/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, Stefan Esser * Copyright (c) 2000, Michael Smith * Copyright (c) 2000, BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bus.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) #include #endif #include #include #include #include #ifdef PCI_IOV #include #include #endif #include #include #include #include #include "pcib_if.h" #include "pci_if.h" #define PCIR_IS_BIOS(cfg, reg) \ (((cfg)->hdrtype == PCIM_HDRTYPE_NORMAL && reg == PCIR_BIOS) || \ ((cfg)->hdrtype == PCIM_HDRTYPE_BRIDGE && reg == PCIR_BIOS_1)) static int pci_has_quirk(uint32_t devid, int quirk); static pci_addr_t pci_mapbase(uint64_t mapreg); static const char *pci_maptype(uint64_t mapreg); static int pci_maprange(uint64_t mapreg); static pci_addr_t pci_rombase(uint64_t mapreg); static int pci_romsize(uint64_t testval); static void pci_fixancient(pcicfgregs *cfg); static int pci_printf(pcicfgregs *cfg, const char *fmt, ...); static int pci_porten(device_t dev); static int pci_memen(device_t dev); static void pci_assign_interrupt(device_t bus, device_t dev, int force_route); static int pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, int force, int prefetch); static int pci_probe(device_t dev); static int pci_attach(device_t dev); static int pci_detach(device_t dev); static void pci_load_vendor_data(void); static int pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc); static char *pci_describe_device(device_t dev); static int pci_modevent(module_t mod, int what, void *arg); static void pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg); static void pci_read_cap(device_t pcib, pcicfgregs *cfg); static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data); #if 0 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data); #endif static void pci_read_vpd(device_t pcib, pcicfgregs *cfg); static void pci_mask_msix(device_t dev, u_int index); static void pci_unmask_msix(device_t dev, u_int index); static int pci_msi_blacklisted(void); static int pci_msix_blacklisted(void); static void pci_resume_msi(device_t dev); static void pci_resume_msix(device_t dev); static int pci_remap_intr_method(device_t bus, device_t dev, u_int irq); static void pci_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp); static int pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, uintptr_t *rid); static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, uint16_t vid, uint16_t did); static device_method_t pci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, pci_probe), DEVMETHOD(device_attach, pci_attach), DEVMETHOD(device_detach, pci_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, pci_resume), /* Bus interface */ DEVMETHOD(bus_print_child, pci_print_child), DEVMETHOD(bus_probe_nomatch, pci_probe_nomatch), DEVMETHOD(bus_read_ivar, pci_read_ivar), DEVMETHOD(bus_write_ivar, pci_write_ivar), DEVMETHOD(bus_driver_added, pci_driver_added), DEVMETHOD(bus_setup_intr, pci_setup_intr), DEVMETHOD(bus_teardown_intr, pci_teardown_intr), DEVMETHOD(bus_get_dma_tag, pci_get_dma_tag), DEVMETHOD(bus_get_resource_list,pci_get_resource_list), DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_delete_resource, pci_delete_resource), DEVMETHOD(bus_alloc_resource, pci_alloc_resource), DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), DEVMETHOD(bus_release_resource, pci_release_resource), DEVMETHOD(bus_activate_resource, pci_activate_resource), DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), DEVMETHOD(bus_child_deleted, pci_child_deleted), DEVMETHOD(bus_child_detached, pci_child_detached), DEVMETHOD(bus_child_pnpinfo_str, pci_child_pnpinfo_str_method), DEVMETHOD(bus_child_location_str, pci_child_location_str_method), DEVMETHOD(bus_hint_device_unit, pci_hint_device_unit), DEVMETHOD(bus_remap_intr, pci_remap_intr_method), DEVMETHOD(bus_suspend_child, pci_suspend_child), DEVMETHOD(bus_resume_child, pci_resume_child), DEVMETHOD(bus_rescan, pci_rescan_method), /* PCI interface */ DEVMETHOD(pci_read_config, pci_read_config_method), DEVMETHOD(pci_write_config, pci_write_config_method), DEVMETHOD(pci_enable_busmaster, pci_enable_busmaster_method), DEVMETHOD(pci_disable_busmaster, pci_disable_busmaster_method), DEVMETHOD(pci_enable_io, pci_enable_io_method), DEVMETHOD(pci_disable_io, pci_disable_io_method), DEVMETHOD(pci_get_vpd_ident, pci_get_vpd_ident_method), DEVMETHOD(pci_get_vpd_readonly, pci_get_vpd_readonly_method), DEVMETHOD(pci_get_powerstate, pci_get_powerstate_method), DEVMETHOD(pci_set_powerstate, pci_set_powerstate_method), DEVMETHOD(pci_assign_interrupt, pci_assign_interrupt_method), DEVMETHOD(pci_find_cap, pci_find_cap_method), DEVMETHOD(pci_find_next_cap, pci_find_next_cap_method), DEVMETHOD(pci_find_extcap, pci_find_extcap_method), DEVMETHOD(pci_find_next_extcap, pci_find_next_extcap_method), DEVMETHOD(pci_find_htcap, pci_find_htcap_method), DEVMETHOD(pci_find_next_htcap, pci_find_next_htcap_method), DEVMETHOD(pci_alloc_msi, pci_alloc_msi_method), DEVMETHOD(pci_alloc_msix, pci_alloc_msix_method), DEVMETHOD(pci_enable_msi, pci_enable_msi_method), DEVMETHOD(pci_enable_msix, pci_enable_msix_method), DEVMETHOD(pci_disable_msi, pci_disable_msi_method), DEVMETHOD(pci_remap_msix, pci_remap_msix_method), DEVMETHOD(pci_release_msi, pci_release_msi_method), DEVMETHOD(pci_msi_count, pci_msi_count_method), DEVMETHOD(pci_msix_count, pci_msix_count_method), DEVMETHOD(pci_msix_pba_bar, pci_msix_pba_bar_method), DEVMETHOD(pci_msix_table_bar, pci_msix_table_bar_method), DEVMETHOD(pci_get_id, pci_get_id_method), DEVMETHOD(pci_alloc_devinfo, pci_alloc_devinfo_method), DEVMETHOD(pci_child_added, pci_child_added_method), #ifdef PCI_IOV DEVMETHOD(pci_iov_attach, pci_iov_attach_method), DEVMETHOD(pci_iov_detach, pci_iov_detach_method), DEVMETHOD(pci_create_iov_child, pci_create_iov_child_method), #endif DEVMETHOD_END }; DEFINE_CLASS_0(pci, pci_driver, pci_methods, sizeof(struct pci_softc)); static devclass_t pci_devclass; DRIVER_MODULE(pci, pcib, pci_driver, pci_devclass, pci_modevent, NULL); MODULE_VERSION(pci, 1); static char *pci_vendordata; static size_t pci_vendordata_size; struct pci_quirk { uint32_t devid; /* Vendor/device of the card */ int type; #define PCI_QUIRK_MAP_REG 1 /* PCI map register in weird place */ #define PCI_QUIRK_DISABLE_MSI 2 /* Neither MSI nor MSI-X work */ #define PCI_QUIRK_ENABLE_MSI_VM 3 /* Older chipset in VM where MSI works */ #define PCI_QUIRK_UNMAP_REG 4 /* Ignore PCI map register */ #define PCI_QUIRK_DISABLE_MSIX 5 /* MSI-X doesn't work */ #define PCI_QUIRK_MSI_INTX_BUG 6 /* PCIM_CMD_INTxDIS disables MSI */ int arg1; int arg2; }; static const struct pci_quirk pci_quirks[] = { /* The Intel 82371AB and 82443MX have a map register at offset 0x90. */ { 0x71138086, PCI_QUIRK_MAP_REG, 0x90, 0 }, { 0x719b8086, PCI_QUIRK_MAP_REG, 0x90, 0 }, /* As does the Serverworks OSB4 (the SMBus mapping register) */ { 0x02001166, PCI_QUIRK_MAP_REG, 0x90, 0 }, /* * MSI doesn't work with the ServerWorks CNB20-HE Host Bridge * or the CMIC-SL (AKA ServerWorks GC_LE). */ { 0x00141166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x00171166, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI doesn't work on earlier Intel chipsets including * E7500, E7501, E7505, 845, 865, 875/E7210, and 855. */ { 0x25408086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x254c8086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25508086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25608086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25708086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x25788086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, { 0x35808086, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI doesn't work with devices behind the AMD 8131 HT-PCIX * bridge. */ { 0x74501022, PCI_QUIRK_DISABLE_MSI, 0, 0 }, /* * MSI-X allocation doesn't work properly for devices passed through * by VMware up to at least ESXi 5.1. */ { 0x079015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCI/PCI-X */ { 0x07a015ad, PCI_QUIRK_DISABLE_MSIX, 0, 0 }, /* PCIe */ /* * Some virtualization environments emulate an older chipset * but support MSI just fine. QEMU uses the Intel 82440. */ { 0x12378086, PCI_QUIRK_ENABLE_MSI_VM, 0, 0 }, /* * HPET MMIO base address may appear in Bar1 for AMD SB600 SMBus * controller depending on SoftPciRst register (PM_IO 0x55 [7]). * It prevents us from attaching hpet(4) when the bit is unset. * Note this quirk only affects SB600 revision A13 and earlier. * For SB600 A21 and later, firmware must set the bit to hide it. * For SB700 and later, it is unused and hardcoded to zero. */ { 0x43851002, PCI_QUIRK_UNMAP_REG, 0x14, 0 }, /* * Atheros AR8161/AR8162/E2200/E2400/E2500 Ethernet controllers have * a bug that MSI interrupt does not assert if PCIM_CMD_INTxDIS bit * of the command register is set. */ { 0x10911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0xE0911969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0xE0A11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0xE0B11969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, { 0x10901969, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* * Broadcom BCM5714(S)/BCM5715(S)/BCM5780(S) Ethernet MACs don't * issue MSI interrupts with PCIM_CMD_INTxDIS set either. */ { 0x166814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714 */ { 0x166914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5714S */ { 0x166a14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780 */ { 0x166b14e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5780S */ { 0x167814e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715 */ { 0x167914e4, PCI_QUIRK_MSI_INTX_BUG, 0, 0 }, /* BCM5715S */ { 0 } }; /* map register information */ #define PCI_MAPMEM 0x01 /* memory map */ #define PCI_MAPMEMP 0x02 /* prefetchable memory map */ #define PCI_MAPPORT 0x04 /* port map */ struct devlist pci_devq; uint32_t pci_generation; uint32_t pci_numdevs = 0; static int pcie_chipset, pcix_chipset; /* sysctl vars */ SYSCTL_NODE(_hw, OID_AUTO, pci, CTLFLAG_RD, 0, "PCI bus tuning parameters"); static int pci_enable_io_modes = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_io_modes, CTLFLAG_RWTUN, &pci_enable_io_modes, 1, "Enable I/O and memory bits in the config register. Some BIOSes do not" " enable these bits correctly. We'd like to do this all the time, but" " there are some peripherals that this causes problems with."); static int pci_do_realloc_bars = 0; SYSCTL_INT(_hw_pci, OID_AUTO, realloc_bars, CTLFLAG_RWTUN, &pci_do_realloc_bars, 0, "Attempt to allocate a new range for any BARs whose original " "firmware-assigned ranges fail to allocate during the initial device scan."); static int pci_do_power_nodriver = 0; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_nodriver, CTLFLAG_RWTUN, &pci_do_power_nodriver, 0, "Place a function into D3 state when no driver attaches to it. 0 means" " disable. 1 means conservatively place devices into D3 state. 2 means" " aggressively place devices into D3 state. 3 means put absolutely" " everything in D3 state."); int pci_do_power_resume = 1; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_resume, CTLFLAG_RWTUN, &pci_do_power_resume, 1, "Transition from D3 -> D0 on resume."); int pci_do_power_suspend = 1; SYSCTL_INT(_hw_pci, OID_AUTO, do_power_suspend, CTLFLAG_RWTUN, &pci_do_power_suspend, 1, "Transition from D0 -> D3 on suspend."); static int pci_do_msi = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_msi, CTLFLAG_RWTUN, &pci_do_msi, 1, "Enable support for MSI interrupts"); static int pci_do_msix = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_msix, CTLFLAG_RWTUN, &pci_do_msix, 1, "Enable support for MSI-X interrupts"); static int pci_msix_rewrite_table = 0; SYSCTL_INT(_hw_pci, OID_AUTO, msix_rewrite_table, CTLFLAG_RWTUN, &pci_msix_rewrite_table, 0, "Rewrite entire MSI-X table when updating MSI-X entries"); static int pci_honor_msi_blacklist = 1; SYSCTL_INT(_hw_pci, OID_AUTO, honor_msi_blacklist, CTLFLAG_RDTUN, &pci_honor_msi_blacklist, 1, "Honor chipset blacklist for MSI/MSI-X"); #if defined(__i386__) || defined(__amd64__) static int pci_usb_takeover = 1; #else static int pci_usb_takeover = 0; #endif SYSCTL_INT(_hw_pci, OID_AUTO, usb_early_takeover, CTLFLAG_RDTUN, &pci_usb_takeover, 1, "Enable early takeover of USB controllers. Disable this if you depend on" " BIOS emulation of USB devices, that is you use USB devices (like" " keyboard or mouse) but do not load USB drivers"); static int pci_clear_bars; SYSCTL_INT(_hw_pci, OID_AUTO, clear_bars, CTLFLAG_RDTUN, &pci_clear_bars, 0, "Ignore firmware-assigned resources for BARs."); #if defined(NEW_PCIB) && defined(PCI_RES_BUS) static int pci_clear_buses; SYSCTL_INT(_hw_pci, OID_AUTO, clear_buses, CTLFLAG_RDTUN, &pci_clear_buses, 0, "Ignore firmware-assigned bus numbers."); #endif static int pci_enable_ari = 1; SYSCTL_INT(_hw_pci, OID_AUTO, enable_ari, CTLFLAG_RDTUN, &pci_enable_ari, 0, "Enable support for PCIe Alternative RID Interpretation"); static int pci_has_quirk(uint32_t devid, int quirk) { const struct pci_quirk *q; for (q = &pci_quirks[0]; q->devid; q++) { if (q->devid == devid && q->type == quirk) return (1); } return (0); } /* Find a device_t by bus/slot/function in domain 0 */ device_t pci_find_bsf(uint8_t bus, uint8_t slot, uint8_t func) { return (pci_find_dbsf(0, bus, slot, func)); } /* Find a device_t by domain/bus/slot/function */ device_t pci_find_dbsf(uint32_t domain, uint8_t bus, uint8_t slot, uint8_t func) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if ((dinfo->cfg.domain == domain) && (dinfo->cfg.bus == bus) && (dinfo->cfg.slot == slot) && (dinfo->cfg.func == func)) { return (dinfo->cfg.dev); } } return (NULL); } /* Find a device_t by vendor/device ID */ device_t pci_find_device(uint16_t vendor, uint16_t device) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if ((dinfo->cfg.vendor == vendor) && (dinfo->cfg.device == device)) { return (dinfo->cfg.dev); } } return (NULL); } device_t pci_find_class(uint8_t class, uint8_t subclass) { struct pci_devinfo *dinfo; STAILQ_FOREACH(dinfo, &pci_devq, pci_links) { if (dinfo->cfg.baseclass == class && dinfo->cfg.subclass == subclass) { return (dinfo->cfg.dev); } } return (NULL); } static int pci_printf(pcicfgregs *cfg, const char *fmt, ...) { va_list ap; int retval; retval = printf("pci%d:%d:%d:%d: ", cfg->domain, cfg->bus, cfg->slot, cfg->func); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } /* return base address of memory or port map */ static pci_addr_t pci_mapbase(uint64_t mapreg) { if (PCI_BAR_MEM(mapreg)) return (mapreg & PCIM_BAR_MEM_BASE); else return (mapreg & PCIM_BAR_IO_BASE); } /* return map type of memory or port map */ static const char * pci_maptype(uint64_t mapreg) { if (PCI_BAR_IO(mapreg)) return ("I/O Port"); if (mapreg & PCIM_BAR_MEM_PREFETCH) return ("Prefetchable Memory"); return ("Memory"); } /* return log2 of map size decoded for memory or port map */ int pci_mapsize(uint64_t testval) { int ln2size; testval = pci_mapbase(testval); ln2size = 0; if (testval != 0) { while ((testval & 1) == 0) { ln2size++; testval >>= 1; } } return (ln2size); } /* return base address of device ROM */ static pci_addr_t pci_rombase(uint64_t mapreg) { return (mapreg & PCIM_BIOS_ADDR_MASK); } /* return log2 of map size decided for device ROM */ static int pci_romsize(uint64_t testval) { int ln2size; testval = pci_rombase(testval); ln2size = 0; if (testval != 0) { while ((testval & 1) == 0) { ln2size++; testval >>= 1; } } return (ln2size); } /* return log2 of address range supported by map register */ static int pci_maprange(uint64_t mapreg) { int ln2range = 0; if (PCI_BAR_IO(mapreg)) ln2range = 32; else switch (mapreg & PCIM_BAR_MEM_TYPE) { case PCIM_BAR_MEM_32: ln2range = 32; break; case PCIM_BAR_MEM_1MB: ln2range = 20; break; case PCIM_BAR_MEM_64: ln2range = 64; break; } return (ln2range); } /* adjust some values from PCI 1.0 devices to match 2.0 standards ... */ static void pci_fixancient(pcicfgregs *cfg) { if ((cfg->hdrtype & PCIM_HDRTYPE) != PCIM_HDRTYPE_NORMAL) return; /* PCI to PCI bridges use header type 1 */ if (cfg->baseclass == PCIC_BRIDGE && cfg->subclass == PCIS_BRIDGE_PCI) cfg->hdrtype = PCIM_HDRTYPE_BRIDGE; } /* extract header type specific config data */ static void pci_hdrtypedata(device_t pcib, int b, int s, int f, pcicfgregs *cfg) { #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: cfg->subvendor = REG(PCIR_SUBVEND_0, 2); cfg->subdevice = REG(PCIR_SUBDEV_0, 2); cfg->mingnt = REG(PCIR_MINGNT, 1); cfg->maxlat = REG(PCIR_MAXLAT, 1); cfg->nummaps = PCI_MAXMAPS_0; break; case PCIM_HDRTYPE_BRIDGE: cfg->bridge.br_seclat = REG(PCIR_SECLAT_1, 1); cfg->bridge.br_subbus = REG(PCIR_SUBBUS_1, 1); cfg->bridge.br_secbus = REG(PCIR_SECBUS_1, 1); cfg->bridge.br_pribus = REG(PCIR_PRIBUS_1, 1); cfg->bridge.br_control = REG(PCIR_BRIDGECTL_1, 2); cfg->nummaps = PCI_MAXMAPS_1; break; case PCIM_HDRTYPE_CARDBUS: cfg->bridge.br_seclat = REG(PCIR_SECLAT_2, 1); cfg->bridge.br_subbus = REG(PCIR_SUBBUS_2, 1); cfg->bridge.br_secbus = REG(PCIR_SECBUS_2, 1); cfg->bridge.br_pribus = REG(PCIR_PRIBUS_2, 1); cfg->bridge.br_control = REG(PCIR_BRIDGECTL_2, 2); cfg->subvendor = REG(PCIR_SUBVEND_2, 2); cfg->subdevice = REG(PCIR_SUBDEV_2, 2); cfg->nummaps = PCI_MAXMAPS_2; break; } #undef REG } /* read configuration header into pcicfgregs structure */ struct pci_devinfo * pci_read_device(device_t pcib, device_t bus, int d, int b, int s, int f) { #define REG(n, w) PCIB_READ_CONFIG(pcib, b, s, f, n, w) uint16_t vid, did; vid = REG(PCIR_VENDOR, 2); did = REG(PCIR_DEVICE, 2); if (vid != 0xffff) return (pci_fill_devinfo(pcib, bus, d, b, s, f, vid, did)); return (NULL); } struct pci_devinfo * pci_alloc_devinfo_method(device_t dev) { return (malloc(sizeof(struct pci_devinfo), M_DEVBUF, M_WAITOK | M_ZERO)); } static struct pci_devinfo * pci_fill_devinfo(device_t pcib, device_t bus, int d, int b, int s, int f, uint16_t vid, uint16_t did) { struct pci_devinfo *devlist_entry; pcicfgregs *cfg; devlist_entry = PCI_ALLOC_DEVINFO(bus); cfg = &devlist_entry->cfg; cfg->domain = d; cfg->bus = b; cfg->slot = s; cfg->func = f; cfg->vendor = vid; cfg->device = did; cfg->cmdreg = REG(PCIR_COMMAND, 2); cfg->statreg = REG(PCIR_STATUS, 2); cfg->baseclass = REG(PCIR_CLASS, 1); cfg->subclass = REG(PCIR_SUBCLASS, 1); cfg->progif = REG(PCIR_PROGIF, 1); cfg->revid = REG(PCIR_REVID, 1); cfg->hdrtype = REG(PCIR_HDRTYPE, 1); cfg->cachelnsz = REG(PCIR_CACHELNSZ, 1); cfg->lattimer = REG(PCIR_LATTIMER, 1); cfg->intpin = REG(PCIR_INTPIN, 1); cfg->intline = REG(PCIR_INTLINE, 1); cfg->mfdev = (cfg->hdrtype & PCIM_MFDEV) != 0; cfg->hdrtype &= ~PCIM_MFDEV; STAILQ_INIT(&cfg->maps); cfg->iov = NULL; pci_fixancient(cfg); pci_hdrtypedata(pcib, b, s, f, cfg); if (REG(PCIR_STATUS, 2) & PCIM_STATUS_CAPPRESENT) pci_read_cap(pcib, cfg); STAILQ_INSERT_TAIL(&pci_devq, devlist_entry, pci_links); devlist_entry->conf.pc_sel.pc_domain = cfg->domain; devlist_entry->conf.pc_sel.pc_bus = cfg->bus; devlist_entry->conf.pc_sel.pc_dev = cfg->slot; devlist_entry->conf.pc_sel.pc_func = cfg->func; devlist_entry->conf.pc_hdr = cfg->hdrtype; devlist_entry->conf.pc_subvendor = cfg->subvendor; devlist_entry->conf.pc_subdevice = cfg->subdevice; devlist_entry->conf.pc_vendor = cfg->vendor; devlist_entry->conf.pc_device = cfg->device; devlist_entry->conf.pc_class = cfg->baseclass; devlist_entry->conf.pc_subclass = cfg->subclass; devlist_entry->conf.pc_progif = cfg->progif; devlist_entry->conf.pc_revid = cfg->revid; pci_numdevs++; pci_generation++; return (devlist_entry); } #undef REG static void pci_ea_fill_info(device_t pcib, pcicfgregs *cfg) { #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, \ cfg->ea.ea_location + (n), w) int num_ent; int ptr; int a, b; uint32_t val; int ent_size; uint32_t dw[4]; uint64_t base, max_offset; struct pci_ea_entry *eae; if (cfg->ea.ea_location == 0) return; STAILQ_INIT(&cfg->ea.ea_entries); /* Determine the number of entries */ num_ent = REG(PCIR_EA_NUM_ENT, 2); num_ent &= PCIM_EA_NUM_ENT_MASK; /* Find the first entry to care of */ ptr = PCIR_EA_FIRST_ENT; /* Skip DWORD 2 for type 1 functions */ if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) ptr += 4; for (a = 0; a < num_ent; a++) { eae = malloc(sizeof(*eae), M_DEVBUF, M_WAITOK | M_ZERO); eae->eae_cfg_offset = cfg->ea.ea_location + ptr; /* Read a number of dwords in the entry */ val = REG(ptr, 4); ptr += 4; ent_size = (val & PCIM_EA_ES); for (b = 0; b < ent_size; b++) { dw[b] = REG(ptr, 4); ptr += 4; } eae->eae_flags = val; eae->eae_bei = (PCIM_EA_BEI & val) >> PCIM_EA_BEI_OFFSET; base = dw[0] & PCIM_EA_FIELD_MASK; max_offset = dw[1] | ~PCIM_EA_FIELD_MASK; b = 2; if (((dw[0] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { base |= (uint64_t)dw[b] << 32UL; b++; } if (((dw[1] & PCIM_EA_IS_64) != 0) && (b < ent_size)) { max_offset |= (uint64_t)dw[b] << 32UL; b++; } eae->eae_base = base; eae->eae_max_offset = max_offset; STAILQ_INSERT_TAIL(&cfg->ea.ea_entries, eae, eae_link); if (bootverbose) { printf("PCI(EA) dev %04x:%04x, bei %d, flags #%x, base #%jx, max_offset #%jx\n", cfg->vendor, cfg->device, eae->eae_bei, eae->eae_flags, (uintmax_t)eae->eae_base, (uintmax_t)eae->eae_max_offset); } } } #undef REG static void pci_read_cap(device_t pcib, pcicfgregs *cfg) { #define REG(n, w) PCIB_READ_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, w) #define WREG(n, v, w) PCIB_WRITE_CONFIG(pcib, cfg->bus, cfg->slot, cfg->func, n, v, w) #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) uint64_t addr; #endif uint32_t val; int ptr, nextptr, ptrptr; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptrptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptrptr = PCIR_CAP_PTR_2; /* cardbus capabilities ptr */ break; default: return; /* no extended capabilities support */ } nextptr = REG(ptrptr, 1); /* sanity check? */ /* * Read capability entries. */ while (nextptr != 0) { /* Sanity check */ if (nextptr > 255) { printf("illegal PCI extended capability offset %d\n", nextptr); return; } /* Find the next entry */ ptr = nextptr; nextptr = REG(ptr + PCICAP_NEXTPTR, 1); /* Process this entry */ switch (REG(ptr + PCICAP_ID, 1)) { case PCIY_PMG: /* PCI power management */ if (cfg->pp.pp_cap == 0) { cfg->pp.pp_cap = REG(ptr + PCIR_POWER_CAP, 2); cfg->pp.pp_status = ptr + PCIR_POWER_STATUS; cfg->pp.pp_bse = ptr + PCIR_POWER_BSE; if ((nextptr - ptr) > PCIR_POWER_DATA) cfg->pp.pp_data = ptr + PCIR_POWER_DATA; } break; case PCIY_HT: /* HyperTransport */ /* Determine HT-specific capability type. */ val = REG(ptr + PCIR_HT_COMMAND, 2); if ((val & 0xe000) == PCIM_HTCAP_SLAVE) cfg->ht.ht_slave = ptr; #if defined(__i386__) || defined(__amd64__) || defined(__powerpc__) switch (val & PCIM_HTCMD_CAP_MASK) { case PCIM_HTCAP_MSI_MAPPING: if (!(val & PCIM_HTCMD_MSI_FIXED)) { /* Sanity check the mapping window. */ addr = REG(ptr + PCIR_HTMSI_ADDRESS_HI, 4); addr <<= 32; addr |= REG(ptr + PCIR_HTMSI_ADDRESS_LO, 4); if (addr != MSI_INTEL_ADDR_BASE) device_printf(pcib, "HT device at pci%d:%d:%d:%d has non-default MSI window 0x%llx\n", cfg->domain, cfg->bus, cfg->slot, cfg->func, (long long)addr); } else addr = MSI_INTEL_ADDR_BASE; cfg->ht.ht_msimap = ptr; cfg->ht.ht_msictrl = val; cfg->ht.ht_msiaddr = addr; break; } #endif break; case PCIY_MSI: /* PCI MSI */ cfg->msi.msi_location = ptr; cfg->msi.msi_ctrl = REG(ptr + PCIR_MSI_CTRL, 2); cfg->msi.msi_msgnum = 1 << ((cfg->msi.msi_ctrl & PCIM_MSICTRL_MMC_MASK)>>1); break; case PCIY_MSIX: /* PCI MSI-X */ cfg->msix.msix_location = ptr; cfg->msix.msix_ctrl = REG(ptr + PCIR_MSIX_CTRL, 2); cfg->msix.msix_msgnum = (cfg->msix.msix_ctrl & PCIM_MSIXCTRL_TABLE_SIZE) + 1; val = REG(ptr + PCIR_MSIX_TABLE, 4); cfg->msix.msix_table_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); cfg->msix.msix_table_offset = val & ~PCIM_MSIX_BIR_MASK; val = REG(ptr + PCIR_MSIX_PBA, 4); cfg->msix.msix_pba_bar = PCIR_BAR(val & PCIM_MSIX_BIR_MASK); cfg->msix.msix_pba_offset = val & ~PCIM_MSIX_BIR_MASK; break; case PCIY_VPD: /* PCI Vital Product Data */ cfg->vpd.vpd_reg = ptr; break; case PCIY_SUBVENDOR: /* Should always be true. */ if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) { val = REG(ptr + PCIR_SUBVENDCAP_ID, 4); cfg->subvendor = val & 0xffff; cfg->subdevice = val >> 16; } break; case PCIY_PCIX: /* PCI-X */ /* * Assume we have a PCI-X chipset if we have * at least one PCI-PCI bridge with a PCI-X * capability. Note that some systems with * PCI-express or HT chipsets might match on * this check as well. */ if ((cfg->hdrtype & PCIM_HDRTYPE) == PCIM_HDRTYPE_BRIDGE) pcix_chipset = 1; cfg->pcix.pcix_location = ptr; break; case PCIY_EXPRESS: /* PCI-express */ /* * Assume we have a PCI-express chipset if we have * at least one PCI-express device. */ pcie_chipset = 1; cfg->pcie.pcie_location = ptr; val = REG(ptr + PCIER_FLAGS, 2); cfg->pcie.pcie_type = val & PCIEM_FLAGS_TYPE; break; case PCIY_EA: /* Enhanced Allocation */ cfg->ea.ea_location = ptr; pci_ea_fill_info(pcib, cfg); break; default: break; } } #if defined(__powerpc__) /* * Enable the MSI mapping window for all HyperTransport * slaves. PCI-PCI bridges have their windows enabled via * PCIB_MAP_MSI(). */ if (cfg->ht.ht_slave != 0 && cfg->ht.ht_msimap != 0 && !(cfg->ht.ht_msictrl & PCIM_HTCMD_MSI_ENABLE)) { device_printf(pcib, "Enabling MSI window for HyperTransport slave at pci%d:%d:%d:%d\n", cfg->domain, cfg->bus, cfg->slot, cfg->func); cfg->ht.ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; WREG(cfg->ht.ht_msimap + PCIR_HT_COMMAND, cfg->ht.ht_msictrl, 2); } #endif /* REG and WREG use carry through to next functions */ } /* * PCI Vital Product Data */ #define PCI_VPD_TIMEOUT 1000000 static int pci_read_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t *data) { int count = PCI_VPD_TIMEOUT; KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg, 2); while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) != 0x8000) { if (--count < 0) return (ENXIO); DELAY(1); /* limit looping */ } *data = (REG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, 4)); return (0); } #if 0 static int pci_write_vpd_reg(device_t pcib, pcicfgregs *cfg, int reg, uint32_t data) { int count = PCI_VPD_TIMEOUT; KASSERT((reg & 3) == 0, ("VPD register must by 4 byte aligned")); WREG(cfg->vpd.vpd_reg + PCIR_VPD_DATA, data, 4); WREG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, reg | 0x8000, 2); while ((REG(cfg->vpd.vpd_reg + PCIR_VPD_ADDR, 2) & 0x8000) == 0x8000) { if (--count < 0) return (ENXIO); DELAY(1); /* limit looping */ } return (0); } #endif #undef PCI_VPD_TIMEOUT struct vpd_readstate { device_t pcib; pcicfgregs *cfg; uint32_t val; int bytesinval; int off; uint8_t cksum; }; static int vpd_nextbyte(struct vpd_readstate *vrs, uint8_t *data) { uint32_t reg; uint8_t byte; if (vrs->bytesinval == 0) { if (pci_read_vpd_reg(vrs->pcib, vrs->cfg, vrs->off, ®)) return (ENXIO); vrs->val = le32toh(reg); vrs->off += 4; byte = vrs->val & 0xff; vrs->bytesinval = 3; } else { vrs->val = vrs->val >> 8; byte = vrs->val & 0xff; vrs->bytesinval--; } vrs->cksum += byte; *data = byte; return (0); } static void pci_read_vpd(device_t pcib, pcicfgregs *cfg) { struct vpd_readstate vrs; int state; int name; int remain; int i; int alloc, off; /* alloc/off for RO/W arrays */ int cksumvalid; int dflen; uint8_t byte; uint8_t byte2; /* init vpd reader */ vrs.bytesinval = 0; vrs.off = 0; vrs.pcib = pcib; vrs.cfg = cfg; vrs.cksum = 0; state = 0; name = remain = i = 0; /* shut up stupid gcc */ alloc = off = 0; /* shut up stupid gcc */ dflen = 0; /* shut up stupid gcc */ cksumvalid = -1; while (state >= 0) { if (vpd_nextbyte(&vrs, &byte)) { state = -2; break; } #if 0 printf("vpd: val: %#x, off: %d, bytesinval: %d, byte: %#hhx, " \ "state: %d, remain: %d, name: %#x, i: %d\n", vrs.val, vrs.off, vrs.bytesinval, byte, state, remain, name, i); #endif switch (state) { case 0: /* item name */ if (byte & 0x80) { if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } remain = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } remain |= byte2 << 8; if (remain > (0x7f*4 - vrs.off)) { state = -1; pci_printf(cfg, "invalid VPD data, remain %#x\n", remain); } name = byte & 0x7f; } else { remain = byte & 0x7; name = (byte >> 3) & 0xf; } switch (name) { case 0x2: /* String */ cfg->vpd.vpd_ident = malloc(remain + 1, M_DEVBUF, M_WAITOK); i = 0; state = 1; break; case 0xf: /* End */ state = -1; break; case 0x10: /* VPD-R */ alloc = 8; off = 0; cfg->vpd.vpd_ros = malloc(alloc * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); state = 2; break; case 0x11: /* VPD-W */ alloc = 8; off = 0; cfg->vpd.vpd_w = malloc(alloc * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); state = 5; break; default: /* Invalid data, abort */ state = -1; break; } break; case 1: /* Identifier String */ cfg->vpd.vpd_ident[i++] = byte; remain--; if (remain == 0) { cfg->vpd.vpd_ident[i] = '\0'; state = 0; } break; case 2: /* VPD-R Keyword Header */ if (off == alloc) { cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, (alloc *= 2) * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); } cfg->vpd.vpd_ros[off].keyword[0] = byte; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_ros[off].keyword[1] = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_ros[off].len = dflen = byte2; if (dflen == 0 && strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 2) == 0) { /* * if this happens, we can't trust the rest * of the VPD. */ pci_printf(cfg, "bad keyword length: %d\n", dflen); cksumvalid = 0; state = -1; break; } else if (dflen == 0) { cfg->vpd.vpd_ros[off].value = malloc(1 * sizeof(*cfg->vpd.vpd_ros[off].value), M_DEVBUF, M_WAITOK); cfg->vpd.vpd_ros[off].value[0] = '\x00'; } else cfg->vpd.vpd_ros[off].value = malloc( (dflen + 1) * sizeof(*cfg->vpd.vpd_ros[off].value), M_DEVBUF, M_WAITOK); remain -= 3; i = 0; /* keep in sync w/ state 3's transistions */ if (dflen == 0 && remain == 0) state = 0; else if (dflen == 0) state = 2; else state = 3; break; case 3: /* VPD-R Keyword Value */ cfg->vpd.vpd_ros[off].value[i++] = byte; if (strncmp(cfg->vpd.vpd_ros[off].keyword, "RV", 2) == 0 && cksumvalid == -1) { if (vrs.cksum == 0) cksumvalid = 1; else { if (bootverbose) pci_printf(cfg, "bad VPD cksum, remain %hhu\n", vrs.cksum); cksumvalid = 0; state = -1; break; } } dflen--; remain--; /* keep in sync w/ state 2's transistions */ if (dflen == 0) cfg->vpd.vpd_ros[off++].value[i++] = '\0'; if (dflen == 0 && remain == 0) { cfg->vpd.vpd_rocnt = off; cfg->vpd.vpd_ros = reallocf(cfg->vpd.vpd_ros, off * sizeof(*cfg->vpd.vpd_ros), M_DEVBUF, M_WAITOK | M_ZERO); state = 0; } else if (dflen == 0) state = 2; break; case 4: remain--; if (remain == 0) state = 0; break; case 5: /* VPD-W Keyword Header */ if (off == alloc) { cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, (alloc *= 2) * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); } cfg->vpd.vpd_w[off].keyword[0] = byte; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_w[off].keyword[1] = byte2; if (vpd_nextbyte(&vrs, &byte2)) { state = -2; break; } cfg->vpd.vpd_w[off].len = dflen = byte2; cfg->vpd.vpd_w[off].start = vrs.off - vrs.bytesinval; cfg->vpd.vpd_w[off].value = malloc((dflen + 1) * sizeof(*cfg->vpd.vpd_w[off].value), M_DEVBUF, M_WAITOK); remain -= 3; i = 0; /* keep in sync w/ state 6's transistions */ if (dflen == 0 && remain == 0) state = 0; else if (dflen == 0) state = 5; else state = 6; break; case 6: /* VPD-W Keyword Value */ cfg->vpd.vpd_w[off].value[i++] = byte; dflen--; remain--; /* keep in sync w/ state 5's transistions */ if (dflen == 0) cfg->vpd.vpd_w[off++].value[i++] = '\0'; if (dflen == 0 && remain == 0) { cfg->vpd.vpd_wcnt = off; cfg->vpd.vpd_w = reallocf(cfg->vpd.vpd_w, off * sizeof(*cfg->vpd.vpd_w), M_DEVBUF, M_WAITOK | M_ZERO); state = 0; } else if (dflen == 0) state = 5; break; default: pci_printf(cfg, "invalid state: %d\n", state); state = -1; break; } } if (cksumvalid == 0 || state < -1) { /* read-only data bad, clean up */ if (cfg->vpd.vpd_ros != NULL) { for (off = 0; cfg->vpd.vpd_ros[off].value; off++) free(cfg->vpd.vpd_ros[off].value, M_DEVBUF); free(cfg->vpd.vpd_ros, M_DEVBUF); cfg->vpd.vpd_ros = NULL; } } if (state < -1) { /* I/O error, clean up */ pci_printf(cfg, "failed to read VPD data.\n"); if (cfg->vpd.vpd_ident != NULL) { free(cfg->vpd.vpd_ident, M_DEVBUF); cfg->vpd.vpd_ident = NULL; } if (cfg->vpd.vpd_w != NULL) { for (off = 0; cfg->vpd.vpd_w[off].value; off++) free(cfg->vpd.vpd_w[off].value, M_DEVBUF); free(cfg->vpd.vpd_w, M_DEVBUF); cfg->vpd.vpd_w = NULL; } } cfg->vpd.vpd_cached = 1; #undef REG #undef WREG } int pci_get_vpd_ident_method(device_t dev, device_t child, const char **identptr) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(dev), cfg); *identptr = cfg->vpd.vpd_ident; if (*identptr == NULL) return (ENXIO); return (0); } int pci_get_vpd_readonly_method(device_t dev, device_t child, const char *kw, const char **vptr) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; int i; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(dev), cfg); for (i = 0; i < cfg->vpd.vpd_rocnt; i++) if (memcmp(kw, cfg->vpd.vpd_ros[i].keyword, sizeof(cfg->vpd.vpd_ros[i].keyword)) == 0) { *vptr = cfg->vpd.vpd_ros[i].value; return (0); } *vptr = NULL; return (ENXIO); } struct pcicfg_vpd * pci_fetch_vpd_list(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; if (!cfg->vpd.vpd_cached && cfg->vpd.vpd_reg != 0) pci_read_vpd(device_get_parent(device_get_parent(dev)), cfg); return (&cfg->vpd); } /* * Find the requested HyperTransport capability and return the offset * in configuration space via the pointer provided. The function * returns 0 on success and an error code otherwise. */ int pci_find_htcap_method(device_t dev, device_t child, int capability, int *capreg) { int ptr, error; uint16_t val; error = pci_find_cap(child, PCIY_HT, &ptr); if (error) return (error); /* * Traverse the capabilities list checking each HT capability * to see if it matches the requested HT capability. */ for (;;) { val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); if (capability == PCIM_HTCAP_SLAVE || capability == PCIM_HTCAP_HOST) val &= 0xe000; else val &= PCIM_HTCMD_CAP_MASK; if (val == capability) { if (capreg != NULL) *capreg = ptr; return (0); } /* Skip to the next HT capability. */ if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) break; } return (ENOENT); } /* * Find the next requested HyperTransport capability after start and return * the offset in configuration space via the pointer provided. The function * returns 0 on success and an error code otherwise. */ int pci_find_next_htcap_method(device_t dev, device_t child, int capability, int start, int *capreg) { int ptr; uint16_t val; KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == PCIY_HT, ("start capability is not HyperTransport capability")); ptr = start; /* * Traverse the capabilities list checking each HT capability * to see if it matches the requested HT capability. */ for (;;) { /* Skip to the next HT capability. */ if (pci_find_next_cap(child, PCIY_HT, ptr, &ptr) != 0) break; val = pci_read_config(child, ptr + PCIR_HT_COMMAND, 2); if (capability == PCIM_HTCAP_SLAVE || capability == PCIM_HTCAP_HOST) val &= 0xe000; else val &= PCIM_HTCMD_CAP_MASK; if (val == capability) { if (capreg != NULL) *capreg = ptr; return (0); } } return (ENOENT); } /* * Find the requested capability and return the offset in * configuration space via the pointer provided. The function returns * 0 on success and an error code otherwise. */ int pci_find_cap_method(device_t dev, device_t child, int capability, int *capreg) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint32_t status; uint8_t ptr; /* * Check the CAP_LIST bit of the PCI status register first. */ status = pci_read_config(child, PCIR_STATUS, 2); if (!(status & PCIM_STATUS_CAPPRESENT)) return (ENXIO); /* * Determine the start pointer of the capabilities list. */ switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: case PCIM_HDRTYPE_BRIDGE: ptr = PCIR_CAP_PTR; break; case PCIM_HDRTYPE_CARDBUS: ptr = PCIR_CAP_PTR_2; break; default: /* XXX: panic? */ return (ENXIO); /* no extended capabilities support */ } ptr = pci_read_config(child, ptr, 1); /* * Traverse the capabilities list. */ while (ptr != 0) { if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); } return (ENOENT); } /* * Find the next requested capability after start and return the offset in * configuration space via the pointer provided. The function returns * 0 on success and an error code otherwise. */ int pci_find_next_cap_method(device_t dev, device_t child, int capability, int start, int *capreg) { uint8_t ptr; KASSERT(pci_read_config(child, start + PCICAP_ID, 1) == capability, ("start capability is not expected capability")); ptr = pci_read_config(child, start + PCICAP_NEXTPTR, 1); while (ptr != 0) { if (pci_read_config(child, ptr + PCICAP_ID, 1) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = pci_read_config(child, ptr + PCICAP_NEXTPTR, 1); } return (ENOENT); } /* * Find the requested extended capability and return the offset in * configuration space via the pointer provided. The function returns * 0 on success and an error code otherwise. */ int pci_find_extcap_method(device_t dev, device_t child, int capability, int *capreg) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint32_t ecap; uint16_t ptr; /* Only supported for PCI-express devices. */ if (cfg->pcie.pcie_location == 0) return (ENXIO); ptr = PCIR_EXTCAP; ecap = pci_read_config(child, ptr, 4); if (ecap == 0xffffffff || ecap == 0) return (ENOENT); for (;;) { if (PCI_EXTCAP_ID(ecap) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = PCI_EXTCAP_NEXTPTR(ecap); if (ptr == 0) break; ecap = pci_read_config(child, ptr, 4); } return (ENOENT); } /* * Find the next requested extended capability after start and return the * offset in configuration space via the pointer provided. The function * returns 0 on success and an error code otherwise. */ int pci_find_next_extcap_method(device_t dev, device_t child, int capability, int start, int *capreg) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint32_t ecap; uint16_t ptr; /* Only supported for PCI-express devices. */ if (cfg->pcie.pcie_location == 0) return (ENXIO); ecap = pci_read_config(child, start, 4); KASSERT(PCI_EXTCAP_ID(ecap) == capability, ("start extended capability is not expected capability")); ptr = PCI_EXTCAP_NEXTPTR(ecap); while (ptr != 0) { ecap = pci_read_config(child, ptr, 4); if (PCI_EXTCAP_ID(ecap) == capability) { if (capreg != NULL) *capreg = ptr; return (0); } ptr = PCI_EXTCAP_NEXTPTR(ecap); } return (ENOENT); } /* * Support for MSI-X message interrupts. */ static void pci_write_msix_entry(device_t dev, u_int index, uint64_t address, uint32_t data) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_table_offset + index * 16; bus_write_4(msix->msix_table_res, offset, address & 0xffffffff); bus_write_4(msix->msix_table_res, offset + 4, address >> 32); bus_write_4(msix->msix_table_res, offset + 8, data); } void pci_enable_msix_method(device_t dev, device_t child, u_int index, uint64_t address, uint32_t data) { if (pci_msix_rewrite_table) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; /* * Some VM hosts require MSIX to be disabled in the * control register before updating the MSIX table * entries are allowed. It is not enough to only * disable MSIX while updating a single entry. MSIX * must be disabled while updating all entries in the * table. */ pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, msix->msix_ctrl & ~PCIM_MSIXCTRL_MSIX_ENABLE, 2); pci_resume_msix(child); } else pci_write_msix_entry(child, index, address, data); /* Enable MSI -> HT mapping. */ pci_ht_map_msi(child, address); } void pci_mask_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, val; KASSERT(msix->msix_msgnum > index, ("bogus index")); offset = msix->msix_table_offset + index * 16 + 12; val = bus_read_4(msix->msix_table_res, offset); if (!(val & PCIM_MSIX_VCTRL_MASK)) { val |= PCIM_MSIX_VCTRL_MASK; bus_write_4(msix->msix_table_res, offset, val); } } void pci_unmask_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, val; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_table_offset + index * 16 + 12; val = bus_read_4(msix->msix_table_res, offset); if (val & PCIM_MSIX_VCTRL_MASK) { val &= ~PCIM_MSIX_VCTRL_MASK; bus_write_4(msix->msix_table_res, offset, val); } } int pci_pending_msix(device_t dev, u_int index) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; uint32_t offset, bit; KASSERT(msix->msix_table_len > index, ("bogus index")); offset = msix->msix_pba_offset + (index / 32) * 4; bit = 1 << index % 32; return (bus_read_4(msix->msix_pba_res, offset) & bit); } /* * Restore MSI-X registers and table during resume. If MSI-X is * enabled then walk the virtual table to restore the actual MSI-X * table. */ static void pci_resume_msix(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct msix_table_entry *mte; struct msix_vector *mv; int i; if (msix->msix_alloc > 0) { /* First, mask all vectors. */ for (i = 0; i < msix->msix_msgnum; i++) pci_mask_msix(dev, i); /* Second, program any messages with at least one handler. */ for (i = 0; i < msix->msix_table_len; i++) { mte = &msix->msix_table[i]; if (mte->mte_vector == 0 || mte->mte_handlers == 0) continue; mv = &msix->msix_vectors[mte->mte_vector - 1]; pci_write_msix_entry(dev, i, mv->mv_address, mv->mv_data); pci_unmask_msix(dev, i); } } pci_write_config(dev, msix->msix_location + PCIR_MSIX_CTRL, msix->msix_ctrl, 2); } /* * Attempt to allocate *count MSI-X messages. The actual number allocated is * returned in *count. After this function returns, each message will be * available to the driver as SYS_RES_IRQ resources starting at rid 1. */ int pci_alloc_msix_method(device_t dev, device_t child, int *count) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; int actual, error, i, irq, max; /* Don't let count == 0 get us into trouble. */ if (*count == 0) return (EINVAL); /* If rid 0 is allocated, then fail. */ rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); if (rle != NULL && rle->res != NULL) return (ENXIO); /* Already have allocated messages? */ if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) return (ENXIO); /* If MSI-X is blacklisted for this system, fail. */ if (pci_msix_blacklisted()) return (ENXIO); /* MSI-X capability present? */ if (cfg->msix.msix_location == 0 || !pci_do_msix) return (ENODEV); /* Make sure the appropriate BARs are mapped. */ rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, cfg->msix.msix_table_bar); if (rle == NULL || rle->res == NULL || !(rman_get_flags(rle->res) & RF_ACTIVE)) return (ENXIO); cfg->msix.msix_table_res = rle->res; if (cfg->msix.msix_pba_bar != cfg->msix.msix_table_bar) { rle = resource_list_find(&dinfo->resources, SYS_RES_MEMORY, cfg->msix.msix_pba_bar); if (rle == NULL || rle->res == NULL || !(rman_get_flags(rle->res) & RF_ACTIVE)) return (ENXIO); } cfg->msix.msix_pba_res = rle->res; if (bootverbose) device_printf(child, "attempting to allocate %d MSI-X vectors (%d supported)\n", *count, cfg->msix.msix_msgnum); max = min(*count, cfg->msix.msix_msgnum); for (i = 0; i < max; i++) { /* Allocate a message. */ error = PCIB_ALLOC_MSIX(device_get_parent(dev), child, &irq); if (error) { if (i == 0) return (error); break; } resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, irq, 1); } actual = i; if (bootverbose) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 1); if (actual == 1) device_printf(child, "using IRQ %ju for MSI-X\n", rle->start); else { int run; /* * Be fancy and try to print contiguous runs of * IRQ values as ranges. 'irq' is the previous IRQ. * 'run' is true if we are in a range. */ device_printf(child, "using IRQs %ju", rle->start); irq = rle->start; run = 0; for (i = 1; i < actual; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); /* Still in a run? */ if (rle->start == irq + 1) { run = 1; irq++; continue; } /* Finish previous range. */ if (run) { printf("-%d", irq); run = 0; } /* Start new range. */ printf(",%ju", rle->start); irq = rle->start; } /* Unfinished range? */ if (run) printf("-%d", irq); printf(" for MSI-X\n"); } } /* Mask all vectors. */ for (i = 0; i < cfg->msix.msix_msgnum; i++) pci_mask_msix(child, i); /* Allocate and initialize vector data and virtual table. */ cfg->msix.msix_vectors = malloc(sizeof(struct msix_vector) * actual, M_DEVBUF, M_WAITOK | M_ZERO); cfg->msix.msix_table = malloc(sizeof(struct msix_table_entry) * actual, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < actual; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); cfg->msix.msix_vectors[i].mv_irq = rle->start; cfg->msix.msix_table[i].mte_vector = i + 1; } /* Update control register to enable MSI-X. */ cfg->msix.msix_ctrl |= PCIM_MSIXCTRL_MSIX_ENABLE; pci_write_config(child, cfg->msix.msix_location + PCIR_MSIX_CTRL, cfg->msix.msix_ctrl, 2); /* Update counts of alloc'd messages. */ cfg->msix.msix_alloc = actual; cfg->msix.msix_table_len = actual; *count = actual; return (0); } /* * By default, pci_alloc_msix() will assign the allocated IRQ * resources consecutively to the first N messages in the MSI-X table. * However, device drivers may want to use different layouts if they * either receive fewer messages than they asked for, or they wish to * populate the MSI-X table sparsely. This method allows the driver * to specify what layout it wants. It must be called after a * successful pci_alloc_msix() but before any of the associated * SYS_RES_IRQ resources are allocated via bus_alloc_resource(). * * The 'vectors' array contains 'count' message vectors. The array * maps directly to the MSI-X table in that index 0 in the array * specifies the vector for the first message in the MSI-X table, etc. * The vector value in each array index can either be 0 to indicate * that no vector should be assigned to a message slot, or it can be a * number from 1 to N (where N is the count returned from a * succcessful call to pci_alloc_msix()) to indicate which message * vector (IRQ) to be used for the corresponding message. * * On successful return, each message with a non-zero vector will have * an associated SYS_RES_IRQ whose rid is equal to the array index + * 1. Additionally, if any of the IRQs allocated via the previous * call to pci_alloc_msix() are not used in the mapping, those IRQs * will be freed back to the system automatically. * * For example, suppose a driver has a MSI-X table with 6 messages and * asks for 6 messages, but pci_alloc_msix() only returns a count of * 3. Call the three vectors allocated by pci_alloc_msix() A, B, and * C. After the call to pci_alloc_msix(), the device will be setup to * have an MSI-X table of ABC--- (where - means no vector assigned). * If the driver then passes a vector array of { 1, 0, 1, 2, 0, 2 }, * then the MSI-X table will look like A-AB-B, and the 'C' vector will * be freed back to the system. This device will also have valid * SYS_RES_IRQ rids of 1, 3, 4, and 6. * * In any case, the SYS_RES_IRQ rid X will always map to the message * at MSI-X table index X - 1 and will only be valid if a vector is * assigned to that table entry. */ int pci_remap_msix_method(device_t dev, device_t child, int count, const u_int *vectors) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct resource_list_entry *rle; int i, irq, j, *used; /* * Have to have at least one message in the table but the * table can't be bigger than the actual MSI-X table in the * device. */ if (count == 0 || count > msix->msix_msgnum) return (EINVAL); /* Sanity check the vectors. */ for (i = 0; i < count; i++) if (vectors[i] > msix->msix_alloc) return (EINVAL); /* * Make sure there aren't any holes in the vectors to be used. * It's a big pain to support it, and it doesn't really make * sense anyway. Also, at least one vector must be used. */ used = malloc(sizeof(int) * msix->msix_alloc, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < count; i++) if (vectors[i] != 0) used[vectors[i] - 1] = 1; for (i = 0; i < msix->msix_alloc - 1; i++) if (used[i] == 0 && used[i + 1] == 1) { free(used, M_DEVBUF); return (EINVAL); } if (used[0] != 1) { free(used, M_DEVBUF); return (EINVAL); } /* Make sure none of the resources are allocated. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; if (msix->msix_table[i].mte_handlers > 0) { free(used, M_DEVBUF); return (EBUSY); } rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing resource")); if (rle->res != NULL) { free(used, M_DEVBUF); return (EBUSY); } } /* Free the existing resource list entries. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); } /* * Build the new virtual table keeping track of which vectors are * used. */ free(msix->msix_table, M_DEVBUF); msix->msix_table = malloc(sizeof(struct msix_table_entry) * count, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < count; i++) msix->msix_table[i].mte_vector = vectors[i]; msix->msix_table_len = count; /* Free any unused IRQs and resize the vectors array if necessary. */ j = msix->msix_alloc - 1; if (used[j] == 0) { struct msix_vector *vec; while (used[j] == 0) { PCIB_RELEASE_MSIX(device_get_parent(dev), child, msix->msix_vectors[j].mv_irq); j--; } vec = malloc(sizeof(struct msix_vector) * (j + 1), M_DEVBUF, M_WAITOK); bcopy(msix->msix_vectors, vec, sizeof(struct msix_vector) * (j + 1)); free(msix->msix_vectors, M_DEVBUF); msix->msix_vectors = vec; msix->msix_alloc = j + 1; } free(used, M_DEVBUF); /* Map the IRQs onto the rids. */ for (i = 0; i < count; i++) { if (vectors[i] == 0) continue; irq = msix->msix_vectors[vectors[i] - 1].mv_irq; resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irq, irq, 1); } if (bootverbose) { device_printf(child, "Remapped MSI-X IRQs as: "); for (i = 0; i < count; i++) { if (i != 0) printf(", "); if (vectors[i] == 0) printf("---"); else printf("%d", msix->msix_vectors[vectors[i] - 1].mv_irq); } printf("\n"); } return (0); } static int pci_release_msix(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; struct resource_list_entry *rle; int i; /* Do we have any messages to release? */ if (msix->msix_alloc == 0) return (ENODEV); /* Make sure none of the resources are allocated. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; if (msix->msix_table[i].mte_handlers > 0) return (EBUSY); rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing resource")); if (rle->res != NULL) return (EBUSY); } /* Update control register to disable MSI-X. */ msix->msix_ctrl &= ~PCIM_MSIXCTRL_MSIX_ENABLE; pci_write_config(child, msix->msix_location + PCIR_MSIX_CTRL, msix->msix_ctrl, 2); /* Free the resource list entries. */ for (i = 0; i < msix->msix_table_len; i++) { if (msix->msix_table[i].mte_vector == 0) continue; resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); } free(msix->msix_table, M_DEVBUF); msix->msix_table_len = 0; /* Release the IRQs. */ for (i = 0; i < msix->msix_alloc; i++) PCIB_RELEASE_MSIX(device_get_parent(dev), child, msix->msix_vectors[i].mv_irq); free(msix->msix_vectors, M_DEVBUF); msix->msix_alloc = 0; return (0); } /* * Return the max supported MSI-X messages this device supports. * Basically, assuming the MD code can alloc messages, this function * should return the maximum value that pci_alloc_msix() can return. * Thus, it is subject to the tunables, etc. */ int pci_msix_count_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; if (pci_do_msix && msix->msix_location != 0) return (msix->msix_msgnum); return (0); } int pci_msix_pba_bar_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; if (pci_do_msix && msix->msix_location != 0) return (msix->msix_pba_bar); return (-1); } int pci_msix_table_bar_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msix *msix = &dinfo->cfg.msix; if (pci_do_msix && msix->msix_location != 0) return (msix->msix_table_bar); return (-1); } /* * HyperTransport MSI mapping control */ void pci_ht_map_msi(device_t dev, uint64_t addr) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_ht *ht = &dinfo->cfg.ht; if (!ht->ht_msimap) return; if (addr && !(ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) && ht->ht_msiaddr >> 20 == addr >> 20) { /* Enable MSI -> HT mapping. */ ht->ht_msictrl |= PCIM_HTCMD_MSI_ENABLE; pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, ht->ht_msictrl, 2); } if (!addr && ht->ht_msictrl & PCIM_HTCMD_MSI_ENABLE) { /* Disable MSI -> HT mapping. */ ht->ht_msictrl &= ~PCIM_HTCMD_MSI_ENABLE; pci_write_config(dev, ht->ht_msimap + PCIR_HT_COMMAND, ht->ht_msictrl, 2); } } int pci_get_max_payload(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; uint16_t val; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); val &= PCIEM_CTL_MAX_PAYLOAD; val >>= 5; return (1 << (val + 7)); } int pci_get_max_read_req(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; uint16_t val; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); val &= PCIEM_CTL_MAX_READ_REQUEST; val >>= 12; return (1 << (val + 7)); } int pci_set_max_read_req(device_t dev, int size) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; uint16_t val; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); if (size < 128) size = 128; if (size > 4096) size = 4096; size = (1 << (fls(size) - 1)); val = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); val &= ~PCIEM_CTL_MAX_READ_REQUEST; val |= (fls(size) - 8) << 12; pci_write_config(dev, cap + PCIER_DEVICE_CTL, val, 2); return (size); } uint32_t pcie_read_config(device_t dev, int reg, int width) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) { if (width == 2) return (0xffff); return (0xffffffff); } return (pci_read_config(dev, cap + reg, width)); } void pcie_write_config(device_t dev, int reg, uint32_t value, int width) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return; pci_write_config(dev, cap + reg, value, width); } /* * Adjusts a PCI-e capability register by clearing the bits in mask * and setting the bits in (value & mask). Bits not set in mask are * not adjusted. * * Returns the old value on success or all ones on failure. */ uint32_t pcie_adjust_config(device_t dev, int reg, uint32_t mask, uint32_t value, int width) { struct pci_devinfo *dinfo = device_get_ivars(dev); uint32_t old, new; int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) { if (width == 2) return (0xffff); return (0xffffffff); } old = pci_read_config(dev, cap + reg, width); new = old & ~mask; new |= (value & mask); pci_write_config(dev, cap + reg, new, width); return (old); } /* * Support for MSI message signalled interrupts. */ void pci_enable_msi_method(device_t dev, device_t child, uint64_t address, uint16_t data) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; /* Write data and address values. */ pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR, address & 0xffffffff, 4); if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { pci_write_config(child, msi->msi_location + PCIR_MSI_ADDR_HIGH, address >> 32, 4); pci_write_config(child, msi->msi_location + PCIR_MSI_DATA_64BIT, data, 2); } else pci_write_config(child, msi->msi_location + PCIR_MSI_DATA, data, 2); /* Enable MSI in the control register. */ msi->msi_ctrl |= PCIM_MSICTRL_MSI_ENABLE; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); /* Enable MSI -> HT mapping. */ pci_ht_map_msi(child, address); } void pci_disable_msi_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; /* Disable MSI -> HT mapping. */ pci_ht_map_msi(child, 0); /* Disable MSI in the control register. */ msi->msi_ctrl &= ~PCIM_MSICTRL_MSI_ENABLE; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); } /* * Restore MSI registers during resume. If MSI is enabled then * restore the data and address registers in addition to the control * register. */ static void pci_resume_msi(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); struct pcicfg_msi *msi = &dinfo->cfg.msi; uint64_t address; uint16_t data; if (msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE) { address = msi->msi_addr; data = msi->msi_data; pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR, address & 0xffffffff, 4); if (msi->msi_ctrl & PCIM_MSICTRL_64BIT) { pci_write_config(dev, msi->msi_location + PCIR_MSI_ADDR_HIGH, address >> 32, 4); pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA_64BIT, data, 2); } else pci_write_config(dev, msi->msi_location + PCIR_MSI_DATA, data, 2); } pci_write_config(dev, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); } static int pci_remap_intr_method(device_t bus, device_t dev, u_int irq) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; struct msix_table_entry *mte; struct msix_vector *mv; uint64_t addr; uint32_t data; int error, i, j; /* * Handle MSI first. We try to find this IRQ among our list * of MSI IRQs. If we find it, we request updated address and * data registers and apply the results. */ if (cfg->msi.msi_alloc > 0) { /* If we don't have any active handlers, nothing to do. */ if (cfg->msi.msi_handlers == 0) return (0); for (i = 0; i < cfg->msi.msi_alloc; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); if (rle->start == irq) { error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, &addr, &data); if (error) return (error); pci_disable_msi(dev); dinfo->cfg.msi.msi_addr = addr; dinfo->cfg.msi.msi_data = data; pci_enable_msi(dev, addr, data); return (0); } } return (ENOENT); } /* * For MSI-X, we check to see if we have this IRQ. If we do, * we request the updated mapping info. If that works, we go * through all the slots that use this IRQ and update them. */ if (cfg->msix.msix_alloc > 0) { for (i = 0; i < cfg->msix.msix_alloc; i++) { mv = &cfg->msix.msix_vectors[i]; if (mv->mv_irq == irq) { error = PCIB_MAP_MSI(device_get_parent(bus), dev, irq, &addr, &data); if (error) return (error); mv->mv_address = addr; mv->mv_data = data; for (j = 0; j < cfg->msix.msix_table_len; j++) { mte = &cfg->msix.msix_table[j]; if (mte->mte_vector != i + 1) continue; if (mte->mte_handlers == 0) continue; pci_mask_msix(dev, j); pci_enable_msix(dev, j, addr, data); pci_unmask_msix(dev, j); } } } return (ENOENT); } return (ENOENT); } /* * Returns true if the specified device is blacklisted because MSI * doesn't work. */ int pci_msi_device_blacklisted(device_t dev) { if (!pci_honor_msi_blacklist) return (0); return (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSI)); } /* * Determine if MSI is blacklisted globally on this system. Currently, * we just check for blacklisted chipsets as represented by the * host-PCI bridge at device 0:0:0. In the future, it may become * necessary to check other system attributes, such as the kenv values * that give the motherboard manufacturer and model number. */ static int pci_msi_blacklisted(void) { device_t dev; if (!pci_honor_msi_blacklist) return (0); /* Blacklist all non-PCI-express and non-PCI-X chipsets. */ if (!(pcie_chipset || pcix_chipset)) { if (vm_guest != VM_GUEST_NO) { /* * Whitelist older chipsets in virtual * machines known to support MSI. */ dev = pci_find_bsf(0, 0, 0); if (dev != NULL) return (!pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_ENABLE_MSI_VM)); } return (1); } dev = pci_find_bsf(0, 0, 0); if (dev != NULL) return (pci_msi_device_blacklisted(dev)); return (0); } /* * Returns true if the specified device is blacklisted because MSI-X * doesn't work. Note that this assumes that if MSI doesn't work, * MSI-X doesn't either. */ int pci_msix_device_blacklisted(device_t dev) { if (!pci_honor_msi_blacklist) return (0); if (pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) return (1); return (pci_msi_device_blacklisted(dev)); } /* * Determine if MSI-X is blacklisted globally on this system. If MSI * is blacklisted, assume that MSI-X is as well. Check for additional * chipsets where MSI works but MSI-X does not. */ static int pci_msix_blacklisted(void) { device_t dev; if (!pci_honor_msi_blacklist) return (0); dev = pci_find_bsf(0, 0, 0); if (dev != NULL && pci_has_quirk(pci_get_devid(dev), PCI_QUIRK_DISABLE_MSIX)) return (1); return (pci_msi_blacklisted()); } /* * Attempt to allocate *count MSI messages. The actual number allocated is * returned in *count. After this function returns, each message will be * available to the driver as SYS_RES_IRQ resources starting at a rid 1. */ int pci_alloc_msi_method(device_t dev, device_t child, int *count) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; struct resource_list_entry *rle; int actual, error, i, irqs[32]; uint16_t ctrl; /* Don't let count == 0 get us into trouble. */ if (*count == 0) return (EINVAL); /* If rid 0 is allocated, then fail. */ rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, 0); if (rle != NULL && rle->res != NULL) return (ENXIO); /* Already have allocated messages? */ if (cfg->msi.msi_alloc != 0 || cfg->msix.msix_alloc != 0) return (ENXIO); /* If MSI is blacklisted for this system, fail. */ if (pci_msi_blacklisted()) return (ENXIO); /* MSI capability present? */ if (cfg->msi.msi_location == 0 || !pci_do_msi) return (ENODEV); if (bootverbose) device_printf(child, "attempting to allocate %d MSI vectors (%d supported)\n", *count, cfg->msi.msi_msgnum); /* Don't ask for more than the device supports. */ actual = min(*count, cfg->msi.msi_msgnum); /* Don't ask for more than 32 messages. */ actual = min(actual, 32); /* MSI requires power of 2 number of messages. */ if (!powerof2(actual)) return (EINVAL); for (;;) { /* Try to allocate N messages. */ error = PCIB_ALLOC_MSI(device_get_parent(dev), child, actual, actual, irqs); if (error == 0) break; if (actual == 1) return (error); /* Try N / 2. */ actual >>= 1; } /* * We now have N actual messages mapped onto SYS_RES_IRQ * resources in the irqs[] array, so add new resources * starting at rid 1. */ for (i = 0; i < actual; i++) resource_list_add(&dinfo->resources, SYS_RES_IRQ, i + 1, irqs[i], irqs[i], 1); if (bootverbose) { if (actual == 1) device_printf(child, "using IRQ %d for MSI\n", irqs[0]); else { int run; /* * Be fancy and try to print contiguous runs * of IRQ values as ranges. 'run' is true if * we are in a range. */ device_printf(child, "using IRQs %d", irqs[0]); run = 0; for (i = 1; i < actual; i++) { /* Still in a run? */ if (irqs[i] == irqs[i - 1] + 1) { run = 1; continue; } /* Finish previous range. */ if (run) { printf("-%d", irqs[i - 1]); run = 0; } /* Start new range. */ printf(",%d", irqs[i]); } /* Unfinished range? */ if (run) printf("-%d", irqs[actual - 1]); printf(" for MSI\n"); } } /* Update control register with actual count. */ ctrl = cfg->msi.msi_ctrl; ctrl &= ~PCIM_MSICTRL_MME_MASK; ctrl |= (ffs(actual) - 1) << 4; cfg->msi.msi_ctrl = ctrl; pci_write_config(child, cfg->msi.msi_location + PCIR_MSI_CTRL, ctrl, 2); /* Update counts of alloc'd messages. */ cfg->msi.msi_alloc = actual; cfg->msi.msi_handlers = 0; *count = actual; return (0); } /* Release the MSI messages associated with this device. */ int pci_release_msi_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; struct resource_list_entry *rle; int error, i, irqs[32]; /* Try MSI-X first. */ error = pci_release_msix(dev, child); if (error != ENODEV) return (error); /* Do we have any messages to release? */ if (msi->msi_alloc == 0) return (ENODEV); KASSERT(msi->msi_alloc <= 32, ("more than 32 alloc'd messages")); /* Make sure none of the resources are allocated. */ if (msi->msi_handlers > 0) return (EBUSY); for (i = 0; i < msi->msi_alloc; i++) { rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, i + 1); KASSERT(rle != NULL, ("missing MSI resource")); if (rle->res != NULL) return (EBUSY); irqs[i] = rle->start; } /* Update control register with 0 count. */ KASSERT(!(msi->msi_ctrl & PCIM_MSICTRL_MSI_ENABLE), ("%s: MSI still enabled", __func__)); msi->msi_ctrl &= ~PCIM_MSICTRL_MME_MASK; pci_write_config(child, msi->msi_location + PCIR_MSI_CTRL, msi->msi_ctrl, 2); /* Release the messages. */ PCIB_RELEASE_MSI(device_get_parent(dev), child, msi->msi_alloc, irqs); for (i = 0; i < msi->msi_alloc; i++) resource_list_delete(&dinfo->resources, SYS_RES_IRQ, i + 1); /* Update alloc count. */ msi->msi_alloc = 0; msi->msi_addr = 0; msi->msi_data = 0; return (0); } /* * Return the max supported MSI messages this device supports. * Basically, assuming the MD code can alloc messages, this function * should return the maximum value that pci_alloc_msi() can return. * Thus, it is subject to the tunables, etc. */ int pci_msi_count_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); struct pcicfg_msi *msi = &dinfo->cfg.msi; if (pci_do_msi && msi->msi_location != 0) return (msi->msi_msgnum); return (0); } /* free pcicfgregs structure and all depending data structures */ int pci_freecfg(struct pci_devinfo *dinfo) { struct devlist *devlist_head; struct pci_map *pm, *next; int i; devlist_head = &pci_devq; if (dinfo->cfg.vpd.vpd_reg) { free(dinfo->cfg.vpd.vpd_ident, M_DEVBUF); for (i = 0; i < dinfo->cfg.vpd.vpd_rocnt; i++) free(dinfo->cfg.vpd.vpd_ros[i].value, M_DEVBUF); free(dinfo->cfg.vpd.vpd_ros, M_DEVBUF); for (i = 0; i < dinfo->cfg.vpd.vpd_wcnt; i++) free(dinfo->cfg.vpd.vpd_w[i].value, M_DEVBUF); free(dinfo->cfg.vpd.vpd_w, M_DEVBUF); } STAILQ_FOREACH_SAFE(pm, &dinfo->cfg.maps, pm_link, next) { free(pm, M_DEVBUF); } STAILQ_REMOVE(devlist_head, dinfo, pci_devinfo, pci_links); free(dinfo, M_DEVBUF); /* increment the generation count */ pci_generation++; /* we're losing one device */ pci_numdevs--; return (0); } /* * PCI power manangement */ int pci_set_powerstate_method(device_t dev, device_t child, int state) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint16_t status; int oldstate, highest, delay; if (cfg->pp.pp_cap == 0) return (EOPNOTSUPP); /* * Optimize a no state change request away. While it would be OK to * write to the hardware in theory, some devices have shown odd * behavior when going from D3 -> D3. */ oldstate = pci_get_powerstate(child); if (oldstate == state) return (0); /* * The PCI power management specification states that after a state * transition between PCI power states, system software must * guarantee a minimal delay before the function accesses the device. * Compute the worst case delay that we need to guarantee before we * access the device. Many devices will be responsive much more * quickly than this delay, but there are some that don't respond * instantly to state changes. Transitions to/from D3 state require * 10ms, while D2 requires 200us, and D0/1 require none. The delay * is done below with DELAY rather than a sleeper function because * this function can be called from contexts where we cannot sleep. */ highest = (oldstate > state) ? oldstate : state; if (highest == PCI_POWERSTATE_D3) delay = 10000; else if (highest == PCI_POWERSTATE_D2) delay = 200; else delay = 0; status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2) & ~PCIM_PSTAT_DMASK; switch (state) { case PCI_POWERSTATE_D0: status |= PCIM_PSTAT_D0; break; case PCI_POWERSTATE_D1: if ((cfg->pp.pp_cap & PCIM_PCAP_D1SUPP) == 0) return (EOPNOTSUPP); status |= PCIM_PSTAT_D1; break; case PCI_POWERSTATE_D2: if ((cfg->pp.pp_cap & PCIM_PCAP_D2SUPP) == 0) return (EOPNOTSUPP); status |= PCIM_PSTAT_D2; break; case PCI_POWERSTATE_D3: status |= PCIM_PSTAT_D3; break; default: return (EINVAL); } if (bootverbose) pci_printf(cfg, "Transition from D%d to D%d\n", oldstate, state); PCI_WRITE_CONFIG(dev, child, cfg->pp.pp_status, status, 2); if (delay) DELAY(delay); return (0); } int pci_get_powerstate_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; uint16_t status; int result; if (cfg->pp.pp_cap != 0) { status = PCI_READ_CONFIG(dev, child, cfg->pp.pp_status, 2); switch (status & PCIM_PSTAT_DMASK) { case PCIM_PSTAT_D0: result = PCI_POWERSTATE_D0; break; case PCIM_PSTAT_D1: result = PCI_POWERSTATE_D1; break; case PCIM_PSTAT_D2: result = PCI_POWERSTATE_D2; break; case PCIM_PSTAT_D3: result = PCI_POWERSTATE_D3; break; default: result = PCI_POWERSTATE_UNKNOWN; break; } } else { /* No support, device is always at D0 */ result = PCI_POWERSTATE_D0; } return (result); } /* * Some convenience functions for PCI device drivers. */ static __inline void pci_set_command_bit(device_t dev, device_t child, uint16_t bit) { uint16_t command; command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); command |= bit; PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); } static __inline void pci_clear_command_bit(device_t dev, device_t child, uint16_t bit) { uint16_t command; command = PCI_READ_CONFIG(dev, child, PCIR_COMMAND, 2); command &= ~bit; PCI_WRITE_CONFIG(dev, child, PCIR_COMMAND, command, 2); } int pci_enable_busmaster_method(device_t dev, device_t child) { pci_set_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); return (0); } int pci_disable_busmaster_method(device_t dev, device_t child) { pci_clear_command_bit(dev, child, PCIM_CMD_BUSMASTEREN); return (0); } int pci_enable_io_method(device_t dev, device_t child, int space) { uint16_t bit; switch(space) { case SYS_RES_IOPORT: bit = PCIM_CMD_PORTEN; break; case SYS_RES_MEMORY: bit = PCIM_CMD_MEMEN; break; default: return (EINVAL); } pci_set_command_bit(dev, child, bit); return (0); } int pci_disable_io_method(device_t dev, device_t child, int space) { uint16_t bit; switch(space) { case SYS_RES_IOPORT: bit = PCIM_CMD_PORTEN; break; case SYS_RES_MEMORY: bit = PCIM_CMD_MEMEN; break; default: return (EINVAL); } pci_clear_command_bit(dev, child, bit); return (0); } /* * New style pci driver. Parent device is either a pci-host-bridge or a * pci-pci-bridge. Both kinds are represented by instances of pcib. */ void pci_print_verbose(struct pci_devinfo *dinfo) { if (bootverbose) { pcicfgregs *cfg = &dinfo->cfg; printf("found->\tvendor=0x%04x, dev=0x%04x, revid=0x%02x\n", cfg->vendor, cfg->device, cfg->revid); printf("\tdomain=%d, bus=%d, slot=%d, func=%d\n", cfg->domain, cfg->bus, cfg->slot, cfg->func); printf("\tclass=%02x-%02x-%02x, hdrtype=0x%02x, mfdev=%d\n", cfg->baseclass, cfg->subclass, cfg->progif, cfg->hdrtype, cfg->mfdev); printf("\tcmdreg=0x%04x, statreg=0x%04x, cachelnsz=%d (dwords)\n", cfg->cmdreg, cfg->statreg, cfg->cachelnsz); printf("\tlattimer=0x%02x (%d ns), mingnt=0x%02x (%d ns), maxlat=0x%02x (%d ns)\n", cfg->lattimer, cfg->lattimer * 30, cfg->mingnt, cfg->mingnt * 250, cfg->maxlat, cfg->maxlat * 250); if (cfg->intpin > 0) printf("\tintpin=%c, irq=%d\n", cfg->intpin +'a' -1, cfg->intline); if (cfg->pp.pp_cap) { uint16_t status; status = pci_read_config(cfg->dev, cfg->pp.pp_status, 2); printf("\tpowerspec %d supports D0%s%s D3 current D%d\n", cfg->pp.pp_cap & PCIM_PCAP_SPEC, cfg->pp.pp_cap & PCIM_PCAP_D1SUPP ? " D1" : "", cfg->pp.pp_cap & PCIM_PCAP_D2SUPP ? " D2" : "", status & PCIM_PSTAT_DMASK); } if (cfg->msi.msi_location) { int ctrl; ctrl = cfg->msi.msi_ctrl; printf("\tMSI supports %d message%s%s%s\n", cfg->msi.msi_msgnum, (cfg->msi.msi_msgnum == 1) ? "" : "s", (ctrl & PCIM_MSICTRL_64BIT) ? ", 64 bit" : "", (ctrl & PCIM_MSICTRL_VECTOR) ? ", vector masks":""); } if (cfg->msix.msix_location) { printf("\tMSI-X supports %d message%s ", cfg->msix.msix_msgnum, (cfg->msix.msix_msgnum == 1) ? "" : "s"); if (cfg->msix.msix_table_bar == cfg->msix.msix_pba_bar) printf("in map 0x%x\n", cfg->msix.msix_table_bar); else printf("in maps 0x%x and 0x%x\n", cfg->msix.msix_table_bar, cfg->msix.msix_pba_bar); } } } static int pci_porten(device_t dev) { return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_PORTEN) != 0; } static int pci_memen(device_t dev) { return (pci_read_config(dev, PCIR_COMMAND, 2) & PCIM_CMD_MEMEN) != 0; } void pci_read_bar(device_t dev, int reg, pci_addr_t *mapp, pci_addr_t *testvalp, int *bar64) { struct pci_devinfo *dinfo; pci_addr_t map, testval; int ln2range; uint16_t cmd; /* * The device ROM BAR is special. It is always a 32-bit * memory BAR. Bit 0 is special and should not be set when * sizing the BAR. */ dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, reg)) { map = pci_read_config(dev, reg, 4); pci_write_config(dev, reg, 0xfffffffe, 4); testval = pci_read_config(dev, reg, 4); pci_write_config(dev, reg, map, 4); *mapp = map; *testvalp = testval; if (bar64 != NULL) *bar64 = 0; return; } map = pci_read_config(dev, reg, 4); ln2range = pci_maprange(map); if (ln2range == 64) map |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; /* * Disable decoding via the command register before * determining the BAR's length since we will be placing it in * a weird state. */ cmd = pci_read_config(dev, PCIR_COMMAND, 2); pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); /* * Determine the BAR's length by writing all 1's. The bottom * log_2(size) bits of the BAR will stick as 0 when we read * the value back. * * NB: according to the PCI Local Bus Specification, rev. 3.0: * "Software writes 0FFFFFFFFh to both registers, reads them back, * and combines the result into a 64-bit value." (section 6.2.5.1) * * Writes to both registers must be performed before attempting to * read back the size value. */ testval = 0; pci_write_config(dev, reg, 0xffffffff, 4); if (ln2range == 64) { pci_write_config(dev, reg + 4, 0xffffffff, 4); testval |= (pci_addr_t)pci_read_config(dev, reg + 4, 4) << 32; } testval |= pci_read_config(dev, reg, 4); /* * Restore the original value of the BAR. We may have reprogrammed * the BAR of the low-level console device and when booting verbose, * we need the console device addressable. */ pci_write_config(dev, reg, map, 4); if (ln2range == 64) pci_write_config(dev, reg + 4, map >> 32, 4); pci_write_config(dev, PCIR_COMMAND, cmd, 2); *mapp = map; *testvalp = testval; if (bar64 != NULL) *bar64 = (ln2range == 64); } static void pci_write_bar(device_t dev, struct pci_map *pm, pci_addr_t base) { struct pci_devinfo *dinfo; int ln2range; /* The device ROM BAR is always a 32-bit memory BAR. */ dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) ln2range = 32; else ln2range = pci_maprange(pm->pm_value); pci_write_config(dev, pm->pm_reg, base, 4); if (ln2range == 64) pci_write_config(dev, pm->pm_reg + 4, base >> 32, 4); pm->pm_value = pci_read_config(dev, pm->pm_reg, 4); if (ln2range == 64) pm->pm_value |= (pci_addr_t)pci_read_config(dev, pm->pm_reg + 4, 4) << 32; } struct pci_map * pci_find_bar(device_t dev, int reg) { struct pci_devinfo *dinfo; struct pci_map *pm; dinfo = device_get_ivars(dev); STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { if (pm->pm_reg == reg) return (pm); } return (NULL); } int pci_bar_enabled(device_t dev, struct pci_map *pm) { struct pci_devinfo *dinfo; uint16_t cmd; dinfo = device_get_ivars(dev); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) && !(pm->pm_value & PCIM_BIOS_ENABLE)) return (0); cmd = pci_read_config(dev, PCIR_COMMAND, 2); if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg) || PCI_BAR_MEM(pm->pm_value)) return ((cmd & PCIM_CMD_MEMEN) != 0); else return ((cmd & PCIM_CMD_PORTEN) != 0); } struct pci_map * pci_add_bar(device_t dev, int reg, pci_addr_t value, pci_addr_t size) { struct pci_devinfo *dinfo; struct pci_map *pm, *prev; dinfo = device_get_ivars(dev); pm = malloc(sizeof(*pm), M_DEVBUF, M_WAITOK | M_ZERO); pm->pm_reg = reg; pm->pm_value = value; pm->pm_size = size; STAILQ_FOREACH(prev, &dinfo->cfg.maps, pm_link) { KASSERT(prev->pm_reg != pm->pm_reg, ("duplicate map %02x", reg)); if (STAILQ_NEXT(prev, pm_link) == NULL || STAILQ_NEXT(prev, pm_link)->pm_reg > pm->pm_reg) break; } if (prev != NULL) STAILQ_INSERT_AFTER(&dinfo->cfg.maps, prev, pm, pm_link); else STAILQ_INSERT_TAIL(&dinfo->cfg.maps, pm, pm_link); return (pm); } static void pci_restore_bars(device_t dev) { struct pci_devinfo *dinfo; struct pci_map *pm; int ln2range; dinfo = device_get_ivars(dev); STAILQ_FOREACH(pm, &dinfo->cfg.maps, pm_link) { if (PCIR_IS_BIOS(&dinfo->cfg, pm->pm_reg)) ln2range = 32; else ln2range = pci_maprange(pm->pm_value); pci_write_config(dev, pm->pm_reg, pm->pm_value, 4); if (ln2range == 64) pci_write_config(dev, pm->pm_reg + 4, pm->pm_value >> 32, 4); } } /* * Add a resource based on a pci map register. Return 1 if the map * register is a 32bit map register or 2 if it is a 64bit register. */ static int pci_add_map(device_t bus, device_t dev, int reg, struct resource_list *rl, int force, int prefetch) { struct pci_map *pm; pci_addr_t base, map, testval; pci_addr_t start, end, count; int barlen, basezero, flags, maprange, mapsize, type; uint16_t cmd; struct resource *res; /* * The BAR may already exist if the device is a CardBus card * whose CIS is stored in this BAR. */ pm = pci_find_bar(dev, reg); if (pm != NULL) { maprange = pci_maprange(pm->pm_value); barlen = maprange == 64 ? 2 : 1; return (barlen); } pci_read_bar(dev, reg, &map, &testval, NULL); if (PCI_BAR_MEM(map)) { type = SYS_RES_MEMORY; if (map & PCIM_BAR_MEM_PREFETCH) prefetch = 1; } else type = SYS_RES_IOPORT; mapsize = pci_mapsize(testval); base = pci_mapbase(map); #ifdef __PCI_BAR_ZERO_VALID basezero = 0; #else basezero = base == 0; #endif maprange = pci_maprange(map); barlen = maprange == 64 ? 2 : 1; /* * For I/O registers, if bottom bit is set, and the next bit up * isn't clear, we know we have a BAR that doesn't conform to the * spec, so ignore it. Also, sanity check the size of the data * areas to the type of memory involved. Memory must be at least * 16 bytes in size, while I/O ranges must be at least 4. */ if (PCI_BAR_IO(testval) && (testval & PCIM_BAR_IO_RESERVED) != 0) return (barlen); if ((type == SYS_RES_MEMORY && mapsize < 4) || (type == SYS_RES_IOPORT && mapsize < 2)) return (barlen); /* Save a record of this BAR. */ pm = pci_add_bar(dev, reg, map, mapsize); if (bootverbose) { printf("\tmap[%02x]: type %s, range %2d, base %#jx, size %2d", reg, pci_maptype(map), maprange, (uintmax_t)base, mapsize); if (type == SYS_RES_IOPORT && !pci_porten(dev)) printf(", port disabled\n"); else if (type == SYS_RES_MEMORY && !pci_memen(dev)) printf(", memory disabled\n"); else printf(", enabled\n"); } /* * If base is 0, then we have problems if this architecture does * not allow that. It is best to ignore such entries for the * moment. These will be allocated later if the driver specifically * requests them. However, some removable buses look better when * all resources are allocated, so allow '0' to be overriden. * * Similarly treat maps whose values is the same as the test value * read back. These maps have had all f's written to them by the * BIOS in an attempt to disable the resources. */ if (!force && (basezero || map == testval)) return (barlen); if ((u_long)base != base) { device_printf(bus, "pci%d:%d:%d:%d bar %#x too many address bits", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), reg); return (barlen); } /* * This code theoretically does the right thing, but has * undesirable side effects in some cases where peripherals * respond oddly to having these bits enabled. Let the user * be able to turn them off (since pci_enable_io_modes is 1 by * default). */ if (pci_enable_io_modes) { /* Turn on resources that have been left off by a lazy BIOS */ if (type == SYS_RES_IOPORT && !pci_porten(dev)) { cmd = pci_read_config(dev, PCIR_COMMAND, 2); cmd |= PCIM_CMD_PORTEN; pci_write_config(dev, PCIR_COMMAND, cmd, 2); } if (type == SYS_RES_MEMORY && !pci_memen(dev)) { cmd = pci_read_config(dev, PCIR_COMMAND, 2); cmd |= PCIM_CMD_MEMEN; pci_write_config(dev, PCIR_COMMAND, cmd, 2); } } else { if (type == SYS_RES_IOPORT && !pci_porten(dev)) return (barlen); if (type == SYS_RES_MEMORY && !pci_memen(dev)) return (barlen); } count = (pci_addr_t)1 << mapsize; flags = RF_ALIGNMENT_LOG2(mapsize); if (prefetch) flags |= RF_PREFETCHABLE; if (basezero || base == pci_mapbase(testval) || pci_clear_bars) { start = 0; /* Let the parent decide. */ end = ~0; } else { start = base; end = base + count - 1; } resource_list_add(rl, type, reg, start, end, count); /* * Try to allocate the resource for this BAR from our parent * so that this resource range is already reserved. The * driver for this device will later inherit this resource in * pci_alloc_resource(). */ res = resource_list_reserve(rl, bus, dev, type, ®, start, end, count, flags); if (pci_do_realloc_bars && res == NULL && (start != 0 || end != ~0)) { /* * If the allocation fails, try to allocate a resource for * this BAR using any available range. The firmware felt * it was important enough to assign a resource, so don't * disable decoding if we can help it. */ resource_list_delete(rl, type, reg); resource_list_add(rl, type, reg, 0, ~0, count); res = resource_list_reserve(rl, bus, dev, type, ®, 0, ~0, count, flags); } if (res == NULL) { /* * If the allocation fails, delete the resource list entry * and disable decoding for this device. * * If the driver requests this resource in the future, * pci_reserve_map() will try to allocate a fresh * resource range. */ resource_list_delete(rl, type, reg); pci_disable_io(dev, type); if (bootverbose) device_printf(bus, "pci%d:%d:%d:%d bar %#x failed to allocate\n", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev), reg); } else { start = rman_get_start(res); pci_write_bar(dev, pm, start); } return (barlen); } /* * For ATA devices we need to decide early what addressing mode to use. * Legacy demands that the primary and secondary ATA ports sits on the * same addresses that old ISA hardware did. This dictates that we use * those addresses and ignore the BAR's if we cannot set PCI native * addressing mode. */ static void pci_ata_maps(device_t bus, device_t dev, struct resource_list *rl, int force, uint32_t prefetchmask) { int rid, type, progif; #if 0 /* if this device supports PCI native addressing use it */ progif = pci_read_config(dev, PCIR_PROGIF, 1); if ((progif & 0x8a) == 0x8a) { if (pci_mapbase(pci_read_config(dev, PCIR_BAR(0), 4)) && pci_mapbase(pci_read_config(dev, PCIR_BAR(2), 4))) { printf("Trying ATA native PCI addressing mode\n"); pci_write_config(dev, PCIR_PROGIF, progif | 0x05, 1); } } #endif progif = pci_read_config(dev, PCIR_PROGIF, 1); type = SYS_RES_IOPORT; if (progif & PCIP_STORAGE_IDE_MODEPRIM) { pci_add_map(bus, dev, PCIR_BAR(0), rl, force, prefetchmask & (1 << 0)); pci_add_map(bus, dev, PCIR_BAR(1), rl, force, prefetchmask & (1 << 1)); } else { rid = PCIR_BAR(0); resource_list_add(rl, type, rid, 0x1f0, 0x1f7, 8); (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x1f0, 0x1f7, 8, 0); rid = PCIR_BAR(1); resource_list_add(rl, type, rid, 0x3f6, 0x3f6, 1); (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x3f6, 0x3f6, 1, 0); } if (progif & PCIP_STORAGE_IDE_MODESEC) { pci_add_map(bus, dev, PCIR_BAR(2), rl, force, prefetchmask & (1 << 2)); pci_add_map(bus, dev, PCIR_BAR(3), rl, force, prefetchmask & (1 << 3)); } else { rid = PCIR_BAR(2); resource_list_add(rl, type, rid, 0x170, 0x177, 8); (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x170, 0x177, 8, 0); rid = PCIR_BAR(3); resource_list_add(rl, type, rid, 0x376, 0x376, 1); (void)resource_list_reserve(rl, bus, dev, type, &rid, 0x376, 0x376, 1, 0); } pci_add_map(bus, dev, PCIR_BAR(4), rl, force, prefetchmask & (1 << 4)); pci_add_map(bus, dev, PCIR_BAR(5), rl, force, prefetchmask & (1 << 5)); } static void pci_assign_interrupt(device_t bus, device_t dev, int force_route) { struct pci_devinfo *dinfo = device_get_ivars(dev); pcicfgregs *cfg = &dinfo->cfg; char tunable_name[64]; int irq; /* Has to have an intpin to have an interrupt. */ if (cfg->intpin == 0) return; /* Let the user override the IRQ with a tunable. */ irq = PCI_INVALID_IRQ; snprintf(tunable_name, sizeof(tunable_name), "hw.pci%d.%d.%d.INT%c.irq", cfg->domain, cfg->bus, cfg->slot, cfg->intpin + 'A' - 1); if (TUNABLE_INT_FETCH(tunable_name, &irq) && (irq >= 255 || irq <= 0)) irq = PCI_INVALID_IRQ; /* * If we didn't get an IRQ via the tunable, then we either use the * IRQ value in the intline register or we ask the bus to route an * interrupt for us. If force_route is true, then we only use the * value in the intline register if the bus was unable to assign an * IRQ. */ if (!PCI_INTERRUPT_VALID(irq)) { if (!PCI_INTERRUPT_VALID(cfg->intline) || force_route) irq = PCI_ASSIGN_INTERRUPT(bus, dev); if (!PCI_INTERRUPT_VALID(irq)) irq = cfg->intline; } /* If after all that we don't have an IRQ, just bail. */ if (!PCI_INTERRUPT_VALID(irq)) return; /* Update the config register if it changed. */ if (irq != cfg->intline) { cfg->intline = irq; pci_write_config(dev, PCIR_INTLINE, irq, 1); } /* Add this IRQ as rid 0 interrupt resource. */ resource_list_add(&dinfo->resources, SYS_RES_IRQ, 0, irq, irq, 1); } /* Perform early OHCI takeover from SMM. */ static void ohci_early_takeover(device_t self) { struct resource *res; uint32_t ctl; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; ctl = bus_read_4(res, OHCI_CONTROL); if (ctl & OHCI_IR) { if (bootverbose) printf("ohci early: " "SMM active, request owner change\n"); bus_write_4(res, OHCI_COMMAND_STATUS, OHCI_OCR); for (i = 0; (i < 100) && (ctl & OHCI_IR); i++) { DELAY(1000); ctl = bus_read_4(res, OHCI_CONTROL); } if (ctl & OHCI_IR) { if (bootverbose) printf("ohci early: " "SMM does not respond, resetting\n"); bus_write_4(res, OHCI_CONTROL, OHCI_HCFS_RESET); } /* Disable interrupts */ bus_write_4(res, OHCI_INTERRUPT_DISABLE, OHCI_ALL_INTRS); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } /* Perform early UHCI takeover from SMM. */ static void uhci_early_takeover(device_t self) { struct resource *res; int rid; /* * Set the PIRQD enable bit and switch off all the others. We don't * want legacy support to interfere with us XXX Does this also mean * that the BIOS won't touch the keyboard anymore if it is connected * to the ports of the root hub? */ pci_write_config(self, PCI_LEGSUP, PCI_LEGSUP_USBPIRQDEN, 2); /* Disable interrupts */ rid = PCI_UHCI_BASE_REG; res = bus_alloc_resource_any(self, SYS_RES_IOPORT, &rid, RF_ACTIVE); if (res != NULL) { bus_write_2(res, UHCI_INTR, 0); bus_release_resource(self, SYS_RES_IOPORT, rid, res); } } /* Perform early EHCI takeover from SMM. */ static void ehci_early_takeover(device_t self) { struct resource *res; uint32_t cparams; uint32_t eec; uint8_t eecp; uint8_t bios_sem; uint8_t offs; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; cparams = bus_read_4(res, EHCI_HCCPARAMS); /* Synchronise with the BIOS if it owns the controller. */ for (eecp = EHCI_HCC_EECP(cparams); eecp != 0; eecp = EHCI_EECP_NEXT(eec)) { eec = pci_read_config(self, eecp, 4); if (EHCI_EECP_ID(eec) != EHCI_EC_LEGSUP) { continue; } bios_sem = pci_read_config(self, eecp + EHCI_LEGSUP_BIOS_SEM, 1); if (bios_sem == 0) { continue; } if (bootverbose) printf("ehci early: " "SMM active, request owner change\n"); pci_write_config(self, eecp + EHCI_LEGSUP_OS_SEM, 1, 1); for (i = 0; (i < 100) && (bios_sem != 0); i++) { DELAY(1000); bios_sem = pci_read_config(self, eecp + EHCI_LEGSUP_BIOS_SEM, 1); } if (bios_sem != 0) { if (bootverbose) printf("ehci early: " "SMM does not respond\n"); } /* Disable interrupts */ offs = EHCI_CAPLENGTH(bus_read_4(res, EHCI_CAPLEN_HCIVERSION)); bus_write_4(res, offs + EHCI_USBINTR, 0); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } /* Perform early XHCI takeover from SMM. */ static void xhci_early_takeover(device_t self) { struct resource *res; uint32_t cparams; uint32_t eec; uint8_t eecp; uint8_t bios_sem; uint8_t offs; int rid; int i; rid = PCIR_BAR(0); res = bus_alloc_resource_any(self, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (res == NULL) return; cparams = bus_read_4(res, XHCI_HCSPARAMS0); eec = -1; /* Synchronise with the BIOS if it owns the controller. */ for (eecp = XHCI_HCS0_XECP(cparams) << 2; eecp != 0 && XHCI_XECP_NEXT(eec); eecp += XHCI_XECP_NEXT(eec) << 2) { eec = bus_read_4(res, eecp); if (XHCI_XECP_ID(eec) != XHCI_ID_USB_LEGACY) continue; bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); if (bios_sem == 0) continue; if (bootverbose) printf("xhci early: " "SMM active, request owner change\n"); bus_write_1(res, eecp + XHCI_XECP_OS_SEM, 1); /* wait a maximum of 5 second */ for (i = 0; (i < 5000) && (bios_sem != 0); i++) { DELAY(1000); bios_sem = bus_read_1(res, eecp + XHCI_XECP_BIOS_SEM); } if (bios_sem != 0) { if (bootverbose) printf("xhci early: " "SMM does not respond\n"); } /* Disable interrupts */ offs = bus_read_1(res, XHCI_CAPLENGTH); bus_write_4(res, offs + XHCI_USBCMD, 0); bus_read_4(res, offs + XHCI_USBSTS); } bus_release_resource(self, SYS_RES_MEMORY, rid, res); } #if defined(NEW_PCIB) && defined(PCI_RES_BUS) static void pci_reserve_secbus(device_t bus, device_t dev, pcicfgregs *cfg, struct resource_list *rl) { struct resource *res; char *cp; rman_res_t start, end, count; int rid, sec_bus, sec_reg, sub_bus, sub_reg, sup_bus; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: sec_reg = PCIR_SECBUS_1; sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: sec_reg = PCIR_SECBUS_2; sub_reg = PCIR_SUBBUS_2; break; default: return; } /* * If the existing bus range is valid, attempt to reserve it * from our parent. If this fails for any reason, clear the * secbus and subbus registers. * * XXX: Should we reset sub_bus to sec_bus if it is < sec_bus? * This would at least preserve the existing sec_bus if it is * valid. */ sec_bus = PCI_READ_CONFIG(bus, dev, sec_reg, 1); sub_bus = PCI_READ_CONFIG(bus, dev, sub_reg, 1); /* Quirk handling. */ switch (pci_get_devid(dev)) { case 0x12258086: /* Intel 82454KX/GX (Orion) */ sup_bus = pci_read_config(dev, 0x41, 1); if (sup_bus != 0xff) { sec_bus = sup_bus + 1; sub_bus = sup_bus + 1; PCI_WRITE_CONFIG(bus, dev, sec_reg, sec_bus, 1); PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); } break; case 0x00dd10de: /* Compaq R3000 BIOS sets wrong subordinate bus number. */ if ((cp = kern_getenv("smbios.planar.maker")) == NULL) break; if (strncmp(cp, "Compal", 6) != 0) { freeenv(cp); break; } freeenv(cp); if ((cp = kern_getenv("smbios.planar.product")) == NULL) break; if (strncmp(cp, "08A0", 4) != 0) { freeenv(cp); break; } freeenv(cp); if (sub_bus < 0xa) { sub_bus = 0xa; PCI_WRITE_CONFIG(bus, dev, sub_reg, sub_bus, 1); } break; } if (bootverbose) printf("\tsecbus=%d, subbus=%d\n", sec_bus, sub_bus); if (sec_bus > 0 && sub_bus >= sec_bus) { start = sec_bus; end = sub_bus; count = end - start + 1; resource_list_add(rl, PCI_RES_BUS, 0, 0, ~0, count); /* * If requested, clear secondary bus registers in * bridge devices to force a complete renumbering * rather than reserving the existing range. However, * preserve the existing size. */ if (pci_clear_buses) goto clear; rid = 0; res = resource_list_reserve(rl, bus, dev, PCI_RES_BUS, &rid, start, end, count, 0); if (res != NULL) return; if (bootverbose) device_printf(bus, "pci%d:%d:%d:%d secbus failed to allocate\n", pci_get_domain(dev), pci_get_bus(dev), pci_get_slot(dev), pci_get_function(dev)); } clear: PCI_WRITE_CONFIG(bus, dev, sec_reg, 0, 1); PCI_WRITE_CONFIG(bus, dev, sub_reg, 0, 1); } static struct resource * pci_alloc_secbus(device_t dev, device_t child, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct pci_devinfo *dinfo; pcicfgregs *cfg; struct resource_list *rl; struct resource *res; int sec_reg, sub_reg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; rl = &dinfo->resources; switch (cfg->hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_BRIDGE: sec_reg = PCIR_SECBUS_1; sub_reg = PCIR_SUBBUS_1; break; case PCIM_HDRTYPE_CARDBUS: sec_reg = PCIR_SECBUS_2; sub_reg = PCIR_SUBBUS_2; break; default: return (NULL); } if (*rid != 0) return (NULL); if (resource_list_find(rl, PCI_RES_BUS, *rid) == NULL) resource_list_add(rl, PCI_RES_BUS, *rid, start, end, count); if (!resource_list_reserved(rl, PCI_RES_BUS, *rid)) { res = resource_list_reserve(rl, dev, child, PCI_RES_BUS, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) { resource_list_delete(rl, PCI_RES_BUS, *rid); device_printf(child, "allocating %ju bus%s failed\n", count, count == 1 ? "" : "es"); return (NULL); } if (bootverbose) device_printf(child, "Lazy allocation of %ju bus%s at %ju\n", count, count == 1 ? "" : "es", rman_get_start(res)); PCI_WRITE_CONFIG(dev, child, sec_reg, rman_get_start(res), 1); PCI_WRITE_CONFIG(dev, child, sub_reg, rman_get_end(res), 1); } return (resource_list_alloc(rl, dev, child, PCI_RES_BUS, rid, start, end, count, flags)); } #endif static int pci_ea_bei_to_rid(device_t dev, int bei) { #ifdef PCI_IOV struct pci_devinfo *dinfo; int iov_pos; struct pcicfg_iov *iov; dinfo = device_get_ivars(dev); iov = dinfo->cfg.iov; if (iov != NULL) iov_pos = iov->iov_pos; else iov_pos = 0; #endif /* Check if matches BAR */ if ((bei >= PCIM_EA_BEI_BAR_0) && (bei <= PCIM_EA_BEI_BAR_5)) return (PCIR_BAR(bei)); /* Check ROM */ if (bei == PCIM_EA_BEI_ROM) return (PCIR_BIOS); #ifdef PCI_IOV /* Check if matches VF_BAR */ if ((iov != NULL) && (bei >= PCIM_EA_BEI_VF_BAR_0) && (bei <= PCIM_EA_BEI_VF_BAR_5)) return (PCIR_SRIOV_BAR(bei - PCIM_EA_BEI_VF_BAR_0) + iov_pos); #endif return (-1); } int pci_ea_is_enabled(device_t dev, int rid) { struct pci_ea_entry *ea; struct pci_devinfo *dinfo; dinfo = device_get_ivars(dev); STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { if (pci_ea_bei_to_rid(dev, ea->eae_bei) == rid) return ((ea->eae_flags & PCIM_EA_ENABLE) > 0); } return (0); } void pci_add_resources_ea(device_t bus, device_t dev, int alloc_iov) { struct pci_ea_entry *ea; struct pci_devinfo *dinfo; pci_addr_t start, end, count; struct resource_list *rl; int type, flags, rid; struct resource *res; uint32_t tmp; #ifdef PCI_IOV struct pcicfg_iov *iov; #endif dinfo = device_get_ivars(dev); rl = &dinfo->resources; flags = 0; #ifdef PCI_IOV iov = dinfo->cfg.iov; #endif if (dinfo->cfg.ea.ea_location == 0) return; STAILQ_FOREACH(ea, &dinfo->cfg.ea.ea_entries, eae_link) { /* * TODO: Ignore EA-BAR if is not enabled. * Currently the EA implementation supports * only situation, where EA structure contains * predefined entries. In case they are not enabled * leave them unallocated and proceed with * a legacy-BAR mechanism. */ if ((ea->eae_flags & PCIM_EA_ENABLE) == 0) continue; switch ((ea->eae_flags & PCIM_EA_PP) >> PCIM_EA_PP_OFFSET) { case PCIM_EA_P_MEM_PREFETCH: case PCIM_EA_P_VF_MEM_PREFETCH: flags = RF_PREFETCHABLE; /* FALLTHROUGH */ case PCIM_EA_P_VF_MEM: case PCIM_EA_P_MEM: type = SYS_RES_MEMORY; break; case PCIM_EA_P_IO: type = SYS_RES_IOPORT; break; default: continue; } if (alloc_iov != 0) { #ifdef PCI_IOV /* Allocating IOV, confirm BEI matches */ if ((ea->eae_bei < PCIM_EA_BEI_VF_BAR_0) || (ea->eae_bei > PCIM_EA_BEI_VF_BAR_5)) continue; #else continue; #endif } else { /* Allocating BAR, confirm BEI matches */ if (((ea->eae_bei < PCIM_EA_BEI_BAR_0) || (ea->eae_bei > PCIM_EA_BEI_BAR_5)) && (ea->eae_bei != PCIM_EA_BEI_ROM)) continue; } rid = pci_ea_bei_to_rid(dev, ea->eae_bei); if (rid < 0) continue; /* Skip resources already allocated by EA */ if ((resource_list_find(rl, SYS_RES_MEMORY, rid) != NULL) || (resource_list_find(rl, SYS_RES_IOPORT, rid) != NULL)) continue; start = ea->eae_base; count = ea->eae_max_offset + 1; #ifdef PCI_IOV if (iov != NULL) count = count * iov->iov_num_vfs; #endif end = start + count - 1; if (count == 0) continue; resource_list_add(rl, type, rid, start, end, count); res = resource_list_reserve(rl, bus, dev, type, &rid, start, end, count, flags); if (res == NULL) { resource_list_delete(rl, type, rid); /* * Failed to allocate using EA, disable entry. * Another attempt to allocation will be performed * further, but this time using legacy BAR registers */ tmp = pci_read_config(dev, ea->eae_cfg_offset, 4); tmp &= ~PCIM_EA_ENABLE; pci_write_config(dev, ea->eae_cfg_offset, tmp, 4); /* * Disabling entry might fail in case it is hardwired. * Read flags again to match current status. */ ea->eae_flags = pci_read_config(dev, ea->eae_cfg_offset, 4); continue; } /* As per specification, fill BAR with zeros */ pci_write_config(dev, rid, 0, 4); } } void pci_add_resources(device_t bus, device_t dev, int force, uint32_t prefetchmask) { struct pci_devinfo *dinfo; pcicfgregs *cfg; struct resource_list *rl; const struct pci_quirk *q; uint32_t devid; int i; dinfo = device_get_ivars(dev); cfg = &dinfo->cfg; rl = &dinfo->resources; devid = (cfg->device << 16) | cfg->vendor; /* Allocate resources using Enhanced Allocation */ pci_add_resources_ea(bus, dev, 0); /* ATA devices needs special map treatment */ if ((pci_get_class(dev) == PCIC_STORAGE) && (pci_get_subclass(dev) == PCIS_STORAGE_IDE) && ((pci_get_progif(dev) & PCIP_STORAGE_IDE_MASTERDEV) || (!pci_read_config(dev, PCIR_BAR(0), 4) && !pci_read_config(dev, PCIR_BAR(2), 4))) ) pci_ata_maps(bus, dev, rl, force, prefetchmask); else for (i = 0; i < cfg->nummaps;) { /* Skip resources already managed by EA */ if ((resource_list_find(rl, SYS_RES_MEMORY, PCIR_BAR(i)) != NULL) || (resource_list_find(rl, SYS_RES_IOPORT, PCIR_BAR(i)) != NULL) || pci_ea_is_enabled(dev, PCIR_BAR(i))) { i++; continue; } /* * Skip quirked resources. */ for (q = &pci_quirks[0]; q->devid != 0; q++) if (q->devid == devid && q->type == PCI_QUIRK_UNMAP_REG && q->arg1 == PCIR_BAR(i)) break; if (q->devid != 0) { i++; continue; } i += pci_add_map(bus, dev, PCIR_BAR(i), rl, force, prefetchmask & (1 << i)); } /* * Add additional, quirked resources. */ for (q = &pci_quirks[0]; q->devid != 0; q++) if (q->devid == devid && q->type == PCI_QUIRK_MAP_REG) pci_add_map(bus, dev, q->arg1, rl, force, 0); if (cfg->intpin > 0 && PCI_INTERRUPT_VALID(cfg->intline)) { #ifdef __PCI_REROUTE_INTERRUPT /* * Try to re-route interrupts. Sometimes the BIOS or * firmware may leave bogus values in these registers. * If the re-route fails, then just stick with what we * have. */ pci_assign_interrupt(bus, dev, 1); #else pci_assign_interrupt(bus, dev, 0); #endif } if (pci_usb_takeover && pci_get_class(dev) == PCIC_SERIALBUS && pci_get_subclass(dev) == PCIS_SERIALBUS_USB) { if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_XHCI) xhci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_EHCI) ehci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_OHCI) ohci_early_takeover(dev); else if (pci_get_progif(dev) == PCIP_SERIALBUS_USB_UHCI) uhci_early_takeover(dev); } #if defined(NEW_PCIB) && defined(PCI_RES_BUS) /* * Reserve resources for secondary bus ranges behind bridge * devices. */ pci_reserve_secbus(bus, dev, cfg, rl); #endif } static struct pci_devinfo * pci_identify_function(device_t pcib, device_t dev, int domain, int busno, int slot, int func) { struct pci_devinfo *dinfo; dinfo = pci_read_device(pcib, dev, domain, busno, slot, func); if (dinfo != NULL) pci_add_child(dev, dinfo); return (dinfo); } void pci_add_children(device_t dev, int domain, int busno) { #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) device_t pcib = device_get_parent(dev); struct pci_devinfo *dinfo; int maxslots; int s, f, pcifunchigh; uint8_t hdrtype; int first_func; /* * Try to detect a device at slot 0, function 0. If it exists, try to * enable ARI. We must enable ARI before detecting the rest of the * functions on this bus as ARI changes the set of slots and functions * that are legal on this bus. */ dinfo = pci_identify_function(pcib, dev, domain, busno, 0, 0); if (dinfo != NULL && pci_enable_ari) PCIB_TRY_ENABLE_ARI(pcib, dinfo->cfg.dev); /* * Start looking for new devices on slot 0 at function 1 because we * just identified the device at slot 0, function 0. */ first_func = 1; maxslots = PCIB_MAXSLOTS(pcib); for (s = 0; s <= maxslots; s++, first_func = 0) { pcifunchigh = 0; f = 0; DELAY(1); hdrtype = REG(PCIR_HDRTYPE, 1); if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) continue; if (hdrtype & PCIM_MFDEV) pcifunchigh = PCIB_MAXFUNCS(pcib); for (f = first_func; f <= pcifunchigh; f++) pci_identify_function(pcib, dev, domain, busno, s, f); } #undef REG } int pci_rescan_method(device_t dev) { #define REG(n, w) PCIB_READ_CONFIG(pcib, busno, s, f, n, w) device_t pcib = device_get_parent(dev); device_t child, *devlist, *unchanged; int devcount, error, i, j, maxslots, oldcount; int busno, domain, s, f, pcifunchigh; uint8_t hdrtype; /* No need to check for ARI on a rescan. */ error = device_get_children(dev, &devlist, &devcount); if (error) return (error); if (devcount != 0) { unchanged = malloc(devcount * sizeof(device_t), M_TEMP, M_NOWAIT | M_ZERO); if (unchanged == NULL) { free(devlist, M_TEMP); return (ENOMEM); } } else unchanged = NULL; domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); maxslots = PCIB_MAXSLOTS(pcib); for (s = 0; s <= maxslots; s++) { /* If function 0 is not present, skip to the next slot. */ f = 0; if (REG(PCIR_VENDOR, 2) == 0xffff) continue; pcifunchigh = 0; hdrtype = REG(PCIR_HDRTYPE, 1); if ((hdrtype & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) continue; if (hdrtype & PCIM_MFDEV) pcifunchigh = PCIB_MAXFUNCS(pcib); for (f = 0; f <= pcifunchigh; f++) { if (REG(PCIR_VENDOR, 2) == 0xffff) continue; /* * Found a valid function. Check if a * device_t for this device already exists. */ for (i = 0; i < devcount; i++) { child = devlist[i]; if (child == NULL) continue; if (pci_get_slot(child) == s && pci_get_function(child) == f) { unchanged[i] = child; goto next_func; } } pci_identify_function(pcib, dev, domain, busno, s, f); next_func:; } } /* Remove devices that are no longer present. */ for (i = 0; i < devcount; i++) { if (unchanged[i] != NULL) continue; device_delete_child(dev, devlist[i]); } free(devlist, M_TEMP); oldcount = devcount; /* Try to attach the devices just added. */ error = device_get_children(dev, &devlist, &devcount); if (error) { free(unchanged, M_TEMP); return (error); } for (i = 0; i < devcount; i++) { for (j = 0; j < oldcount; j++) { if (devlist[i] == unchanged[j]) goto next_device; } device_probe_and_attach(devlist[i]); next_device:; } free(unchanged, M_TEMP); free(devlist, M_TEMP); return (0); #undef REG } #ifdef PCI_IOV device_t pci_add_iov_child(device_t bus, device_t pf, uint16_t rid, uint16_t vid, uint16_t did) { struct pci_devinfo *vf_dinfo; device_t pcib; int busno, slot, func; pcib = device_get_parent(bus); PCIB_DECODE_RID(pcib, rid, &busno, &slot, &func); vf_dinfo = pci_fill_devinfo(pcib, bus, pci_get_domain(pcib), busno, slot, func, vid, did); vf_dinfo->cfg.flags |= PCICFG_VF; pci_add_child(bus, vf_dinfo); return (vf_dinfo->cfg.dev); } device_t pci_create_iov_child_method(device_t bus, device_t pf, uint16_t rid, uint16_t vid, uint16_t did) { return (pci_add_iov_child(bus, pf, rid, vid, did)); } #endif void pci_add_child(device_t bus, struct pci_devinfo *dinfo) { dinfo->cfg.dev = device_add_child(bus, NULL, -1); device_set_ivars(dinfo->cfg.dev, dinfo); resource_list_init(&dinfo->resources); pci_cfg_save(dinfo->cfg.dev, dinfo, 0); pci_cfg_restore(dinfo->cfg.dev, dinfo); pci_print_verbose(dinfo); pci_add_resources(bus, dinfo->cfg.dev, 0, 0); pci_child_added(dinfo->cfg.dev); EVENTHANDLER_INVOKE(pci_add_device, dinfo->cfg.dev); } void pci_child_added_method(device_t dev, device_t child) { } static int pci_probe(device_t dev) { device_set_desc(dev, "PCI bus"); /* Allow other subclasses to override this driver. */ return (BUS_PROBE_GENERIC); } int pci_attach_common(device_t dev) { struct pci_softc *sc; int busno, domain; #ifdef PCI_DMA_BOUNDARY int error, tag_valid; #endif #ifdef PCI_RES_BUS int rid; #endif sc = device_get_softc(dev); domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); #ifdef PCI_RES_BUS rid = 0; sc->sc_bus = bus_alloc_resource(dev, PCI_RES_BUS, &rid, busno, busno, 1, 0); if (sc->sc_bus == NULL) { device_printf(dev, "failed to allocate bus number\n"); return (ENXIO); } #endif if (bootverbose) device_printf(dev, "domain=%d, physical bus=%d\n", domain, busno); #ifdef PCI_DMA_BOUNDARY tag_valid = 0; if (device_get_devclass(device_get_parent(device_get_parent(dev))) != devclass_find("pci")) { error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, PCI_DMA_BOUNDARY, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE, BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, 0, NULL, NULL, &sc->sc_dma_tag); if (error) device_printf(dev, "Failed to create DMA tag: %d\n", error); else tag_valid = 1; } if (!tag_valid) #endif sc->sc_dma_tag = bus_get_dma_tag(dev); return (0); } static int pci_attach(device_t dev) { int busno, domain, error; error = pci_attach_common(dev); if (error) return (error); /* * Since there can be multiple independently numbered PCI * buses on systems with multiple PCI domains, we can't use * the unit number to decide which bus we are probing. We ask * the parent pcib what our domain and bus numbers are. */ domain = pcib_get_domain(dev); busno = pcib_get_bus(dev); pci_add_children(dev, domain, busno); return (bus_generic_attach(dev)); } static int pci_detach(device_t dev) { #ifdef PCI_RES_BUS struct pci_softc *sc; #endif int error; error = bus_generic_detach(dev); if (error) return (error); #ifdef PCI_RES_BUS sc = device_get_softc(dev); error = bus_release_resource(dev, PCI_RES_BUS, 0, sc->sc_bus); if (error) return (error); #endif return (device_delete_children(dev)); } static void pci_hint_device_unit(device_t dev, device_t child, const char *name, int *unitp) { int line, unit; const char *at; char me1[24], me2[32]; uint8_t b, s, f; uint32_t d; d = pci_get_domain(child); b = pci_get_bus(child); s = pci_get_slot(child); f = pci_get_function(child); snprintf(me1, sizeof(me1), "pci%u:%u:%u", b, s, f); snprintf(me2, sizeof(me2), "pci%u:%u:%u:%u", d, b, s, f); line = 0; while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { resource_string_value(name, unit, "at", &at); if (strcmp(at, me1) != 0 && strcmp(at, me2) != 0) continue; /* No match, try next candidate */ *unitp = unit; return; } } static void pci_set_power_child(device_t dev, device_t child, int state) { device_t pcib; int dstate; /* * Set the device to the given state. If the firmware suggests * a different power state, use it instead. If power management * is not present, the firmware is responsible for managing * device power. Skip children who aren't attached since they * are handled separately. */ pcib = device_get_parent(dev); dstate = state; if (device_is_attached(child) && PCIB_POWER_FOR_SLEEP(pcib, child, &dstate) == 0) pci_set_powerstate(child, dstate); } int pci_suspend_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; int error; dinfo = device_get_ivars(child); /* * Save the PCI configuration space for the child and set the * device in the appropriate power state for this sleep state. */ pci_cfg_save(child, dinfo, 0); /* Suspend devices before potentially powering them down. */ error = bus_generic_suspend_child(dev, child); if (error) return (error); if (pci_do_power_suspend) pci_set_power_child(dev, child, PCI_POWERSTATE_D3); return (0); } int pci_resume_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; if (pci_do_power_resume) pci_set_power_child(dev, child, PCI_POWERSTATE_D0); dinfo = device_get_ivars(child); pci_cfg_restore(child, dinfo); if (!device_is_attached(child)) pci_cfg_save(child, dinfo, 1); bus_generic_resume_child(dev, child); return (0); } int pci_resume(device_t dev) { device_t child, *devlist; int error, i, numdevs; if ((error = device_get_children(dev, &devlist, &numdevs)) != 0) return (error); /* * Resume critical devices first, then everything else later. */ for (i = 0; i < numdevs; i++) { child = devlist[i]; switch (pci_get_class(child)) { case PCIC_DISPLAY: case PCIC_MEMORY: case PCIC_BRIDGE: case PCIC_BASEPERIPH: BUS_RESUME_CHILD(dev, child); break; } } for (i = 0; i < numdevs; i++) { child = devlist[i]; switch (pci_get_class(child)) { case PCIC_DISPLAY: case PCIC_MEMORY: case PCIC_BRIDGE: case PCIC_BASEPERIPH: break; default: BUS_RESUME_CHILD(dev, child); } } free(devlist, M_TEMP); return (0); } static void pci_load_vendor_data(void) { caddr_t data; void *ptr; size_t sz; data = preload_search_by_type("pci_vendor_data"); if (data != NULL) { ptr = preload_fetch_addr(data); sz = preload_fetch_size(data); if (ptr != NULL && sz != 0) { pci_vendordata = ptr; pci_vendordata_size = sz; /* terminate the database */ pci_vendordata[pci_vendordata_size] = '\n'; } } } void pci_driver_added(device_t dev, driver_t *driver) { int numdevs; device_t *devlist; device_t child; struct pci_devinfo *dinfo; int i; if (bootverbose) device_printf(dev, "driver added\n"); DEVICE_IDENTIFY(driver, dev); if (device_get_children(dev, &devlist, &numdevs) != 0) return; for (i = 0; i < numdevs; i++) { child = devlist[i]; if (device_get_state(child) != DS_NOTPRESENT) continue; dinfo = device_get_ivars(child); pci_print_verbose(dinfo); if (bootverbose) pci_printf(&dinfo->cfg, "reprobing on driver added\n"); pci_cfg_restore(child, dinfo); if (device_probe_and_attach(child) != 0) pci_child_detached(dev, child); } free(devlist, M_TEMP); } int pci_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { struct pci_devinfo *dinfo; struct msix_table_entry *mte; struct msix_vector *mv; uint64_t addr; uint32_t data; void *cookie; int error, rid; error = bus_generic_setup_intr(dev, child, irq, flags, filter, intr, arg, &cookie); if (error) return (error); /* If this is not a direct child, just bail out. */ if (device_get_parent(child) != dev) { *cookiep = cookie; return(0); } rid = rman_get_rid(irq); if (rid == 0) { /* Make sure that INTx is enabled */ pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); } else { /* * Check to see if the interrupt is MSI or MSI-X. * Ask our parent to map the MSI and give * us the address and data register values. * If we fail for some reason, teardown the * interrupt handler. */ dinfo = device_get_ivars(child); if (dinfo->cfg.msi.msi_alloc > 0) { if (dinfo->cfg.msi.msi_addr == 0) { KASSERT(dinfo->cfg.msi.msi_handlers == 0, ("MSI has handlers, but vectors not mapped")); error = PCIB_MAP_MSI(device_get_parent(dev), child, rman_get_start(irq), &addr, &data); if (error) goto bad; dinfo->cfg.msi.msi_addr = addr; dinfo->cfg.msi.msi_data = data; } if (dinfo->cfg.msi.msi_handlers == 0) pci_enable_msi(child, dinfo->cfg.msi.msi_addr, dinfo->cfg.msi.msi_data); dinfo->cfg.msi.msi_handlers++; } else { KASSERT(dinfo->cfg.msix.msix_alloc > 0, ("No MSI or MSI-X interrupts allocated")); KASSERT(rid <= dinfo->cfg.msix.msix_table_len, ("MSI-X index too high")); mte = &dinfo->cfg.msix.msix_table[rid - 1]; KASSERT(mte->mte_vector != 0, ("no message vector")); mv = &dinfo->cfg.msix.msix_vectors[mte->mte_vector - 1]; KASSERT(mv->mv_irq == rman_get_start(irq), ("IRQ mismatch")); if (mv->mv_address == 0) { KASSERT(mte->mte_handlers == 0, ("MSI-X table entry has handlers, but vector not mapped")); error = PCIB_MAP_MSI(device_get_parent(dev), child, rman_get_start(irq), &addr, &data); if (error) goto bad; mv->mv_address = addr; mv->mv_data = data; } /* * The MSIX table entry must be made valid by * incrementing the mte_handlers before * calling pci_enable_msix() and * pci_resume_msix(). Else the MSIX rewrite * table quirk will not work as expected. */ mte->mte_handlers++; if (mte->mte_handlers == 1) { pci_enable_msix(child, rid - 1, mv->mv_address, mv->mv_data); pci_unmask_msix(child, rid - 1); } } /* * Make sure that INTx is disabled if we are using MSI/MSI-X, * unless the device is affected by PCI_QUIRK_MSI_INTX_BUG, * in which case we "enable" INTx so MSI/MSI-X actually works. */ if (!pci_has_quirk(pci_get_devid(child), PCI_QUIRK_MSI_INTX_BUG)) pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); else pci_clear_command_bit(dev, child, PCIM_CMD_INTxDIS); bad: if (error) { (void)bus_generic_teardown_intr(dev, child, irq, cookie); return (error); } } *cookiep = cookie; return (0); } int pci_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { struct msix_table_entry *mte; struct resource_list_entry *rle; struct pci_devinfo *dinfo; int error, rid; if (irq == NULL || !(rman_get_flags(irq) & RF_ACTIVE)) return (EINVAL); /* If this isn't a direct child, just bail out */ if (device_get_parent(child) != dev) return(bus_generic_teardown_intr(dev, child, irq, cookie)); rid = rman_get_rid(irq); if (rid == 0) { /* Mask INTx */ pci_set_command_bit(dev, child, PCIM_CMD_INTxDIS); } else { /* * Check to see if the interrupt is MSI or MSI-X. If so, * decrement the appropriate handlers count and mask the * MSI-X message, or disable MSI messages if the count * drops to 0. */ dinfo = device_get_ivars(child); rle = resource_list_find(&dinfo->resources, SYS_RES_IRQ, rid); if (rle->res != irq) return (EINVAL); if (dinfo->cfg.msi.msi_alloc > 0) { KASSERT(rid <= dinfo->cfg.msi.msi_alloc, ("MSI-X index too high")); if (dinfo->cfg.msi.msi_handlers == 0) return (EINVAL); dinfo->cfg.msi.msi_handlers--; if (dinfo->cfg.msi.msi_handlers == 0) pci_disable_msi(child); } else { KASSERT(dinfo->cfg.msix.msix_alloc > 0, ("No MSI or MSI-X interrupts allocated")); KASSERT(rid <= dinfo->cfg.msix.msix_table_len, ("MSI-X index too high")); mte = &dinfo->cfg.msix.msix_table[rid - 1]; if (mte->mte_handlers == 0) return (EINVAL); mte->mte_handlers--; if (mte->mte_handlers == 0) pci_mask_msix(child, rid - 1); } } error = bus_generic_teardown_intr(dev, child, irq, cookie); if (rid > 0) KASSERT(error == 0, ("%s: generic teardown failed for MSI/MSI-X", __func__)); return (error); } int pci_print_child(device_t dev, device_t child) { struct pci_devinfo *dinfo; struct resource_list *rl; int retval = 0; dinfo = device_get_ivars(child); rl = &dinfo->resources; retval += bus_print_child_header(dev, child); retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); if (device_get_flags(dev)) retval += printf(" flags %#x", device_get_flags(dev)); retval += printf(" at device %d.%d", pci_get_slot(child), pci_get_function(child)); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } static const struct { int class; int subclass; int report; /* 0 = bootverbose, 1 = always */ const char *desc; } pci_nomatch_tab[] = { {PCIC_OLD, -1, 1, "old"}, {PCIC_OLD, PCIS_OLD_NONVGA, 1, "non-VGA display device"}, {PCIC_OLD, PCIS_OLD_VGA, 1, "VGA-compatible display device"}, {PCIC_STORAGE, -1, 1, "mass storage"}, {PCIC_STORAGE, PCIS_STORAGE_SCSI, 1, "SCSI"}, {PCIC_STORAGE, PCIS_STORAGE_IDE, 1, "ATA"}, {PCIC_STORAGE, PCIS_STORAGE_FLOPPY, 1, "floppy disk"}, {PCIC_STORAGE, PCIS_STORAGE_IPI, 1, "IPI"}, {PCIC_STORAGE, PCIS_STORAGE_RAID, 1, "RAID"}, {PCIC_STORAGE, PCIS_STORAGE_ATA_ADMA, 1, "ATA (ADMA)"}, {PCIC_STORAGE, PCIS_STORAGE_SATA, 1, "SATA"}, {PCIC_STORAGE, PCIS_STORAGE_SAS, 1, "SAS"}, {PCIC_STORAGE, PCIS_STORAGE_NVM, 1, "NVM"}, {PCIC_NETWORK, -1, 1, "network"}, {PCIC_NETWORK, PCIS_NETWORK_ETHERNET, 1, "ethernet"}, {PCIC_NETWORK, PCIS_NETWORK_TOKENRING, 1, "token ring"}, {PCIC_NETWORK, PCIS_NETWORK_FDDI, 1, "fddi"}, {PCIC_NETWORK, PCIS_NETWORK_ATM, 1, "ATM"}, {PCIC_NETWORK, PCIS_NETWORK_ISDN, 1, "ISDN"}, {PCIC_DISPLAY, -1, 1, "display"}, {PCIC_DISPLAY, PCIS_DISPLAY_VGA, 1, "VGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_XGA, 1, "XGA"}, {PCIC_DISPLAY, PCIS_DISPLAY_3D, 1, "3D"}, {PCIC_MULTIMEDIA, -1, 1, "multimedia"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_VIDEO, 1, "video"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_AUDIO, 1, "audio"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_TELE, 1, "telephony"}, {PCIC_MULTIMEDIA, PCIS_MULTIMEDIA_HDA, 1, "HDA"}, {PCIC_MEMORY, -1, 1, "memory"}, {PCIC_MEMORY, PCIS_MEMORY_RAM, 1, "RAM"}, {PCIC_MEMORY, PCIS_MEMORY_FLASH, 1, "flash"}, {PCIC_BRIDGE, -1, 1, "bridge"}, {PCIC_BRIDGE, PCIS_BRIDGE_HOST, 1, "HOST-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_ISA, 1, "PCI-ISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_EISA, 1, "PCI-EISA"}, {PCIC_BRIDGE, PCIS_BRIDGE_MCA, 1, "PCI-MCA"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCI, 1, "PCI-PCI"}, {PCIC_BRIDGE, PCIS_BRIDGE_PCMCIA, 1, "PCI-PCMCIA"}, {PCIC_BRIDGE, PCIS_BRIDGE_NUBUS, 1, "PCI-NuBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_CARDBUS, 1, "PCI-CardBus"}, {PCIC_BRIDGE, PCIS_BRIDGE_RACEWAY, 1, "PCI-RACEway"}, {PCIC_SIMPLECOMM, -1, 1, "simple comms"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_UART, 1, "UART"}, /* could detect 16550 */ {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_PAR, 1, "parallel port"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MULSER, 1, "multiport serial"}, {PCIC_SIMPLECOMM, PCIS_SIMPLECOMM_MODEM, 1, "generic modem"}, {PCIC_BASEPERIPH, -1, 0, "base peripheral"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PIC, 1, "interrupt controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_DMA, 1, "DMA controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_TIMER, 1, "timer"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_RTC, 1, "realtime clock"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_PCIHOT, 1, "PCI hot-plug controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_SDHC, 1, "SD host controller"}, {PCIC_BASEPERIPH, PCIS_BASEPERIPH_IOMMU, 1, "IOMMU"}, {PCIC_INPUTDEV, -1, 1, "input device"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_KEYBOARD, 1, "keyboard"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_DIGITIZER,1, "digitizer"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_MOUSE, 1, "mouse"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_SCANNER, 1, "scanner"}, {PCIC_INPUTDEV, PCIS_INPUTDEV_GAMEPORT, 1, "gameport"}, {PCIC_DOCKING, -1, 1, "docking station"}, {PCIC_PROCESSOR, -1, 1, "processor"}, {PCIC_SERIALBUS, -1, 1, "serial bus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FW, 1, "FireWire"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_ACCESS, 1, "AccessBus"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SSA, 1, "SSA"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_USB, 1, "USB"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_FC, 1, "Fibre Channel"}, {PCIC_SERIALBUS, PCIS_SERIALBUS_SMBUS, 0, "SMBus"}, {PCIC_WIRELESS, -1, 1, "wireless controller"}, {PCIC_WIRELESS, PCIS_WIRELESS_IRDA, 1, "iRDA"}, {PCIC_WIRELESS, PCIS_WIRELESS_IR, 1, "IR"}, {PCIC_WIRELESS, PCIS_WIRELESS_RF, 1, "RF"}, {PCIC_INTELLIIO, -1, 1, "intelligent I/O controller"}, {PCIC_INTELLIIO, PCIS_INTELLIIO_I2O, 1, "I2O"}, {PCIC_SATCOM, -1, 1, "satellite communication"}, {PCIC_SATCOM, PCIS_SATCOM_TV, 1, "sat TV"}, {PCIC_SATCOM, PCIS_SATCOM_AUDIO, 1, "sat audio"}, {PCIC_SATCOM, PCIS_SATCOM_VOICE, 1, "sat voice"}, {PCIC_SATCOM, PCIS_SATCOM_DATA, 1, "sat data"}, {PCIC_CRYPTO, -1, 1, "encrypt/decrypt"}, {PCIC_CRYPTO, PCIS_CRYPTO_NETCOMP, 1, "network/computer crypto"}, {PCIC_CRYPTO, PCIS_CRYPTO_ENTERTAIN, 1, "entertainment crypto"}, {PCIC_DASP, -1, 0, "dasp"}, {PCIC_DASP, PCIS_DASP_DPIO, 1, "DPIO module"}, {PCIC_DASP, PCIS_DASP_PERFCNTRS, 1, "performance counters"}, {PCIC_DASP, PCIS_DASP_COMM_SYNC, 1, "communication synchronizer"}, {PCIC_DASP, PCIS_DASP_MGMT_CARD, 1, "signal processing management"}, {0, 0, 0, NULL} }; void pci_probe_nomatch(device_t dev, device_t child) { int i, report; const char *cp, *scp; char *device; /* * Look for a listing for this device in a loaded device database. */ report = 1; if ((device = pci_describe_device(child)) != NULL) { device_printf(dev, "<%s>", device); free(device, M_DEVBUF); } else { /* * Scan the class/subclass descriptions for a general * description. */ cp = "unknown"; scp = NULL; for (i = 0; pci_nomatch_tab[i].desc != NULL; i++) { if (pci_nomatch_tab[i].class == pci_get_class(child)) { if (pci_nomatch_tab[i].subclass == -1) { cp = pci_nomatch_tab[i].desc; report = pci_nomatch_tab[i].report; } else if (pci_nomatch_tab[i].subclass == pci_get_subclass(child)) { scp = pci_nomatch_tab[i].desc; report = pci_nomatch_tab[i].report; } } } if (report || bootverbose) { device_printf(dev, "<%s%s%s>", cp ? cp : "", ((cp != NULL) && (scp != NULL)) ? ", " : "", scp ? scp : ""); } } if (report || bootverbose) { printf(" at device %d.%d (no driver attached)\n", pci_get_slot(child), pci_get_function(child)); } pci_cfg_save(child, device_get_ivars(child), 1); } void pci_child_detached(device_t dev, device_t child) { struct pci_devinfo *dinfo; struct resource_list *rl; dinfo = device_get_ivars(child); rl = &dinfo->resources; /* * Have to deallocate IRQs before releasing any MSI messages and * have to release MSI messages before deallocating any memory * BARs. */ if (resource_list_release_active(rl, dev, child, SYS_RES_IRQ) != 0) pci_printf(&dinfo->cfg, "Device leaked IRQ resources\n"); if (dinfo->cfg.msi.msi_alloc != 0 || dinfo->cfg.msix.msix_alloc != 0) { pci_printf(&dinfo->cfg, "Device leaked MSI vectors\n"); (void)pci_release_msi(child); } if (resource_list_release_active(rl, dev, child, SYS_RES_MEMORY) != 0) pci_printf(&dinfo->cfg, "Device leaked memory resources\n"); if (resource_list_release_active(rl, dev, child, SYS_RES_IOPORT) != 0) pci_printf(&dinfo->cfg, "Device leaked I/O resources\n"); #ifdef PCI_RES_BUS if (resource_list_release_active(rl, dev, child, PCI_RES_BUS) != 0) pci_printf(&dinfo->cfg, "Device leaked PCI bus numbers\n"); #endif pci_cfg_save(child, dinfo, 1); } /* * Parse the PCI device database, if loaded, and return a pointer to a * description of the device. * * The database is flat text formatted as follows: * * Any line not in a valid format is ignored. * Lines are terminated with newline '\n' characters. * * A VENDOR line consists of the 4 digit (hex) vendor code, a TAB, then * the vendor name. * * A DEVICE line is entered immediately below the corresponding VENDOR ID. * - devices cannot be listed without a corresponding VENDOR line. * A DEVICE line consists of a TAB, the 4 digit (hex) device code, * another TAB, then the device name. */ /* * Assuming (ptr) points to the beginning of a line in the database, * return the vendor or device and description of the next entry. * The value of (vendor) or (device) inappropriate for the entry type * is set to -1. Returns nonzero at the end of the database. * * Note that this is slightly unrobust in the face of corrupt data; * we attempt to safeguard against this by spamming the end of the * database with a newline when we initialise. */ static int pci_describe_parse_line(char **ptr, int *vendor, int *device, char **desc) { char *cp = *ptr; int left; *device = -1; *vendor = -1; **desc = '\0'; for (;;) { left = pci_vendordata_size - (cp - pci_vendordata); if (left <= 0) { *ptr = cp; return(1); } /* vendor entry? */ if (*cp != '\t' && sscanf(cp, "%x\t%80[^\n]", vendor, *desc) == 2) break; /* device entry? */ if (*cp == '\t' && sscanf(cp, "%x\t%80[^\n]", device, *desc) == 2) break; /* skip to next line */ while (*cp != '\n' && left > 0) { cp++; left--; } if (*cp == '\n') { cp++; left--; } } /* skip to next line */ while (*cp != '\n' && left > 0) { cp++; left--; } if (*cp == '\n' && left > 0) cp++; *ptr = cp; return(0); } static char * pci_describe_device(device_t dev) { int vendor, device; char *desc, *vp, *dp, *line; desc = vp = dp = NULL; /* * If we have no vendor data, we can't do anything. */ if (pci_vendordata == NULL) goto out; /* * Scan the vendor data looking for this device */ line = pci_vendordata; if ((vp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) goto out; for (;;) { if (pci_describe_parse_line(&line, &vendor, &device, &vp)) goto out; if (vendor == pci_get_vendor(dev)) break; } if ((dp = malloc(80, M_DEVBUF, M_NOWAIT)) == NULL) goto out; for (;;) { if (pci_describe_parse_line(&line, &vendor, &device, &dp)) { *dp = 0; break; } if (vendor != -1) { *dp = 0; break; } if (device == pci_get_device(dev)) break; } if (dp[0] == '\0') snprintf(dp, 80, "0x%x", pci_get_device(dev)); if ((desc = malloc(strlen(vp) + strlen(dp) + 3, M_DEVBUF, M_NOWAIT)) != NULL) sprintf(desc, "%s, %s", vp, dp); out: if (vp != NULL) free(vp, M_DEVBUF); if (dp != NULL) free(dp, M_DEVBUF); return(desc); } int pci_read_ivar(device_t dev, device_t child, int which, uintptr_t *result) { struct pci_devinfo *dinfo; pcicfgregs *cfg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; switch (which) { case PCI_IVAR_ETHADDR: /* * The generic accessor doesn't deal with failure, so * we set the return value, then return an error. */ *((uint8_t **) result) = NULL; return (EINVAL); case PCI_IVAR_SUBVENDOR: *result = cfg->subvendor; break; case PCI_IVAR_SUBDEVICE: *result = cfg->subdevice; break; case PCI_IVAR_VENDOR: *result = cfg->vendor; break; case PCI_IVAR_DEVICE: *result = cfg->device; break; case PCI_IVAR_DEVID: *result = (cfg->device << 16) | cfg->vendor; break; case PCI_IVAR_CLASS: *result = cfg->baseclass; break; case PCI_IVAR_SUBCLASS: *result = cfg->subclass; break; case PCI_IVAR_PROGIF: *result = cfg->progif; break; case PCI_IVAR_REVID: *result = cfg->revid; break; case PCI_IVAR_INTPIN: *result = cfg->intpin; break; case PCI_IVAR_IRQ: *result = cfg->intline; break; case PCI_IVAR_DOMAIN: *result = cfg->domain; break; case PCI_IVAR_BUS: *result = cfg->bus; break; case PCI_IVAR_SLOT: *result = cfg->slot; break; case PCI_IVAR_FUNCTION: *result = cfg->func; break; case PCI_IVAR_CMDREG: *result = cfg->cmdreg; break; case PCI_IVAR_CACHELNSZ: *result = cfg->cachelnsz; break; case PCI_IVAR_MINGNT: if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { *result = -1; return (EINVAL); } *result = cfg->mingnt; break; case PCI_IVAR_MAXLAT: if (cfg->hdrtype != PCIM_HDRTYPE_NORMAL) { *result = -1; return (EINVAL); } *result = cfg->maxlat; break; case PCI_IVAR_LATTIMER: *result = cfg->lattimer; break; default: return (ENOENT); } return (0); } int pci_write_ivar(device_t dev, device_t child, int which, uintptr_t value) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(child); switch (which) { case PCI_IVAR_INTPIN: dinfo->cfg.intpin = value; return (0); case PCI_IVAR_ETHADDR: case PCI_IVAR_SUBVENDOR: case PCI_IVAR_SUBDEVICE: case PCI_IVAR_VENDOR: case PCI_IVAR_DEVICE: case PCI_IVAR_DEVID: case PCI_IVAR_CLASS: case PCI_IVAR_SUBCLASS: case PCI_IVAR_PROGIF: case PCI_IVAR_REVID: case PCI_IVAR_IRQ: case PCI_IVAR_DOMAIN: case PCI_IVAR_BUS: case PCI_IVAR_SLOT: case PCI_IVAR_FUNCTION: return (EINVAL); /* disallow for now */ default: return (ENOENT); } } #include "opt_ddb.h" #ifdef DDB #include #include /* * List resources based on pci map registers, used for within ddb */ DB_SHOW_COMMAND(pciregs, db_pci_dump) { struct pci_devinfo *dinfo; struct devlist *devlist_head; struct pci_conf *p; const char *name; int i, error, none_count; none_count = 0; /* get the head of the device queue */ devlist_head = &pci_devq; /* * Go through the list of devices and print out devices */ for (error = 0, i = 0, dinfo = STAILQ_FIRST(devlist_head); (dinfo != NULL) && (error == 0) && (i < pci_numdevs) && !db_pager_quit; dinfo = STAILQ_NEXT(dinfo, pci_links), i++) { /* Populate pd_name and pd_unit */ name = NULL; if (dinfo->cfg.dev) name = device_get_name(dinfo->cfg.dev); p = &dinfo->conf; db_printf("%s%d@pci%d:%d:%d:%d:\tclass=0x%06x card=0x%08x " "chip=0x%08x rev=0x%02x hdr=0x%02x\n", (name && *name) ? name : "none", (name && *name) ? (int)device_get_unit(dinfo->cfg.dev) : none_count++, p->pc_sel.pc_domain, p->pc_sel.pc_bus, p->pc_sel.pc_dev, p->pc_sel.pc_func, (p->pc_class << 16) | (p->pc_subclass << 8) | p->pc_progif, (p->pc_subdevice << 16) | p->pc_subvendor, (p->pc_device << 16) | p->pc_vendor, p->pc_revid, p->pc_hdr); } } #endif /* DDB */ static struct resource * pci_reserve_map(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int num, u_int flags) { struct pci_devinfo *dinfo = device_get_ivars(child); struct resource_list *rl = &dinfo->resources; struct resource *res; struct pci_map *pm; uint16_t cmd; pci_addr_t map, testval; int mapsize; res = NULL; /* If rid is managed by EA, ignore it */ if (pci_ea_is_enabled(child, *rid)) goto out; pm = pci_find_bar(child, *rid); if (pm != NULL) { /* This is a BAR that we failed to allocate earlier. */ mapsize = pm->pm_size; map = pm->pm_value; } else { /* * Weed out the bogons, and figure out how large the * BAR/map is. BARs that read back 0 here are bogus * and unimplemented. Note: atapci in legacy mode are * special and handled elsewhere in the code. If you * have a atapci device in legacy mode and it fails * here, that other code is broken. */ pci_read_bar(child, *rid, &map, &testval, NULL); /* * Determine the size of the BAR and ignore BARs with a size * of 0. Device ROM BARs use a different mask value. */ if (PCIR_IS_BIOS(&dinfo->cfg, *rid)) mapsize = pci_romsize(testval); else mapsize = pci_mapsize(testval); if (mapsize == 0) goto out; pm = pci_add_bar(child, *rid, map, mapsize); } if (PCI_BAR_MEM(map) || PCIR_IS_BIOS(&dinfo->cfg, *rid)) { if (type != SYS_RES_MEMORY) { if (bootverbose) device_printf(dev, "child %s requested type %d for rid %#x," " but the BAR says it is an memio\n", device_get_nameunit(child), type, *rid); goto out; } } else { if (type != SYS_RES_IOPORT) { if (bootverbose) device_printf(dev, "child %s requested type %d for rid %#x," " but the BAR says it is an ioport\n", device_get_nameunit(child), type, *rid); goto out; } } /* * For real BARs, we need to override the size that * the driver requests, because that's what the BAR * actually uses and we would otherwise have a * situation where we might allocate the excess to * another driver, which won't work. */ count = ((pci_addr_t)1 << mapsize) * num; if (RF_ALIGNMENT(flags) < mapsize) flags = (flags & ~RF_ALIGNMENT_MASK) | RF_ALIGNMENT_LOG2(mapsize); if (PCI_BAR_MEM(map) && (map & PCIM_BAR_MEM_PREFETCH)) flags |= RF_PREFETCHABLE; /* * Allocate enough resource, and then write back the * appropriate BAR for that resource. */ resource_list_add(rl, type, *rid, start, end, count); res = resource_list_reserve(rl, dev, child, type, rid, start, end, count, flags & ~RF_ACTIVE); if (res == NULL) { resource_list_delete(rl, type, *rid); device_printf(child, "%#jx bytes of rid %#x res %d failed (%#jx, %#jx).\n", count, *rid, type, start, end); goto out; } if (bootverbose) device_printf(child, "Lazy allocation of %#jx bytes rid %#x type %d at %#jx\n", count, *rid, type, rman_get_start(res)); /* Disable decoding via the CMD register before updating the BAR */ cmd = pci_read_config(child, PCIR_COMMAND, 2); pci_write_config(child, PCIR_COMMAND, cmd & ~(PCI_BAR_MEM(map) ? PCIM_CMD_MEMEN : PCIM_CMD_PORTEN), 2); map = rman_get_start(res); pci_write_bar(child, pm, map); /* Restore the original value of the CMD register */ pci_write_config(child, PCIR_COMMAND, cmd, 2); out: return (res); } struct resource * pci_alloc_multi_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_long num, u_int flags) { struct pci_devinfo *dinfo; struct resource_list *rl; struct resource_list_entry *rle; struct resource *res; pcicfgregs *cfg; /* * Perform lazy resource allocation */ dinfo = device_get_ivars(child); rl = &dinfo->resources; cfg = &dinfo->cfg; switch (type) { #if defined(NEW_PCIB) && defined(PCI_RES_BUS) case PCI_RES_BUS: return (pci_alloc_secbus(dev, child, rid, start, end, count, flags)); #endif case SYS_RES_IRQ: /* * Can't alloc legacy interrupt once MSI messages have * been allocated. */ if (*rid == 0 && (cfg->msi.msi_alloc > 0 || cfg->msix.msix_alloc > 0)) return (NULL); /* * If the child device doesn't have an interrupt * routed and is deserving of an interrupt, try to * assign it one. */ if (*rid == 0 && !PCI_INTERRUPT_VALID(cfg->intline) && (cfg->intpin != 0)) pci_assign_interrupt(dev, child, 0); break; case SYS_RES_IOPORT: case SYS_RES_MEMORY: #ifdef NEW_PCIB /* * PCI-PCI bridge I/O window resources are not BARs. * For those allocations just pass the request up the * tree. */ if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE) { switch (*rid) { case PCIR_IOBASEL_1: case PCIR_MEMBASE_1: case PCIR_PMBASEL_1: /* * XXX: Should we bother creating a resource * list entry? */ return (bus_generic_alloc_resource(dev, child, type, rid, start, end, count, flags)); } } #endif /* Reserve resources for this BAR if needed. */ rle = resource_list_find(rl, type, *rid); if (rle == NULL) { res = pci_reserve_map(dev, child, type, rid, start, end, count, num, flags); if (res == NULL) return (NULL); } } return (resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags)); } struct resource * pci_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { #ifdef PCI_IOV struct pci_devinfo *dinfo; #endif if (device_get_parent(child) != dev) return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid, start, end, count, flags)); #ifdef PCI_IOV dinfo = device_get_ivars(child); if (dinfo->cfg.flags & PCICFG_VF) { switch (type) { /* VFs can't have I/O BARs. */ case SYS_RES_IOPORT: return (NULL); case SYS_RES_MEMORY: return (pci_vf_alloc_mem_resource(dev, child, rid, start, end, count, flags)); } /* Fall through for other types of resource allocations. */ } #endif return (pci_alloc_multi_resource(dev, child, type, rid, start, end, count, 1, flags)); } int pci_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; struct resource_list *rl; pcicfgregs *cfg; if (device_get_parent(child) != dev) return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, type, rid, r)); dinfo = device_get_ivars(child); cfg = &dinfo->cfg; #ifdef PCI_IOV if (dinfo->cfg.flags & PCICFG_VF) { switch (type) { /* VFs can't have I/O BARs. */ case SYS_RES_IOPORT: return (EDOOFUS); case SYS_RES_MEMORY: return (pci_vf_release_mem_resource(dev, child, rid, r)); } /* Fall through for other types of resource allocations. */ } #endif #ifdef NEW_PCIB /* * PCI-PCI bridge I/O window resources are not BARs. For * those allocations just pass the request up the tree. */ if (cfg->hdrtype == PCIM_HDRTYPE_BRIDGE && (type == SYS_RES_IOPORT || type == SYS_RES_MEMORY)) { switch (rid) { case PCIR_IOBASEL_1: case PCIR_MEMBASE_1: case PCIR_PMBASEL_1: return (bus_generic_release_resource(dev, child, type, rid, r)); } } #endif rl = &dinfo->resources; return (resource_list_release(rl, dev, child, type, rid, r)); } int pci_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; int error; error = bus_generic_activate_resource(dev, child, type, rid, r); if (error) return (error); /* Enable decoding in the command register when activating BARs. */ if (device_get_parent(child) == dev) { /* Device ROMs need their decoding explicitly enabled. */ dinfo = device_get_ivars(child); if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) pci_write_bar(child, pci_find_bar(child, rid), rman_get_start(r) | PCIM_BIOS_ENABLE); switch (type) { case SYS_RES_IOPORT: case SYS_RES_MEMORY: error = PCI_ENABLE_IO(dev, child, type); break; } } return (error); } int pci_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct pci_devinfo *dinfo; int error; error = bus_generic_deactivate_resource(dev, child, type, rid, r); if (error) return (error); /* Disable decoding for device ROMs. */ if (device_get_parent(child) == dev) { dinfo = device_get_ivars(child); if (type == SYS_RES_MEMORY && PCIR_IS_BIOS(&dinfo->cfg, rid)) pci_write_bar(child, pci_find_bar(child, rid), rman_get_start(r)); } return (0); } void pci_child_deleted(device_t dev, device_t child) { struct resource_list_entry *rle; struct resource_list *rl; struct pci_devinfo *dinfo; dinfo = device_get_ivars(child); rl = &dinfo->resources; EVENTHANDLER_INVOKE(pci_delete_device, child); /* Turn off access to resources we're about to free */ if (bus_child_present(child) != 0) { pci_write_config(child, PCIR_COMMAND, pci_read_config(child, PCIR_COMMAND, 2) & ~(PCIM_CMD_MEMEN | PCIM_CMD_PORTEN), 2); pci_disable_busmaster(child); } /* Free all allocated resources */ STAILQ_FOREACH(rle, rl, link) { if (rle->res) { if (rman_get_flags(rle->res) & RF_ACTIVE || resource_list_busy(rl, rle->type, rle->rid)) { pci_printf(&dinfo->cfg, "Resource still owned, oops. " "(type=%d, rid=%d, addr=%lx)\n", rle->type, rle->rid, rman_get_start(rle->res)); bus_release_resource(child, rle->type, rle->rid, rle->res); } resource_list_unreserve(rl, dev, child, rle->type, rle->rid); } } resource_list_free(rl); pci_freecfg(dinfo); } void pci_delete_resource(device_t dev, device_t child, int type, int rid) { struct pci_devinfo *dinfo; struct resource_list *rl; struct resource_list_entry *rle; if (device_get_parent(child) != dev) return; dinfo = device_get_ivars(child); rl = &dinfo->resources; rle = resource_list_find(rl, type, rid); if (rle == NULL) return; if (rle->res) { if (rman_get_flags(rle->res) & RF_ACTIVE || resource_list_busy(rl, type, rid)) { device_printf(dev, "delete_resource: " "Resource still owned by child, oops. " "(type=%d, rid=%d, addr=%jx)\n", type, rid, rman_get_start(rle->res)); return; } resource_list_unreserve(rl, dev, child, type, rid); } resource_list_delete(rl, type, rid); } struct resource_list * pci_get_resource_list (device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); return (&dinfo->resources); } bus_dma_tag_t pci_get_dma_tag(device_t bus, device_t dev) { struct pci_softc *sc = device_get_softc(bus); return (sc->sc_dma_tag); } uint32_t pci_read_config_method(device_t dev, device_t child, int reg, int width) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; #ifdef PCI_IOV /* * SR-IOV VFs don't implement the VID or DID registers, so we have to * emulate them here. */ if (cfg->flags & PCICFG_VF) { if (reg == PCIR_VENDOR) { switch (width) { case 4: return (cfg->device << 16 | cfg->vendor); case 2: return (cfg->vendor); case 1: return (cfg->vendor & 0xff); default: return (0xffffffff); } } else if (reg == PCIR_DEVICE) { switch (width) { /* Note that an unaligned 4-byte read is an error. */ case 2: return (cfg->device); case 1: return (cfg->device & 0xff); default: return (0xffffffff); } } } #endif return (PCIB_READ_CONFIG(device_get_parent(dev), cfg->bus, cfg->slot, cfg->func, reg, width)); } void pci_write_config_method(device_t dev, device_t child, int reg, uint32_t val, int width) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; PCIB_WRITE_CONFIG(device_get_parent(dev), cfg->bus, cfg->slot, cfg->func, reg, val, width); } int pci_child_location_str_method(device_t dev, device_t child, char *buf, size_t buflen) { snprintf(buf, buflen, "slot=%d function=%d dbsf=pci%d:%d:%d:%d", pci_get_slot(child), pci_get_function(child), pci_get_domain(child), pci_get_bus(child), pci_get_slot(child), pci_get_function(child)); return (0); } int pci_child_pnpinfo_str_method(device_t dev, device_t child, char *buf, size_t buflen) { struct pci_devinfo *dinfo; pcicfgregs *cfg; dinfo = device_get_ivars(child); cfg = &dinfo->cfg; snprintf(buf, buflen, "vendor=0x%04x device=0x%04x subvendor=0x%04x " "subdevice=0x%04x class=0x%02x%02x%02x", cfg->vendor, cfg->device, cfg->subvendor, cfg->subdevice, cfg->baseclass, cfg->subclass, cfg->progif); return (0); } int pci_assign_interrupt_method(device_t dev, device_t child) { struct pci_devinfo *dinfo = device_get_ivars(child); pcicfgregs *cfg = &dinfo->cfg; return (PCIB_ROUTE_INTERRUPT(device_get_parent(dev), child, cfg->intpin)); } static void pci_lookup(void *arg, const char *name, device_t *dev) { long val; char *end; int domain, bus, slot, func; if (*dev != NULL) return; /* * Accept pciconf-style selectors of either pciD:B:S:F or * pciB:S:F. In the latter case, the domain is assumed to * be zero. */ if (strncmp(name, "pci", 3) != 0) return; val = strtol(name + 3, &end, 10); if (val < 0 || val > INT_MAX || *end != ':') return; domain = val; val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX || *end != ':') return; bus = val; val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX) return; slot = val; if (*end == ':') { val = strtol(end + 1, &end, 10); if (val < 0 || val > INT_MAX || *end != '\0') return; func = val; } else if (*end == '\0') { func = slot; slot = bus; bus = domain; domain = 0; } else return; if (domain > PCI_DOMAINMAX || bus > PCI_BUSMAX || slot > PCI_SLOTMAX || func > PCIE_ARI_FUNCMAX || (slot != 0 && func > PCI_FUNCMAX)) return; *dev = pci_find_dbsf(domain, bus, slot, func); } static int pci_modevent(module_t mod, int what, void *arg) { static struct cdev *pci_cdev; static eventhandler_tag tag; switch (what) { case MOD_LOAD: STAILQ_INIT(&pci_devq); pci_generation = 0; pci_cdev = make_dev(&pcicdev, 0, UID_ROOT, GID_WHEEL, 0644, "pci"); pci_load_vendor_data(); tag = EVENTHANDLER_REGISTER(dev_lookup, pci_lookup, NULL, 1000); break; case MOD_UNLOAD: if (tag != NULL) EVENTHANDLER_DEREGISTER(dev_lookup, tag); destroy_dev(pci_cdev); break; } return (0); } static void pci_cfg_restore_pcie(device_t dev, struct pci_devinfo *dinfo) { #define WREG(n, v) pci_write_config(dev, pos + (n), (v), 2) struct pcicfg_pcie *cfg; int version, pos; cfg = &dinfo->cfg.pcie; pos = cfg->pcie_location; version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; WREG(PCIER_DEVICE_CTL, cfg->pcie_device_ctl); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ENDPOINT || cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) WREG(PCIER_LINK_CTL, cfg->pcie_link_ctl); if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) WREG(PCIER_SLOT_CTL, cfg->pcie_slot_ctl); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ROOT_EC) WREG(PCIER_ROOT_CTL, cfg->pcie_root_ctl); if (version > 1) { WREG(PCIER_DEVICE_CTL2, cfg->pcie_device_ctl2); WREG(PCIER_LINK_CTL2, cfg->pcie_link_ctl2); WREG(PCIER_SLOT_CTL2, cfg->pcie_slot_ctl2); } #undef WREG } static void pci_cfg_restore_pcix(device_t dev, struct pci_devinfo *dinfo) { pci_write_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, dinfo->cfg.pcix.pcix_command, 2); } void pci_cfg_restore(device_t dev, struct pci_devinfo *dinfo) { /* * Restore the device to full power mode. We must do this * before we restore the registers because moving from D3 to * D0 will cause the chip's BARs and some other registers to * be reset to some unknown power on reset values. Cut down * the noise on boot by doing nothing if we are already in * state D0. */ if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) pci_set_powerstate(dev, PCI_POWERSTATE_D0); pci_write_config(dev, PCIR_COMMAND, dinfo->cfg.cmdreg, 2); pci_write_config(dev, PCIR_INTLINE, dinfo->cfg.intline, 1); pci_write_config(dev, PCIR_INTPIN, dinfo->cfg.intpin, 1); pci_write_config(dev, PCIR_CACHELNSZ, dinfo->cfg.cachelnsz, 1); pci_write_config(dev, PCIR_LATTIMER, dinfo->cfg.lattimer, 1); pci_write_config(dev, PCIR_PROGIF, dinfo->cfg.progif, 1); pci_write_config(dev, PCIR_REVID, dinfo->cfg.revid, 1); switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: pci_write_config(dev, PCIR_MINGNT, dinfo->cfg.mingnt, 1); pci_write_config(dev, PCIR_MAXLAT, dinfo->cfg.maxlat, 1); break; case PCIM_HDRTYPE_BRIDGE: pci_write_config(dev, PCIR_SECLAT_1, dinfo->cfg.bridge.br_seclat, 1); pci_write_config(dev, PCIR_SUBBUS_1, dinfo->cfg.bridge.br_subbus, 1); pci_write_config(dev, PCIR_SECBUS_1, dinfo->cfg.bridge.br_secbus, 1); pci_write_config(dev, PCIR_PRIBUS_1, dinfo->cfg.bridge.br_pribus, 1); pci_write_config(dev, PCIR_BRIDGECTL_1, dinfo->cfg.bridge.br_control, 2); break; case PCIM_HDRTYPE_CARDBUS: pci_write_config(dev, PCIR_SECLAT_2, dinfo->cfg.bridge.br_seclat, 1); pci_write_config(dev, PCIR_SUBBUS_2, dinfo->cfg.bridge.br_subbus, 1); pci_write_config(dev, PCIR_SECBUS_2, dinfo->cfg.bridge.br_secbus, 1); pci_write_config(dev, PCIR_PRIBUS_2, dinfo->cfg.bridge.br_pribus, 1); pci_write_config(dev, PCIR_BRIDGECTL_2, dinfo->cfg.bridge.br_control, 2); break; } pci_restore_bars(dev); /* * Restore extended capabilities for PCI-Express and PCI-X */ if (dinfo->cfg.pcie.pcie_location != 0) pci_cfg_restore_pcie(dev, dinfo); if (dinfo->cfg.pcix.pcix_location != 0) pci_cfg_restore_pcix(dev, dinfo); /* Restore MSI and MSI-X configurations if they are present. */ if (dinfo->cfg.msi.msi_location != 0) pci_resume_msi(dev); if (dinfo->cfg.msix.msix_location != 0) pci_resume_msix(dev); #ifdef PCI_IOV if (dinfo->cfg.iov != NULL) pci_iov_cfg_restore(dev, dinfo); #endif } static void pci_cfg_save_pcie(device_t dev, struct pci_devinfo *dinfo) { #define RREG(n) pci_read_config(dev, pos + (n), 2) struct pcicfg_pcie *cfg; int version, pos; cfg = &dinfo->cfg.pcie; pos = cfg->pcie_location; cfg->pcie_flags = RREG(PCIER_FLAGS); version = cfg->pcie_flags & PCIEM_FLAGS_VERSION; cfg->pcie_device_ctl = RREG(PCIER_DEVICE_CTL); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ENDPOINT || cfg->pcie_type == PCIEM_TYPE_LEGACY_ENDPOINT) cfg->pcie_link_ctl = RREG(PCIER_LINK_CTL); if (version > 1 || (cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || (cfg->pcie_type == PCIEM_TYPE_DOWNSTREAM_PORT && (cfg->pcie_flags & PCIEM_FLAGS_SLOT)))) cfg->pcie_slot_ctl = RREG(PCIER_SLOT_CTL); if (version > 1 || cfg->pcie_type == PCIEM_TYPE_ROOT_PORT || cfg->pcie_type == PCIEM_TYPE_ROOT_EC) cfg->pcie_root_ctl = RREG(PCIER_ROOT_CTL); if (version > 1) { cfg->pcie_device_ctl2 = RREG(PCIER_DEVICE_CTL2); cfg->pcie_link_ctl2 = RREG(PCIER_LINK_CTL2); cfg->pcie_slot_ctl2 = RREG(PCIER_SLOT_CTL2); } #undef RREG } static void pci_cfg_save_pcix(device_t dev, struct pci_devinfo *dinfo) { dinfo->cfg.pcix.pcix_command = pci_read_config(dev, dinfo->cfg.pcix.pcix_location + PCIXR_COMMAND, 2); } void pci_cfg_save(device_t dev, struct pci_devinfo *dinfo, int setstate) { uint32_t cls; int ps; /* * Some drivers apparently write to these registers w/o updating our * cached copy. No harm happens if we update the copy, so do so here * so we can restore them. The COMMAND register is modified by the * bus w/o updating the cache. This should represent the normally * writable portion of the 'defined' part of type 0/1/2 headers. */ dinfo->cfg.vendor = pci_read_config(dev, PCIR_VENDOR, 2); dinfo->cfg.device = pci_read_config(dev, PCIR_DEVICE, 2); dinfo->cfg.cmdreg = pci_read_config(dev, PCIR_COMMAND, 2); dinfo->cfg.intline = pci_read_config(dev, PCIR_INTLINE, 1); dinfo->cfg.intpin = pci_read_config(dev, PCIR_INTPIN, 1); dinfo->cfg.cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1); dinfo->cfg.lattimer = pci_read_config(dev, PCIR_LATTIMER, 1); dinfo->cfg.baseclass = pci_read_config(dev, PCIR_CLASS, 1); dinfo->cfg.subclass = pci_read_config(dev, PCIR_SUBCLASS, 1); dinfo->cfg.progif = pci_read_config(dev, PCIR_PROGIF, 1); dinfo->cfg.revid = pci_read_config(dev, PCIR_REVID, 1); switch (dinfo->cfg.hdrtype & PCIM_HDRTYPE) { case PCIM_HDRTYPE_NORMAL: dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_0, 2); dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_0, 2); dinfo->cfg.mingnt = pci_read_config(dev, PCIR_MINGNT, 1); dinfo->cfg.maxlat = pci_read_config(dev, PCIR_MAXLAT, 1); break; case PCIM_HDRTYPE_BRIDGE: dinfo->cfg.bridge.br_seclat = pci_read_config(dev, PCIR_SECLAT_1, 1); dinfo->cfg.bridge.br_subbus = pci_read_config(dev, PCIR_SUBBUS_1, 1); dinfo->cfg.bridge.br_secbus = pci_read_config(dev, PCIR_SECBUS_1, 1); dinfo->cfg.bridge.br_pribus = pci_read_config(dev, PCIR_PRIBUS_1, 1); dinfo->cfg.bridge.br_control = pci_read_config(dev, PCIR_BRIDGECTL_1, 2); break; case PCIM_HDRTYPE_CARDBUS: dinfo->cfg.bridge.br_seclat = pci_read_config(dev, PCIR_SECLAT_2, 1); dinfo->cfg.bridge.br_subbus = pci_read_config(dev, PCIR_SUBBUS_2, 1); dinfo->cfg.bridge.br_secbus = pci_read_config(dev, PCIR_SECBUS_2, 1); dinfo->cfg.bridge.br_pribus = pci_read_config(dev, PCIR_PRIBUS_2, 1); dinfo->cfg.bridge.br_control = pci_read_config(dev, PCIR_BRIDGECTL_2, 2); dinfo->cfg.subvendor = pci_read_config(dev, PCIR_SUBVEND_2, 2); dinfo->cfg.subdevice = pci_read_config(dev, PCIR_SUBDEV_2, 2); break; } if (dinfo->cfg.pcie.pcie_location != 0) pci_cfg_save_pcie(dev, dinfo); if (dinfo->cfg.pcix.pcix_location != 0) pci_cfg_save_pcix(dev, dinfo); #ifdef PCI_IOV if (dinfo->cfg.iov != NULL) pci_iov_cfg_save(dev, dinfo); #endif /* * don't set the state for display devices, base peripherals and * memory devices since bad things happen when they are powered down. * We should (a) have drivers that can easily detach and (b) use * generic drivers for these devices so that some device actually * attaches. We need to make sure that when we implement (a) we don't * power the device down on a reattach. */ cls = pci_get_class(dev); if (!setstate) return; switch (pci_do_power_nodriver) { case 0: /* NO powerdown at all */ return; case 1: /* Conservative about what to power down */ if (cls == PCIC_STORAGE) return; /*FALLTHROUGH*/ case 2: /* Aggressive about what to power down */ if (cls == PCIC_DISPLAY || cls == PCIC_MEMORY || cls == PCIC_BASEPERIPH) return; /*FALLTHROUGH*/ case 3: /* Power down everything */ break; } /* * PCI spec says we can only go into D3 state from D0 state. * Transition from D[12] into D0 before going to D3 state. */ ps = pci_get_powerstate(dev); if (ps != PCI_POWERSTATE_D0 && ps != PCI_POWERSTATE_D3) pci_set_powerstate(dev, PCI_POWERSTATE_D0); if (pci_get_powerstate(dev) != PCI_POWERSTATE_D3) pci_set_powerstate(dev, PCI_POWERSTATE_D3); } /* Wrapper APIs suitable for device driver use. */ void pci_save_state(device_t dev) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(dev); pci_cfg_save(dev, dinfo, 0); } void pci_restore_state(device_t dev) { struct pci_devinfo *dinfo; dinfo = device_get_ivars(dev); pci_cfg_restore(dev, dinfo); } static int pci_get_id_method(device_t dev, device_t child, enum pci_id_type type, uintptr_t *id) { return (PCIB_GET_ID(device_get_parent(dev), child, type, id)); } /* Find the upstream port of a given PCI device in a root complex. */ device_t pci_find_pcie_root_port(device_t dev) { struct pci_devinfo *dinfo; devclass_t pci_class; device_t pcib, bus; pci_class = devclass_find("pci"); KASSERT(device_get_devclass(device_get_parent(dev)) == pci_class, ("%s: non-pci device %s", __func__, device_get_nameunit(dev))); /* * Walk the bridge hierarchy until we find a PCI-e root * port or a non-PCI device. */ for (;;) { bus = device_get_parent(dev); KASSERT(bus != NULL, ("%s: null parent of %s", __func__, device_get_nameunit(dev))); pcib = device_get_parent(bus); KASSERT(pcib != NULL, ("%s: null bridge of %s", __func__, device_get_nameunit(bus))); /* * pcib's parent must be a PCI bus for this to be a * PCI-PCI bridge. */ if (device_get_devclass(device_get_parent(pcib)) != pci_class) return (NULL); dinfo = device_get_ivars(pcib); if (dinfo->cfg.pcie.pcie_location != 0 && dinfo->cfg.pcie.pcie_type == PCIEM_TYPE_ROOT_PORT) return (pcib); dev = pcib; } } /* * Wait for pending transactions to complete on a PCI-express function. * * The maximum delay is specified in milliseconds in max_delay. Note * that this function may sleep. * * Returns true if the function is idle and false if the timeout is * exceeded. If dev is not a PCI-express function, this returns true. */ bool pcie_wait_for_pending_transactions(device_t dev, u_int max_delay) { struct pci_devinfo *dinfo = device_get_ivars(dev); uint16_t sta; int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (true); sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); while (sta & PCIEM_STA_TRANSACTION_PND) { if (max_delay == 0) return (false); /* Poll once every 100 milliseconds up to the timeout. */ if (max_delay > 100) { pause_sbt("pcietp", 100 * SBT_1MS, 0, C_HARDCLOCK); max_delay -= 100; } else { pause_sbt("pcietp", max_delay * SBT_1MS, 0, C_HARDCLOCK); max_delay = 0; } sta = pci_read_config(dev, cap + PCIER_DEVICE_STA, 2); } return (true); } /* * Determine the maximum Completion Timeout in microseconds. * * For non-PCI-express functions this returns 0. */ int pcie_get_max_completion_timeout(device_t dev) { struct pci_devinfo *dinfo = device_get_ivars(dev); int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (0); /* * Functions using the 1.x spec use the default timeout range of * 50 microseconds to 50 milliseconds. Functions that do not * support programmable timeouts also use this range. */ if ((dinfo->cfg.pcie.pcie_flags & PCIEM_FLAGS_VERSION) < 2 || (pci_read_config(dev, cap + PCIER_DEVICE_CAP2, 4) & PCIEM_CAP2_COMP_TIMO_RANGES) == 0) return (50 * 1000); switch (pci_read_config(dev, cap + PCIER_DEVICE_CTL2, 2) & PCIEM_CTL2_COMP_TIMO_VAL) { case PCIEM_CTL2_COMP_TIMO_100US: return (100); case PCIEM_CTL2_COMP_TIMO_10MS: return (10 * 1000); case PCIEM_CTL2_COMP_TIMO_55MS: return (55 * 1000); case PCIEM_CTL2_COMP_TIMO_210MS: return (210 * 1000); case PCIEM_CTL2_COMP_TIMO_900MS: return (900 * 1000); case PCIEM_CTL2_COMP_TIMO_3500MS: return (3500 * 1000); case PCIEM_CTL2_COMP_TIMO_13S: return (13 * 1000 * 1000); case PCIEM_CTL2_COMP_TIMO_64S: return (64 * 1000 * 1000); default: return (50 * 1000); } } /* * Perform a Function Level Reset (FLR) on a device. * * This function first waits for any pending transactions to complete * within the timeout specified by max_delay. If transactions are * still pending, the function will return false without attempting a * reset. * * If dev is not a PCI-express function or does not support FLR, this * function returns false. * * Note that no registers are saved or restored. The caller is * responsible for saving and restoring any registers including * PCI-standard registers via pci_save_state() and * pci_restore_state(). */ bool pcie_flr(device_t dev, u_int max_delay, bool force) { struct pci_devinfo *dinfo = device_get_ivars(dev); uint16_t cmd, ctl; int compl_delay; int cap; cap = dinfo->cfg.pcie.pcie_location; if (cap == 0) return (false); if (!(pci_read_config(dev, cap + PCIER_DEVICE_CAP, 4) & PCIEM_CAP_FLR)) return (false); /* * Disable busmastering to prevent generation of new * transactions while waiting for the device to go idle. If * the idle timeout fails, the command register is restored * which will re-enable busmastering. */ cmd = pci_read_config(dev, PCIR_COMMAND, 2); pci_write_config(dev, PCIR_COMMAND, cmd & ~(PCIM_CMD_BUSMASTEREN), 2); if (!pcie_wait_for_pending_transactions(dev, max_delay)) { if (!force) { pci_write_config(dev, PCIR_COMMAND, cmd, 2); return (false); } pci_printf(&dinfo->cfg, "Resetting with transactions pending after %d ms\n", max_delay); /* * Extend the post-FLR delay to cover the maximum * Completion Timeout delay of anything in flight * during the FLR delay. Enforce a minimum delay of * at least 10ms. */ compl_delay = pcie_get_max_completion_timeout(dev) / 1000; if (compl_delay < 10) compl_delay = 10; } else compl_delay = 0; /* Initiate the reset. */ ctl = pci_read_config(dev, cap + PCIER_DEVICE_CTL, 2); pci_write_config(dev, cap + PCIER_DEVICE_CTL, ctl | PCIEM_CTL_INITIATE_FLR, 2); /* Wait for 100ms. */ pause_sbt("pcieflr", (100 + compl_delay) * SBT_1MS, 0, C_HARDCLOCK); if (pci_read_config(dev, cap + PCIER_DEVICE_STA, 2) & PCIEM_STA_TRANSACTION_PND) pci_printf(&dinfo->cfg, "Transactions pending after FLR!\n"); return (true); }