Reset the power state. */ printf("nge%d: chip is in D%d power mode " "-- setting to D0\n", unit, pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); /* Restore PCI config data. */ pci_write_config(dev, NGE_PCI_LOIO, iobase, 4); pci_write_config(dev, NGE_PCI_LOMEM, membase, 4); pci_write_config(dev, NGE_PCI_INTLINE, irq, 4); } /* * Map control/status registers. */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_IOPORT); pci_enable_io(dev, SYS_RES_MEMORY); command = pci_read_config(dev, PCIR_COMMAND, 4); #ifdef NGE_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { printf("nge%d: failed to enable I/O ports!\n", unit); error = ENXIO;; goto fail; } #else if (!(command & PCIM_CMD_MEMEN)) { printf("nge%d: failed to enable memory mapping!\n", unit); error = ENXIO;; goto fail; } #endif rid = NGE_RID; sc->nge_res = bus_alloc_resource(dev, NGE_RES, &rid, 0, ~0, 1, RF_ACTIVE); if (sc->nge_res == NULL) { printf("nge%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->nge_btag = rman_get_bustag(sc->nge_res); sc->nge_bhandle = rman_get_bushandle(sc->nge_res); /* Allocate interrupt */ rid = 0; sc->nge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1, RF_SHAREABLE | RF_ACTIVE); if (sc->nge_irq == NULL) { printf("nge%d: couldn't map interrupt\n", unit); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET, nge_intr, sc, &sc->nge_intrhand); if (error) { bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); printf("nge%d: couldn't set up irq\n", unit); goto fail; } /* Reset the adapter. */ nge_reset(sc); /* * Get station address from the EEPROM. */ nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0); nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0); nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0); /* * A NatSemi chip was detected. Inform the world. */ printf("nge%d: Ethernet address: %6D\n", unit, eaddr, ":"); sc->nge_unit = unit; bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->nge_ldata = contigmalloc(sizeof(struct nge_list_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->nge_ldata == NULL) { printf("nge%d: no memory for list buffers!\n", unit); bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); error = ENXIO; goto fail; } bzero(sc->nge_ldata, sizeof(struct nge_list_data)); /* Try to allocate memory for jumbo buffers. */ if (nge_alloc_jumbo_mem(sc)) { printf("nge%d: jumbo buffer allocation failed\n", sc->nge_unit); contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); error = ENXIO; goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = unit; ifp->if_name = "nge"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nge_ioctl; ifp->if_output = ether_output; ifp->if_start = nge_start; ifp->if_watchdog = nge_watchdog; ifp->if_init = nge_init; ifp->if_baudrate = 1000000000; ifp->if_snd.ifq_maxlen = NGE_TX_LIST_CNT - 1; ifp->if_hwassist = NGE_CSUM_FEATURES; /* * Do MII setup. */ if (mii_phy_probe(dev, &sc->nge_miibus, nge_ifmedia_upd, nge_ifmedia_sts)) { printf("nge%d: MII without any PHY!\n", sc->nge_unit); nge_free_jumbo_mem(sc); bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); error = ENXIO; goto fail; } /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); callout_handle_init(&sc->nge_stat_ch); fail: splx(s); mtx_destroy(&sc->nge_mtx); return(error); } static int nge_detach(dev) device_t dev; { struct nge_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; nge_reset(sc); nge_stop(sc); ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); bus_generic_detach(dev); device_delete_child(dev, sc->nge_miibus); bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand); bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq); bus_release_resource(dev, NGE_RES, NGE_RID, sc->nge_res); contigfree(sc->nge_ldata, sizeof(struct nge_list_data), M_DEVBUF); nge_free_jumbo_mem(sc); splx(s); mtx_destroy(&sc->nge_mtx); return(0); } /* * Initialize the transmit descriptors. */ static int nge_list_tx_init(sc) struct nge_softc *sc; { struct nge_list_data *ld; struct nge_ring_data *cd; int i; cd = &sc->nge_cdata; ld = sc->nge_ldata; for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (i == (NGE_TX_LIST_CNT - 1)) { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[0]; ld->nge_tx_list[i].nge_next = vtophys(&ld->nge_tx_list[0]); } else { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[i + 1]; ld->nge_tx_list[i].nge_next = vtophys(&ld->nge_tx_list[i + 1]); } ld->nge_tx_list[i].nge_mbuf = NULL; ld->nge_tx_list[i].nge_ptr = 0; ld->nge_tx_list[i].nge_ctl = 0; } cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int nge_list_rx_init(sc) struct nge_softc *sc; { struct nge_list_data *ld; struct nge_ring_data *cd; int i; ld = sc->nge_ldata; cd = &sc->nge_cdata; for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (NGE_RX_LIST_CNT - 1)) { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[0]; ld->nge_rx_list[i].nge_next = vtophys(&ld->nge_rx_list[0]); } else { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[i + 1]; ld->nge_rx_list[i].nge_next = vtophys(&ld->nge_rx_list[i + 1]); } } cd->nge_rx_prod = 0; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int nge_newbuf(sc, c, m) struct nge_softc *sc; struct nge_desc *c; struct mbuf *m; { struct mbuf *m_new = NULL; caddr_t *buf = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("nge%d: no memory for rx list " "-- packet dropped!\n", sc->nge_unit); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = nge_jalloc(sc); if (buf == NULL) { #ifdef NGE_VERBOSE printf("nge%d: jumbo allocation failed " "-- packet dropped!\n", sc->nge_unit); #endif m_freem(m_new); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_data = (void *)buf; m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; MEXTADD(m_new, buf, NGE_JUMBO_FRAMELEN, nge_jfree, (struct nge_softc *)sc, 0, EXT_NET_DRV); } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = NGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); c->nge_mbuf = m_new; c->nge_ptr = vtophys(mtod(m_new, caddr_t)); c->nge_ctl = m_new->m_len; c->nge_extsts = 0; return(0); } static int nge_alloc_jumbo_mem(sc) struct nge_softc *sc; { caddr_t ptr; register int i; struct nge_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc->nge_cdata.nge_jumbo_buf = contigmalloc(NGE_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->nge_cdata.nge_jumbo_buf == NULL) { printf("nge%d: no memory for jumbo buffers!\n", sc->nge_unit); return(ENOBUFS); } SLIST_INIT(&sc->nge_jfree_listhead); SLIST_INIT(&sc->nge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->nge_cdata.nge_jumbo_buf; for (i = 0; i < NGE_JSLOTS; i++) { sc->nge_cdata.nge_jslots[i] = ptr; ptr += NGE_JLEN; entry = malloc(sizeof(struct nge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { printf("nge%d: no memory for jumbo " "buffer queue!\n", sc->nge_unit); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); } return(0); } static void nge_free_jumbo_mem(sc) struct nge_softc *sc; { register int i; struct nge_jpool_entry *entry; for (i = 0; i < NGE_JSLOTS; i++) { entry = SLIST_FIRST(&sc->nge_jfree_listhead); SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); free(entry, M_DEVBUF); } contigfree(sc->nge_cdata.nge_jumbo_buf, NGE_JMEM, M_DEVBUF); return; } /* * Allocate a jumbo buffer. */ static void *nge_jalloc(sc) struct nge_softc *sc; { struct nge_jpool_entry *entry; entry = SLIST_FIRST(&sc->nge_jfree_listhead); if (entry == NULL) { #ifdef NGE_VERBOSE printf("nge%d: no free jumbo buffers\n", sc->nge_unit); #endif return(NULL); } SLIST_REMOVE_HEAD(&sc->nge_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries); return(sc->nge_cdata.nge_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void nge_jfree(buf, args) caddr_t buf; void *args; { struct nge_softc *sc; int i; struct nge_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = args; if (sc == NULL) panic("nge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)buf - (vm_offset_t)sc->nge_cdata.nge_jumbo_buf) / NGE_JLEN; if ((i < 0) || (i >= NGE_JSLOTS)) panic("nge_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc->nge_jinuse_listhead); if (entry == NULL) panic("nge_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->nge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void nge_rxeof(sc) struct nge_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct nge_desc *cur_rx; int i, total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; i = sc->nge_cdata.nge_rx_prod; while(NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { struct mbuf *m0 = NULL; u_int32_t extsts; cur_rx = &sc->nge_ldata->nge_rx_list[i]; rxstat = cur_rx->nge_rxstat; extsts = cur_rx->nge_extsts; m = cur_rx->nge_mbuf; cur_rx->nge_mbuf = NULL; total_len = NGE_RXBYTES(cur_rx); NGE_INC(i, NGE_RX_LIST_CNT); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (!(rxstat & NGE_CMDSTS_PKT_OK)) { ifp->if_ierrors++; nge_newbuf(sc, cur_rx, m); continue; } /* * Ok. NatSemi really screwed up here. This is the * only gigE chip I know of with alignment constraints * on receive buffers. RX buffers must be 64-bit aligned. */ #ifdef __i386__ /* * By popular demand, ignore the alignment problems * on the Intel x86 platform. The performance hit * incurred due to unaligned accesses is much smaller * than the hit produced by forcing buffer copies all * the time, especially with jumbo frames. We still * need to fix up the alignment everywhere else though. */ if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { #endif m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); nge_newbuf(sc, cur_rx, m); if (m0 == NULL) { printf("nge%d: no receive buffers " "available -- packet dropped!\n", sc->nge_unit); ifp->if_ierrors++; continue; } m = m0; #ifdef __i386__ } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } #endif ifp->if_ipackets++; eh = mtod(m, struct ether_header *); /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); /* Do IP checksum checking. */ if (extsts & NGE_RXEXTSTS_IPPKT) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((extsts & NGE_RXEXTSTS_TCPPKT && !(extsts & NGE_RXEXTSTS_TCPCSUMERR)) || (extsts & NGE_RXEXTSTS_UDPPKT && !(extsts & NGE_RXEXTSTS_UDPCSUMERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #if NVLAN > 0 /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (extsts & NGE_RXEXTSTS_VLANPKT) { vlan_input_tag(eh, m, extsts & NGE_RXEXTSTS_VTCI); continue; } #endif ether_input(ifp, eh, m); } sc->nge_cdata.nge_rx_prod = i; return; } void nge_rxeoc(sc) struct nge_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; nge_rxeof(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void nge_txeof(sc) struct nge_softc *sc; { struct nge_desc *cur_tx = NULL; struct ifnet *ifp; u_int32_t idx; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->nge_cdata.nge_tx_cons; while (idx != sc->nge_cdata.nge_tx_prod) { cur_tx = &sc->nge_ldata->nge_tx_list[idx]; if (NGE_OWNDESC(cur_tx)) break; if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); continue; } if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { ifp->if_oerrors++; if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) ifp->if_collisions++; if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) ifp->if_collisions++; } ifp->if_collisions += (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; ifp->if_opackets++; if (cur_tx->nge_mbuf != NULL) { m_freem(cur_tx->nge_mbuf); cur_tx->nge_mbuf = NULL; } sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); ifp->if_timer = 0; } sc->nge_cdata.nge_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } static void nge_tick(xsc) void *xsc; { struct nge_softc *sc; struct mii_data *mii; struct ifnet *ifp; int s; s = splimp(); sc = xsc; ifp = &sc->arpcom.ac_if; mii = device_get_softc(sc->nge_miibus); mii_tick(mii); if (!sc->nge_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->nge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) printf("nge%d: gigabit link up\n", sc->nge_unit); if (ifp->if_snd.ifq_head != NULL) nge_start(ifp); } else sc->nge_stat_ch = timeout(nge_tick, sc, hz); } splx(s); return; } static void nge_intr(arg) void *arg; { struct nge_softc *sc; struct ifnet *ifp; u_int32_t status; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { nge_stop(sc); return; } /* Disable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 0); for (;;) { /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if ((status & NGE_INTRS) == 0) break; if ((status & NGE_ISR_TX_DESC_OK) || (status & NGE_ISR_TX_ERR) || (status & NGE_ISR_TX_OK) || (status & NGE_ISR_TX_IDLE)) nge_txeof(sc); if ((status & NGE_ISR_RX_DESC_OK) || (status & NGE_ISR_RX_ERR) || (status & NGE_ISR_RX_OK)) nge_rxeof(sc); if ((status & NGE_ISR_RX_OFLOW)) nge_rxeoc(sc); if (status & NGE_ISR_SYSERR) { nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } if (status & NGE_IMR_PHY_INTR) { sc->nge_link = 0; nge_tick(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 1); if (ifp->if_snd.ifq_head != NULL) nge_start(ifp); return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int nge_encap(sc, m_head, txidx) struct nge_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct nge_desc *f = NULL; struct mbuf *m; int frag, cur, cnt = 0; #if NVLAN > 0 struct ifvlan *ifv = NULL; if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL && m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) ifv = m_head->m_pkthdr.rcvif->if_softc; #endif /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur = frag = *txidx; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((NGE_TX_LIST_CNT - (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) return(ENOBUFS); f = &sc->nge_ldata->nge_tx_list[frag]; f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; f->nge_ptr = vtophys(mtod(m, vm_offset_t)); if (cnt != 0) f->nge_ctl |= NGE_CMDSTS_OWN; cur = frag; NGE_INC(frag, NGE_TX_LIST_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_IPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_TCP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_TCPCSUM; if (m_head->m_pkthdr.csum_flags & CSUM_UDP) sc->nge_ldata->nge_tx_list[*txidx].nge_extsts |= NGE_TXEXTSTS_UDPCSUM; } #if NVLAN > 0 if (ifv != NULL) { sc->nge_ldata->nge_tx_list[cur].nge_extsts |= (NGE_TXEXTSTS_VLANPKT|ifv->ifv_tag); } #endif sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; sc->nge_cdata.nge_tx_cnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void nge_start(ifp) struct ifnet *ifp; { struct nge_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx; sc = ifp->if_softc; if (!sc->nge_link) return; idx = sc->nge_cdata.nge_tx_prod; if (ifp->if_flags & IFF_OACTIVE) return; while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (nge_encap(sc, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); } /* Transmit */ sc->nge_cdata.nge_tx_prod = idx; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void nge_init(xsc) void *xsc; { struct nge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int s; if (ifp->if_flags & IFF_RUNNING) return; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ nge_stop(sc); mii = device_get_softc(sc->nge_miibus); /* Set MAC address */ CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); /* Init circular RX list. */ if (nge_list_rx_init(sc) == ENOBUFS) { printf("nge%d: initialization failed: no " "memory for rx buffers\n", sc->nge_unit); nge_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ nge_list_tx_init(sc); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); } else { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); } /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); } else { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); } /* * Load the multicast filter. */ nge_setmulti(sc); /* Turn the receive filter on */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, NGE_RX_LISTPTR, vtophys(&sc->nge_ldata->nge_rx_list[0])); CSR_WRITE_4(sc, NGE_TX_LISTPTR, vtophys(&sc->nge_ldata->nge_tx_list[0])); /* Set RX configuration */ CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); /* * Enable hardware checksum validation for all IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); #if NVLAN > 0 /* * If VLAN support is enabled, tell the chip to detect * and strip VLAN tag info from received frames. The tag * will be provided in the extsts field in the RX descriptors. */ NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB|NGE_VIPRXCTL_TAG_STRIP_ENB); #endif /* Set TX configuration */ CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); /* * Enable TX IPv4 checksumming on a per-packet basis. */ CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT); #if NVLAN > 0 /* * If VLAN support is enabled, tell the chip to insert * VLAN tags on a per-packet basis as dictated by the * code in the frame encapsulation routine. */ NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); #endif /* Set full/half duplex mode. */ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { NGE_SETBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } else { NGE_CLRBIT(sc, NGE_TX_CFG, (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR)); NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX); } /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status changes. Also enable the * extsts field in the DMA descriptors (needed for * TCP/IP checksum offload on transmit). */ NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD| NGE_CFG_PHYINTR_LNK|NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB); /* * Configure interrupt holdoff (moderation). We can * have the chip delay interrupt delivery for a certain * period. Units are in 100us, and the max setting * is 25500us (0xFF x 100us). Default is a 100us holdoff. */ CSR_WRITE_4(sc, NGE_IHR, 0x01); /* * Enable interrupts. */ CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); CSR_WRITE_4(sc, NGE_IER, 1); /* Enable receiver and transmitter. */ NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); nge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); return; } /* * Set media options. */ static int nge_ifmedia_upd(ifp) struct ifnet *ifp; { struct nge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->nge_miibus); sc->nge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ static void nge_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct nge_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->nge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int nge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct nge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: error = ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: if (ifr->ifr_mtu > NGE_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; /* * Workaround: if the MTU is larger than * 8152 (TX FIFO size minus 64 minus 18), turn off * TX checksum offloading. */ if (ifr->ifr_mtu >= 8152) ifp->if_hwassist = 0; else ifp->if_hwassist = NGE_CSUM_FEATURES; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->nge_if_flags & IFF_PROMISC)) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS| NGE_RXFILTCTL_ALLMULTI); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->nge_if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); if (!(ifp->if_flags & IFF_ALLMULTI)) NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); } else { ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) nge_stop(sc); } sc->nge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: nge_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->nge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void nge_watchdog(ifp) struct ifnet *ifp; { struct nge_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("nge%d: watchdog timeout\n", sc->nge_unit); nge_stop(sc); nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); if (ifp->if_snd.ifq_head != NULL) nge_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void nge_stop(sc) struct nge_softc *sc; { register int i; struct ifnet *ifp; struct ifmedia_entry *ifm; struct mii_data *mii; int mtmp, itmp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; mii = device_get_softc(sc->nge_miibus); untimeout(nge_tick, sc, sc->nge_stat_ch); CSR_WRITE_4(sc, NGE_IER, 0); CSR_WRITE_4(sc, NGE_IMR, 0); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; sc->nge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; } } bzero((char *)&sc->nge_ldata->nge_rx_list, sizeof(sc->nge_ldata->nge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; } } bzero((char *)&sc->nge_ldata->nge_tx_list, sizeof(sc->nge_ldata->nge_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void nge_shutdown(dev) device_t dev; { struct nge_softc *sc; sc = device_get_softc(dev); nge_reset(sc); nge_stop(sc); return; }