/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */ /*- * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2003 Nathan L. Binkert * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __FBSDID("$FreeBSD$"); /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the * XMAC II datasheet online. I have put my copy at people.freebsd.org as a * convenience to others until Vitesse corrects this problem: * * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #include #include #include #include #include #include #if 0 #define SK_USEIOSPACE #endif #include #include #include MODULE_DEPEND(sk, pci, 1, 1, 1); MODULE_DEPEND(sk, ether, 1, 1, 1); MODULE_DEPEND(sk, miibus, 1, 1, 1); /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif static struct sk_type sk_devs[] = { { VENDORID_SK, DEVICEID_SK_V1, "SysKonnect Gigabit Ethernet (V1.0)" }, { VENDORID_SK, DEVICEID_SK_V2, "SysKonnect Gigabit Ethernet (V2.0)" }, { VENDORID_MARVELL, DEVICEID_SK_V2, "Marvell Gigabit Ethernet" }, { VENDORID_MARVELL, DEVICEID_BELKIN_5005, "Belkin F5D5005 Gigabit Ethernet" }, { VENDORID_3COM, DEVICEID_3COM_3C940, "3Com 3C940 Gigabit Ethernet" }, { VENDORID_LINKSYS, DEVICEID_LINKSYS_EG1032, "Linksys EG1032 Gigabit Ethernet" }, { VENDORID_DLINK, DEVICEID_DLINK_DGE530T, "D-Link DGE-530T Gigabit Ethernet" }, { 0, 0, NULL } }; static int skc_probe(device_t); static int skc_attach(device_t); static int skc_detach(device_t); static void skc_shutdown(device_t); static int sk_detach(device_t); static int sk_probe(device_t); static int sk_attach(device_t); static void sk_tick(void *); static void sk_intr(void *); static void sk_intr_xmac(struct sk_if_softc *); static void sk_intr_bcom(struct sk_if_softc *); static void sk_intr_yukon(struct sk_if_softc *); static void sk_rxeof(struct sk_if_softc *); static void sk_txeof(struct sk_if_softc *); static int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *); static void sk_start(struct ifnet *); static int sk_ioctl(struct ifnet *, u_long, caddr_t); static void sk_init(void *); static void sk_init_xmac(struct sk_if_softc *); static void sk_init_yukon(struct sk_if_softc *); static void sk_stop(struct sk_if_softc *); static void sk_watchdog(struct ifnet *); static int sk_ifmedia_upd(struct ifnet *); static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); static void sk_reset(struct sk_softc *); static int sk_newbuf(struct sk_if_softc *, struct sk_chain *, struct mbuf *); static int sk_alloc_jumbo_mem(struct sk_if_softc *); static void sk_free_jumbo_mem(struct sk_if_softc *); static void *sk_jalloc(struct sk_if_softc *); static void sk_jfree(void *, void *); static int sk_init_rx_ring(struct sk_if_softc *); static void sk_init_tx_ring(struct sk_if_softc *); static u_int32_t sk_win_read_4(struct sk_softc *, int); static u_int16_t sk_win_read_2(struct sk_softc *, int); static u_int8_t sk_win_read_1(struct sk_softc *, int); static void sk_win_write_4(struct sk_softc *, int, u_int32_t); static void sk_win_write_2(struct sk_softc *, int, u_int32_t); static void sk_win_write_1(struct sk_softc *, int, u_int32_t); static u_int8_t sk_vpd_readbyte(struct sk_softc *, int); static void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int); static void sk_vpd_read(struct sk_softc *); static int sk_miibus_readreg(device_t, int, int); static int sk_miibus_writereg(device_t, int, int, int); static void sk_miibus_statchg(device_t); static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int); static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int, int); static void sk_xmac_miibus_statchg(struct sk_if_softc *); static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int); static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int, int); static void sk_marv_miibus_statchg(struct sk_if_softc *); static uint32_t sk_xmchash(const uint8_t *); static uint32_t sk_gmchash(const uint8_t *); static void sk_setfilt(struct sk_if_softc *, caddr_t, int); static void sk_setmulti(struct sk_if_softc *); static void sk_setpromisc(struct sk_if_softc *); static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high); static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS); #ifdef SK_USEIOSPACE #define SK_RES SYS_RES_IOPORT #define SK_RID SK_PCI_LOIO #else #define SK_RES SYS_RES_MEMORY #define SK_RID SK_PCI_LOMEM #endif /* * Note that we have newbus methods for both the GEnesis controller * itself and the XMAC(s). The XMACs are children of the GEnesis, and * the miibus code is a child of the XMACs. We need to do it this way * so that the miibus drivers can access the PHY registers on the * right PHY. It's not quite what I had in mind, but it's the only * design that achieves the desired effect. */ static device_method_t skc_methods[] = { /* Device interface */ DEVMETHOD(device_probe, skc_probe), DEVMETHOD(device_attach, skc_attach), DEVMETHOD(device_detach, skc_detach), DEVMETHOD(device_shutdown, skc_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), { 0, 0 } }; static driver_t skc_driver = { "skc", skc_methods, sizeof(struct sk_softc) }; static devclass_t skc_devclass; static device_method_t sk_methods[] = { /* Device interface */ DEVMETHOD(device_probe, sk_probe), DEVMETHOD(device_attach, sk_attach), DEVMETHOD(device_detach, sk_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, sk_miibus_readreg), DEVMETHOD(miibus_writereg, sk_miibus_writereg), DEVMETHOD(miibus_statchg, sk_miibus_statchg), { 0, 0 } }; static driver_t sk_driver = { "sk", sk_methods, sizeof(struct sk_if_softc) }; static devclass_t sk_devclass; DRIVER_MODULE(sk, pci, skc_driver, skc_devclass, 0, 0); DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, 0, 0); DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0); #define SK_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define SK_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define SK_WIN_SETBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) #define SK_WIN_CLRBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) #define SK_WIN_SETBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) #define SK_WIN_CLRBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) static u_int32_t sk_win_read_4(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_4(sc, reg)); #endif } static u_int16_t sk_win_read_2(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_2(sc, reg)); #endif } static u_int8_t sk_win_read_1(sc, reg) struct sk_softc *sc; int reg; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); #else return(CSR_READ_1(sc, reg)); #endif } static void sk_win_write_4(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_4(sc, reg, val); #endif return; } static void sk_win_write_2(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_2(sc, reg, val); #endif return; } static void sk_win_write_1(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); #else CSR_WRITE_1(sc, reg, val); #endif return; } /* * The VPD EEPROM contains Vital Product Data, as suggested in * the PCI 2.1 specification. The VPD data is separared into areas * denoted by resource IDs. The SysKonnect VPD contains an ID string * resource (the name of the adapter), a read-only area resource * containing various key/data fields and a read/write area which * can be used to store asset management information or log messages. * We read the ID string and read-only into buffers attached to * the controller softc structure for later use. At the moment, * we only use the ID string during skc_attach(). */ static u_int8_t sk_vpd_readbyte(sc, addr) struct sk_softc *sc; int addr; { int i; sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (sk_win_read_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) break; } if (i == SK_TIMEOUT) return(0); return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); } static void sk_vpd_read_res(sc, res, addr) struct sk_softc *sc; struct vpd_res *res; int addr; { int i; u_int8_t *ptr; ptr = (u_int8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = sk_vpd_readbyte(sc, i + addr); return; } static void sk_vpd_read(sc) struct sk_softc *sc; { int pos = 0, i; struct vpd_res res; if (sc->sk_vpd_prodname != NULL) free(sc->sk_vpd_prodname, M_DEVBUF); if (sc->sk_vpd_readonly != NULL) free(sc->sk_vpd_readonly, M_DEVBUF); sc->sk_vpd_prodname = NULL; sc->sk_vpd_readonly = NULL; sc->sk_vpd_readonly_len = 0; sk_vpd_read_res(sc, &res, pos); /* * Bail out quietly if the eeprom appears to be missing or empty. */ if (res.vr_id == 0xff && res.vr_len == 0xff && res.vr_pad == 0xff) return; if (res.vr_id != VPD_RES_ID) { printf("skc%d: bad VPD resource id: expected %x got %x\n", sc->sk_unit, VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); if (sc->sk_vpd_prodname != NULL) { for (i = 0; i < res.vr_len; i++) sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); sc->sk_vpd_prodname[i] = '\0'; } pos += res.vr_len; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { printf("skc%d: bad VPD resource id: expected %x got %x\n", sc->sk_unit, VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len; i++) sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); sc->sk_vpd_readonly_len = res.vr_len; return; } static int sk_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct sk_if_softc *sc_if; sc_if = device_get_softc(dev); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: return(sk_xmac_miibus_readreg(sc_if, phy, reg)); case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: return(sk_marv_miibus_readreg(sc_if, phy, reg)); } return(0); } static int sk_miibus_writereg(dev, phy, reg, val) device_t dev; int phy, reg, val; { struct sk_if_softc *sc_if; sc_if = device_get_softc(dev); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: return(sk_xmac_miibus_writereg(sc_if, phy, reg, val)); case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: return(sk_marv_miibus_writereg(sc_if, phy, reg, val)); } return(0); } static void sk_miibus_statchg(dev) device_t dev; { struct sk_if_softc *sc_if; sc_if = device_get_softc(dev); switch(sc_if->sk_softc->sk_type) { case SK_GENESIS: sk_xmac_miibus_statchg(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_marv_miibus_statchg(sc_if); break; } return; } static int sk_xmac_miibus_readreg(sc_if, phy, reg) struct sk_if_softc *sc_if; int phy, reg; { int i; if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) return(0); SK_IF_LOCK(sc_if); SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); SK_XM_READ_2(sc_if, XM_PHY_DATA); if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYDATARDY) break; } if (i == SK_TIMEOUT) { printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); SK_IF_UNLOCK(sc_if); return(0); } } DELAY(1); i = SK_XM_READ_2(sc_if, XM_PHY_DATA); SK_IF_UNLOCK(sc_if); return(i); } static int sk_xmac_miibus_writereg(sc_if, phy, reg, val) struct sk_if_softc *sc_if; int phy, reg, val; { int i; SK_IF_LOCK(sc_if); SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); SK_IF_UNLOCK(sc_if); return(ETIMEDOUT); } SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } SK_IF_UNLOCK(sc_if); if (i == SK_TIMEOUT) printf("sk%d: phy write timed out\n", sc_if->sk_unit); return(0); } static void sk_xmac_miibus_statchg(sc_if) struct sk_if_softc *sc_if; { struct mii_data *mii; mii = device_get_softc(sc_if->sk_miibus); SK_IF_LOCK(sc_if); /* * If this is a GMII PHY, manually set the XMAC's * duplex mode accordingly. */ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } else { SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } } SK_IF_UNLOCK(sc_if); return; } static int sk_marv_miibus_readreg(sc_if, phy, reg) struct sk_if_softc *sc_if; int phy, reg; { u_int16_t val; int i; if (phy != 0 || (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { return(0); } SK_IF_LOCK(sc_if); SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); val = SK_YU_READ_2(sc_if, YUKON_SMICR); if (val & YU_SMICR_READ_VALID) break; } if (i == SK_TIMEOUT) { printf("sk%d: phy failed to come ready\n", sc_if->sk_unit); SK_IF_UNLOCK(sc_if); return(0); } val = SK_YU_READ_2(sc_if, YUKON_SMIDR); SK_IF_UNLOCK(sc_if); return(val); } static int sk_marv_miibus_writereg(sc_if, phy, reg, val) struct sk_if_softc *sc_if; int phy, reg, val; { int i; SK_IF_LOCK(sc_if); SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) break; } SK_IF_UNLOCK(sc_if); return(0); } static void sk_marv_miibus_statchg(sc_if) struct sk_if_softc *sc_if; { return; } #define HASH_BITS 6 static u_int32_t sk_xmchash(addr) const uint8_t *addr; { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_le(addr, ETHER_ADDR_LEN); return (~crc & ((1 << HASH_BITS) - 1)); } /* gmchash is just a big endian crc */ static u_int32_t sk_gmchash(addr) const uint8_t *addr; { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_be(addr, ETHER_ADDR_LEN); return (crc & ((1 << HASH_BITS) - 1)); } static void sk_setfilt(sc_if, addr, slot) struct sk_if_softc *sc_if; caddr_t addr; int slot; { int base; base = XM_RXFILT_ENTRY(slot); SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); return; } static void sk_setmulti(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; u_int32_t hashes[2] = { 0, 0 }; int h = 0, i; struct ifmultiaddr *ifma; u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; /* First, zot all the existing filters. */ switch(sc->sk_type) { case SK_GENESIS: for (i = 1; i < XM_RXFILT_MAX; i++) sk_setfilt(sc_if, (caddr_t)&dummy, i); SK_XM_WRITE_4(sc_if, XM_MAR0, 0); SK_XM_WRITE_4(sc_if, XM_MAR2, 0); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); break; } /* Now program new ones. */ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; /* * Program the first XM_RXFILT_MAX multicast groups * into the perfect filter. For all others, * use the hash table. */ if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { sk_setfilt(sc_if, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i); i++; continue; } switch(sc->sk_type) { case SK_GENESIS: h = sk_xmchash( LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: h = sk_gmchash( LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); break; } if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } } switch(sc->sk_type) { case SK_GENESIS: SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| XM_MODE_RX_USE_PERFECT); SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); break; } return; } static void sk_setpromisc(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; switch(sc->sk_type) { case SK_GENESIS: if (ifp->if_flags & IFF_PROMISC) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } else { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: if (ifp->if_flags & IFF_PROMISC) { SK_YU_CLRBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); } else { SK_YU_SETBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); } break; } return; } static int sk_init_rx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd = &sc_if->sk_cdata; struct sk_ring_data *rd = sc_if->sk_rdata; int i; bzero((char *)rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); for (i = 0; i < SK_RX_RING_CNT; i++) { cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (SK_RX_RING_CNT - 1)) { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[0]); } else { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[i + 1]); } } sc_if->sk_cdata.sk_rx_prod = 0; sc_if->sk_cdata.sk_rx_cons = 0; return(0); } static void sk_init_tx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd = &sc_if->sk_cdata; struct sk_ring_data *rd = sc_if->sk_rdata; int i; bzero((char *)sc_if->sk_rdata->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); for (i = 0; i < SK_TX_RING_CNT; i++) { cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; if (i == (SK_TX_RING_CNT - 1)) { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[0]); } else { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[i + 1]); } } sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; return; } static int sk_newbuf(sc_if, c, m) struct sk_if_softc *sc_if; struct sk_chain *c; struct mbuf *m; { struct mbuf *m_new = NULL; struct sk_rx_desc *r; if (m == NULL) { caddr_t *buf = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); /* Allocate the jumbo buffer */ buf = sk_jalloc(sc_if); if (buf == NULL) { m_freem(m_new); #ifdef SK_VERBOSE printf("sk%d: jumbo allocation failed " "-- packet dropped!\n", sc_if->sk_unit); #endif return(ENOBUFS); } /* Attach the buffer to the mbuf */ MEXTADD(m_new, buf, SK_JLEN, sk_jfree, (struct sk_if_softc *)sc_if, 0, EXT_NET_DRV); m_new->m_data = (void *)buf; m_new->m_pkthdr.len = m_new->m_len = SK_JLEN; } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; m_new->m_data = m_new->m_ext.ext_buf; } /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); r = c->sk_desc; c->sk_mbuf = m_new; r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); r->sk_ctl = m_new->m_len | SK_RXSTAT; return(0); } /* * Allocate jumbo buffer storage. The SysKonnect adapters support * "jumbograms" (9K frames), although SysKonnect doesn't currently * use them in their drivers. In order for us to use them, we need * large 9K receive buffers, however standard mbuf clusters are only * 2048 bytes in size. Consequently, we need to allocate and manage * our own jumbo buffer pool. Fortunately, this does not require an * excessive amount of additional code. */ static int sk_alloc_jumbo_mem(sc_if) struct sk_if_softc *sc_if; { caddr_t ptr; register int i; struct sk_jpool_entry *entry; /* Grab a big chunk o' storage. */ sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc_if->sk_cdata.sk_jumbo_buf == NULL) { printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit); return(ENOBUFS); } mtx_init(&sc_if->sk_jlist_mtx, "sk_jlist_mtx", NULL, MTX_DEF); SLIST_INIT(&sc_if->sk_jfree_listhead); SLIST_INIT(&sc_if->sk_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc_if->sk_cdata.sk_jumbo_buf; for (i = 0; i < SK_JSLOTS; i++) { sc_if->sk_cdata.sk_jslots[i] = ptr; ptr += SK_JLEN; entry = malloc(sizeof(struct sk_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { sk_free_jumbo_mem(sc_if); sc_if->sk_cdata.sk_jumbo_buf = NULL; printf("sk%d: no memory for jumbo " "buffer queue!\n", sc_if->sk_unit); return(ENOBUFS); } entry->slot = i; SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); } return(0); } static void sk_free_jumbo_mem(sc_if) struct sk_if_softc *sc_if; { struct sk_jpool_entry *entry; SK_JLIST_LOCK(sc_if); /* We cannot release external mbuf storage while in use. */ if (!SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) { printf("sk%d: will leak jumbo buffer memory!\n", sc_if->sk_unit); SK_JLIST_UNLOCK(sc_if); return; } while (!SLIST_EMPTY(&sc_if->sk_jfree_listhead)) { entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); free(entry, M_DEVBUF); } SK_JLIST_UNLOCK(sc_if); mtx_destroy(&sc_if->sk_jlist_mtx); contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF); return; } /* * Allocate a jumbo buffer. */ static void * sk_jalloc(sc_if) struct sk_if_softc *sc_if; { struct sk_jpool_entry *entry; SK_JLIST_LOCK(sc_if); entry = SLIST_FIRST(&sc_if->sk_jfree_listhead); if (entry == NULL) { #ifdef SK_VERBOSE printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit); #endif SK_JLIST_UNLOCK(sc_if); return(NULL); } SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); SK_JLIST_UNLOCK(sc_if); return(sc_if->sk_cdata.sk_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void sk_jfree(buf, args) void *buf; void *args; { struct sk_if_softc *sc_if; int i; struct sk_jpool_entry *entry; /* Extract the softc struct pointer. */ sc_if = (struct sk_if_softc *)args; if (sc_if == NULL) panic("sk_jfree: didn't get softc pointer!"); SK_JLIST_LOCK(sc_if); /* calculate the slot this buffer belongs to */ i = ((vm_offset_t)buf - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN; if ((i < 0) || (i >= SK_JSLOTS)) panic("sk_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead); if (entry == NULL) panic("sk_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); if (SLIST_EMPTY(&sc_if->sk_jinuse_listhead)) wakeup(sc_if); SK_JLIST_UNLOCK(sc_if); return; } /* * Set media options. */ static int sk_ifmedia_upd(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc_if->sk_miibus); sk_init(sc_if); mii_mediachg(mii); return(0); } /* * Report current media status. */ static void sk_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sk_if_softc *sc_if; struct mii_data *mii; sc_if = ifp->if_softc; mii = device_get_softc(sc_if->sk_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } static int sk_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sk_if_softc *sc_if = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int error = 0; struct mii_data *mii; switch(command) { case SIOCSIFMTU: if (ifr->ifr_mtu > SK_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; sk_init(sc_if); } break; case SIOCSIFFLAGS: SK_IF_LOCK(sc_if); if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) { if ((ifp->if_flags ^ sc_if->sk_if_flags) & IFF_PROMISC) { sk_setpromisc(sc_if); sk_setmulti(sc_if); } } else sk_init(sc_if); } else { if (ifp->if_flags & IFF_RUNNING) sk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; SK_IF_UNLOCK(sc_if); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) { SK_IF_LOCK(sc_if); sk_setmulti(sc_if); SK_IF_UNLOCK(sc_if); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc_if->sk_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ether_ioctl(ifp, command, data); break; } return(error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int skc_probe(dev) device_t dev; { struct sk_softc *sc; struct sk_type *t = sk_devs; sc = device_get_softc(dev); while(t->sk_name != NULL) { if ((pci_get_vendor(dev) == t->sk_vid) && (pci_get_device(dev) == t->sk_did)) { device_set_desc(dev, t->sk_name); return (BUS_PROBE_DEFAULT); } t++; } return(ENXIO); } /* * Force the GEnesis into reset, then bring it out of reset. */ static void sk_reset(sc) struct sk_softc *sc; { CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); DELAY(1000); CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); DELAY(2); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); if (sc->sk_type == SK_GENESIS) { /* Configure packet arbiter */ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); } /* Enable RAM interface */ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents 18.825ns, so to specify a timeout in * microseconds, we have to multiply by 54. */ printf("skc%d: interrupt moderation is %d us\n", sc->sk_unit, sc->sk_int_mod); sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); return; } static int sk_probe(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(device_get_parent(dev)); /* * Not much to do here. We always know there will be * at least one XMAC present, and if there are two, * skc_attach() will create a second device instance * for us. */ switch (sc->sk_type) { case SK_GENESIS: device_set_desc(dev, "XaQti Corp. XMAC II"); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon"); break; } return (BUS_PROBE_DEFAULT); } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ static int sk_attach(dev) device_t dev; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct ifnet *ifp; int i, port, error; if (dev == NULL) return(EINVAL); error = 0; sc_if = device_get_softc(dev); sc = device_get_softc(device_get_parent(dev)); port = *(int *)device_get_ivars(dev); sc_if->sk_dev = dev; sc_if->sk_unit = device_get_unit(dev); sc_if->sk_port = port; sc_if->sk_softc = sc; sc->sk_if[port] = sc_if; if (port == SK_PORT_A) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; if (port == SK_PORT_B) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; /* Allocate the descriptor queues. */ sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF, M_NOWAIT, M_ZERO, 0xffffffff, PAGE_SIZE, 0); if (sc_if->sk_rdata == NULL) { printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit); error = ENOMEM; goto fail; } /* Try to allocate memory for jumbo buffers. */ if (sk_alloc_jumbo_mem(sc_if)) { printf("sk%d: jumbo buffer allocation failed\n", sc_if->sk_unit); error = ENOMEM; goto fail; } ifp = &sc_if->arpcom.ac_if; ifp->if_softc = sc_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sk_ioctl; ifp->if_start = sk_start; ifp->if_watchdog = sk_watchdog; ifp->if_init = sk_init; ifp->if_baudrate = 1000000000; IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1; IFQ_SET_READY(&ifp->if_snd); callout_handle_init(&sc_if->sk_tick_ch); /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ SK_LOCK(sc); for (i = 0; i < ETHER_ADDR_LEN; i++) sc_if->arpcom.ac_enaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i); /* * Set up RAM buffer addresses. The NIC will have a certain * amount of SRAM on it, somewhere between 512K and 2MB. We * need to divide this up a) between the transmitter and * receiver and b) between the two XMACs, if this is a * dual port NIC. Our algotithm is to divide up the memory * evenly so that everyone gets a fair share. */ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { u_int32_t chunk, val; chunk = sc->sk_ramsize / 2; val = sc->sk_rboff / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } else { u_int32_t chunk, val; chunk = sc->sk_ramsize / 4; val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } /* Read and save PHY type and set PHY address */ sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; switch(sc_if->sk_phytype) { case SK_PHYTYPE_XMAC: sc_if->sk_phyaddr = SK_PHYADDR_XMAC; break; case SK_PHYTYPE_BCOM: sc_if->sk_phyaddr = SK_PHYADDR_BCOM; break; case SK_PHYTYPE_MARV_COPPER: sc_if->sk_phyaddr = SK_PHYADDR_MARV; break; default: printf("skc%d: unsupported PHY type: %d\n", sc->sk_unit, sc_if->sk_phytype); error = ENODEV; SK_UNLOCK(sc); goto fail; } /* * Call MI attach routine. Can't hold locks when calling into ether_*. */ SK_UNLOCK(sc); ether_ifattach(ifp, sc_if->arpcom.ac_enaddr); SK_LOCK(sc); /* * Do miibus setup. */ switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); break; } SK_UNLOCK(sc); if (mii_phy_probe(dev, &sc_if->sk_miibus, sk_ifmedia_upd, sk_ifmedia_sts)) { printf("skc%d: no PHY found!\n", sc_if->sk_unit); ether_ifdetach(ifp); error = ENXIO; goto fail; } fail: if (error) { /* Access should be ok even though lock has been dropped */ sc->sk_if[port] = NULL; sk_detach(dev); } return(error); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int skc_attach(dev) device_t dev; { struct sk_softc *sc; int unit, error = 0, rid, *port; uint8_t skrs; char *pname, *revstr; sc = device_get_softc(dev); unit = device_get_unit(dev); mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = SK_RID; sc->sk_res = bus_alloc_resource_any(dev, SK_RES, &rid, RF_ACTIVE); if (sc->sk_res == NULL) { printf("sk%d: couldn't map ports/memory\n", unit); error = ENXIO; goto fail; } sc->sk_btag = rman_get_bustag(sc->sk_res); sc->sk_bhandle = rman_get_bushandle(sc->sk_res); sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf; /* Bail out if chip is not recognized. */ if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) { printf("skc%d: unknown device: chipver=%02x, rev=%x\n", unit, sc->sk_type, sc->sk_rev); error = ENXIO; goto fail; } /* Allocate interrupt */ rid = 0; sc->sk_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->sk_irq == NULL) { printf("skc%d: couldn't map interrupt\n", unit); error = ENXIO; goto fail; } SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev), SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW, &sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I", "SK interrupt moderation"); /* Pull in device tunables. */ sc->sk_int_mod = SK_IM_DEFAULT; error = resource_int_value(device_get_name(dev), unit, "int_mod", &sc->sk_int_mod); if (error == 0) { if (sc->sk_int_mod < SK_IM_MIN || sc->sk_int_mod > SK_IM_MAX) { printf("skc%d: int_mod value out of range; " "using default: %d\n", unit, SK_IM_DEFAULT); sc->sk_int_mod = SK_IM_DEFAULT; } } /* Reset the adapter. */ sk_reset(sc); sc->sk_unit = unit; /* Read and save vital product data from EEPROM. */ sk_vpd_read(sc); skrs = sk_win_read_1(sc, SK_EPROM0); if (sc->sk_type == SK_GENESIS) { /* Read and save RAM size and RAMbuffer offset */ switch(skrs) { case SK_RAMSIZE_512K_64: sc->sk_ramsize = 0x80000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_1024K_64: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_80000; break; case SK_RAMSIZE_1024K_128: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_2048K_128: sc->sk_ramsize = 0x200000; sc->sk_rboff = SK_RBOFF_0; break; default: printf("skc%d: unknown ram size: %d\n", sc->sk_unit, sk_win_read_1(sc, SK_EPROM0)); error = ENXIO; goto fail; } } else { /* SK_YUKON_FAMILY */ if (skrs == 0x00) sc->sk_ramsize = 0x20000; else sc->sk_ramsize = skrs * (1<<12); sc->sk_rboff = SK_RBOFF_0; } /* Read and save physical media type */ switch(sk_win_read_1(sc, SK_PMDTYPE)) { case SK_PMD_1000BASESX: sc->sk_pmd = IFM_1000_SX; break; case SK_PMD_1000BASELX: sc->sk_pmd = IFM_1000_LX; break; case SK_PMD_1000BASECX: sc->sk_pmd = IFM_1000_CX; break; case SK_PMD_1000BASETX: sc->sk_pmd = IFM_1000_T; break; default: printf("skc%d: unknown media type: 0x%x\n", sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE)); error = ENXIO; goto fail; } /* Determine whether to name it with VPD PN or just make it up. * Marvell Yukon VPD PN seems to freqently be bogus. */ switch (pci_get_device(dev)) { case DEVICEID_SK_V1: case DEVICEID_BELKIN_5005: case DEVICEID_3COM_3C940: case DEVICEID_LINKSYS_EG1032: case DEVICEID_DLINK_DGE530T: /* Stay with VPD PN. */ pname = sc->sk_vpd_prodname; break; case DEVICEID_SK_V2: /* YUKON VPD PN might bear no resemblance to reality. */ switch (sc->sk_type) { case SK_GENESIS: /* Stay with VPD PN. */ pname = sc->sk_vpd_prodname; break; case SK_YUKON: pname = "Marvell Yukon Gigabit Ethernet"; break; case SK_YUKON_LITE: pname = "Marvell Yukon Lite Gigabit Ethernet"; break; case SK_YUKON_LP: pname = "Marvell Yukon LP Gigabit Ethernet"; break; default: pname = "Marvell Yukon (Unknown) Gigabit Ethernet"; break; } /* Yukon Lite Rev. A0 needs special test. */ if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) { u_int32_t far; u_int8_t testbyte; /* Save flash address register before testing. */ far = sk_win_read_4(sc, SK_EP_ADDR); sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff); testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03); if (testbyte != 0x00) { /* Yukon Lite Rev. A0 detected. */ sc->sk_type = SK_YUKON_LITE; sc->sk_rev = SK_YUKON_LITE_REV_A0; /* Restore flash address register. */ sk_win_write_4(sc, SK_EP_ADDR, far); } } break; default: device_printf(dev, "unknown device: vendor=%04x, device=%04x, " "chipver=%02x, rev=%x\n", pci_get_vendor(dev), pci_get_device(dev), sc->sk_type, sc->sk_rev); error = ENXIO; goto fail; } if (sc->sk_type == SK_YUKON_LITE) { switch (sc->sk_rev) { case SK_YUKON_LITE_REV_A0: revstr = "A0"; break; case SK_YUKON_LITE_REV_A1: revstr = "A1"; break; case SK_YUKON_LITE_REV_A3: revstr = "A3"; break; default: revstr = ""; break; } } else { revstr = ""; } /* Announce the product name and more VPD data if there. */ device_printf(dev, "%s rev. %s(0x%x)\n", pname != NULL ? pname : "", revstr, sc->sk_rev); if (bootverbose) { if (sc->sk_vpd_readonly != NULL && sc->sk_vpd_readonly_len != 0) { char buf[256]; char *dp = sc->sk_vpd_readonly; uint16_t l, len = sc->sk_vpd_readonly_len; while (len >= 3) { if ((*dp == 'P' && *(dp+1) == 'N') || (*dp == 'E' && *(dp+1) == 'C') || (*dp == 'M' && *(dp+1) == 'N') || (*dp == 'S' && *(dp+1) == 'N')) { l = 0; while (l < *(dp+2)) { buf[l] = *(dp+3+l); ++l; } buf[l] = '\0'; device_printf(dev, "%c%c: %s\n", *dp, *(dp+1), buf); len -= (3 + l); dp += (3 + l); } else { len -= (3 + *(dp+2)); dp += (3 + *(dp+2)); } } } device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type); device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev); device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs); device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize); } sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1); if (sc->sk_devs[SK_PORT_A] == NULL) { device_printf(dev, "failed to add child for PORT_A\n"); error = ENXIO; goto fail; } port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (port == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_A\n"); error = ENXIO; goto fail; } *port = SK_PORT_A; device_set_ivars(sc->sk_devs[SK_PORT_A], port); if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1); if (sc->sk_devs[SK_PORT_B] == NULL) { device_printf(dev, "failed to add child for PORT_B\n"); error = ENXIO; goto fail; } port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT); if (port == NULL) { device_printf(dev, "failed to allocate memory for " "ivars of PORT_B\n"); error = ENXIO; goto fail; } *port = SK_PORT_B; device_set_ivars(sc->sk_devs[SK_PORT_B], port); } /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); bus_generic_attach(dev); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET|INTR_MPSAFE, sk_intr, sc, &sc->sk_intrhand); if (error) { printf("skc%d: couldn't set up irq\n", unit); goto fail; } fail: if (error) skc_detach(dev); return(error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int sk_detach(dev) device_t dev; { struct sk_if_softc *sc_if; struct ifnet *ifp; sc_if = device_get_softc(dev); KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx), ("sk mutex not initialized in sk_detach")); SK_IF_LOCK(sc_if); ifp = &sc_if->arpcom.ac_if; /* These should only be active if attach_xmac succeeded */ if (device_is_attached(dev)) { sk_stop(sc_if); /* Can't hold locks while calling detach */ SK_IF_UNLOCK(sc_if); ether_ifdetach(ifp); SK_IF_LOCK(sc_if); } /* * We're generally called from skc_detach() which is using * device_delete_child() to get to here. It's already trashed * miibus for us, so don't do it here or we'll panic. */ /* if (sc_if->sk_miibus != NULL) device_delete_child(dev, sc_if->sk_miibus); */ bus_generic_detach(dev); if (sc_if->sk_cdata.sk_jumbo_buf != NULL) sk_free_jumbo_mem(sc_if); if (sc_if->sk_rdata != NULL) { contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF); } SK_IF_UNLOCK(sc_if); return(0); } static int skc_detach(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(dev); KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized")); if (device_is_alive(dev)) { if (sc->sk_devs[SK_PORT_A] != NULL) { free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF); device_delete_child(dev, sc->sk_devs[SK_PORT_A]); } if (sc->sk_devs[SK_PORT_B] != NULL) { free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF); device_delete_child(dev, sc->sk_devs[SK_PORT_B]); } bus_generic_detach(dev); } if (sc->sk_vpd_prodname != NULL) free(sc->sk_vpd_prodname, M_DEVBUF); if (sc->sk_vpd_readonly != NULL) free(sc->sk_vpd_readonly, M_DEVBUF); if (sc->sk_intrhand) bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand); if (sc->sk_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq); if (sc->sk_res) bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res); mtx_destroy(&sc->sk_mtx); return(0); } static int sk_encap(sc_if, m_head, txidx) struct sk_if_softc *sc_if; struct mbuf *m_head; u_int32_t *txidx; { struct sk_tx_desc *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; SK_IF_LOCK_ASSERT(sc_if); m = m_head; cur = frag = *txidx; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) return(ENOBUFS); f = &sc_if->sk_rdata->sk_tx_ring[frag]; f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; if (cnt == 0) f->sk_ctl |= SK_TXCTL_FIRSTFRAG; else f->sk_ctl |= SK_TXCTL_OWN; cur = frag; SK_INC(frag, SK_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; sc_if->sk_cdata.sk_tx_cnt += cnt; *txidx = frag; return(0); } static void sk_start(ifp) struct ifnet *ifp; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct mbuf *m_head = NULL; u_int32_t idx; sc_if = ifp->if_softc; sc = sc_if->sk_softc; SK_IF_LOCK(sc_if); idx = sc_if->sk_cdata.sk_tx_prod; while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (sk_encap(sc_if, m_head, &idx)) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); } /* Transmit */ if (idx != sc_if->sk_cdata.sk_tx_prod) { sc_if->sk_cdata.sk_tx_prod = idx; CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } SK_IF_UNLOCK(sc_if); return; } static void sk_watchdog(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if; sc_if = ifp->if_softc; printf("sk%d: watchdog timeout\n", sc_if->sk_unit); ifp->if_flags &= ~IFF_RUNNING; sk_init(sc_if); return; } static void skc_shutdown(dev) device_t dev; { struct sk_softc *sc; sc = device_get_softc(dev); SK_LOCK(sc); /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ sk_reset(sc); SK_UNLOCK(sc); return; } static void sk_rxeof(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct mbuf *m; struct ifnet *ifp; struct sk_chain *cur_rx; int total_len = 0; int i; u_int32_t rxstat; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; i = sc_if->sk_cdata.sk_rx_prod; cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; SK_LOCK_ASSERT(sc); while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; m = cur_rx->sk_mbuf; cur_rx->sk_mbuf = NULL; total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); SK_INC(i, SK_RX_RING_CNT); if (rxstat & XM_RXSTAT_ERRFRAME) { ifp->if_ierrors++; sk_newbuf(sc_if, cur_rx, m); continue; } /* * Try to allocate a new jumbo buffer. If that * fails, copy the packet to mbufs and put the * jumbo buffer back in the ring so it can be * re-used. If allocating mbufs fails, then we * have to drop the packet. */ if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); sk_newbuf(sc_if, cur_rx, m); if (m0 == NULL) { printf("sk%d: no receive buffers " "available -- packet dropped!\n", sc_if->sk_unit); ifp->if_ierrors++; continue; } m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; SK_UNLOCK(sc); (*ifp->if_input)(ifp, m); SK_LOCK(sc); } sc_if->sk_cdata.sk_rx_prod = i; return; } static void sk_txeof(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct sk_tx_desc *cur_tx; struct ifnet *ifp; u_int32_t idx; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ idx = sc_if->sk_cdata.sk_tx_cons; while(idx != sc_if->sk_cdata.sk_tx_prod) { cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; if (cur_tx->sk_ctl & SK_TXCTL_OWN) break; if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) ifp->if_opackets++; if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; } sc_if->sk_cdata.sk_tx_cnt--; SK_INC(idx, SK_TX_RING_CNT); } if (sc_if->sk_cdata.sk_tx_cnt == 0) { ifp->if_timer = 0; } else /* nudge chip to keep tx ring moving */ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2) ifp->if_flags &= ~IFF_OACTIVE; sc_if->sk_cdata.sk_tx_cons = idx; } static void sk_tick(xsc_if) void *xsc_if; { struct sk_if_softc *sc_if; struct mii_data *mii; struct ifnet *ifp; int i; sc_if = xsc_if; SK_IF_LOCK(sc_if); ifp = &sc_if->arpcom.ac_if; mii = device_get_softc(sc_if->sk_miibus); if (!(ifp->if_flags & IFF_UP)) { SK_IF_UNLOCK(sc_if); return; } if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { sk_intr_bcom(sc_if); SK_IF_UNLOCK(sc_if); return; } /* * According to SysKonnect, the correct way to verify that * the link has come back up is to poll bit 0 of the GPIO * register three times. This pin has the signal from the * link_sync pin connected to it; if we read the same link * state 3 times in a row, we know the link is up. */ for (i = 0; i < 3; i++) { if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) break; } if (i != 3) { sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); SK_IF_UNLOCK(sc_if); return; } /* Turn the GP0 interrupt back on. */ SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); SK_XM_READ_2(sc_if, XM_ISR); mii_tick(mii); untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); SK_IF_UNLOCK(sc_if); return; } static void sk_intr_bcom(sc_if) struct sk_if_softc *sc_if; { struct mii_data *mii; struct ifnet *ifp; int status; mii = device_get_softc(sc_if->sk_miibus); ifp = &sc_if->arpcom.ac_if; SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); /* * Read the PHY interrupt register to make sure * we clear any pending interrupts. */ status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); if (!(ifp->if_flags & IFF_RUNNING)) { sk_init_xmac(sc_if); return; } if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { int lstat; lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { mii_mediachg(mii); /* Turn off the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); sc_if->sk_link = 0; } else if (status & BRGPHY_ISR_LNK_CHG) { sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); mii_tick(mii); sc_if->sk_link = 1; /* Turn on the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| SK_LINKLED_BLINK_OFF); } else { mii_tick(mii); sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); } } SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); return; } static void sk_intr_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; u_int16_t status; sc = sc_if->sk_softc; status = SK_XM_READ_2(sc_if, XM_ISR); /* * Link has gone down. Start MII tick timeout to * watch for link resync. */ if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { if (status & XM_ISR_GP0_SET) { SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); } if (status & XM_ISR_AUTONEG_DONE) { sc_if->sk_tick_ch = timeout(sk_tick, sc_if, hz); } } if (status & XM_IMR_TX_UNDERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); if (status & XM_IMR_RX_OVERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); status = SK_XM_READ_2(sc_if, XM_ISR); return; } static void sk_intr_yukon(sc_if) struct sk_if_softc *sc_if; { int status; status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); return; } static void sk_intr(xsc) void *xsc; { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; struct ifnet *ifp0 = NULL, *ifp1 = NULL; u_int32_t status; SK_LOCK(sc); sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = &sc_if0->arpcom.ac_if; if (sc_if1 != NULL) ifp1 = &sc_if1->arpcom.ac_if; for (;;) { status = CSR_READ_4(sc, SK_ISSR); if (!(status & sc->sk_intrmask)) break; /* Handle receive interrupts first. */ if (status & SK_ISR_RX1_EOF) { sk_rxeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_RX_CSR0, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } if (status & SK_ISR_RX2_EOF) { sk_rxeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_RX_CSR1, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } /* Then transmit interrupts. */ if (status & SK_ISR_TX1_S_EOF) { sk_txeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); } if (status & SK_ISR_TX2_S_EOF) { sk_txeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); } /* Then MAC interrupts. */ if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if0); else sk_intr_yukon(sc_if0); } if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if1); else sk_intr_yukon(sc_if1); } if (status & SK_ISR_EXTERNAL_REG) { if (ifp0 != NULL && sc_if0->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if0); if (ifp1 != NULL && sc_if1->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if1); } } CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd)) sk_start(ifp0); if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd)) sk_start(ifp1); SK_UNLOCK(sc); return; } static void sk_init_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct ifnet *ifp; struct sk_bcom_hack bhack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, { 0, 0 } }; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; /* Unreset the XMAC. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); DELAY(1000); /* Reset the XMAC's internal state. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); /* Save the XMAC II revision */ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); /* * Perform additional initialization for external PHYs, * namely for the 1000baseTX cards that use the XMAC's * GMII mode. */ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { int i = 0; u_int32_t val; /* Take PHY out of reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) val |= SK_GPIO_DIR0|SK_GPIO_DAT0; else val |= SK_GPIO_DIR2|SK_GPIO_DAT2; sk_win_write_4(sc, SK_GPIO, val); /* Enable GMII mode on the XMAC. */ SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); DELAY(10000); sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); /* * Early versions of the BCM5400 apparently have * a bug that requires them to have their reserved * registers initialized to some magic values. I don't * know what the numbers do, I'm just the messenger. */ if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03) == 0x6041) { while(bhack[i].reg) { sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM, bhack[i].reg, bhack[i].val); i++; } } } /* Set station address */ SK_XM_WRITE_2(sc_if, XM_PAR0, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); SK_XM_WRITE_2(sc_if, XM_PAR1, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); SK_XM_WRITE_2(sc_if, XM_PAR2, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); if (ifp->if_flags & IFF_BROADCAST) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } else { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } /* We don't need the FCS appended to the packet. */ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); /* We want short frames padded to 60 bytes. */ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transfering frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| XM_MODE_RX_INRANGELEN); if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); else SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); /* * Bump up the transmit threshold. This helps hold off transmit * underruns when we're blasting traffic from both ports at once. */ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); /* Set promiscuous mode */ sk_setpromisc(sc_if); /* Set multicast filter */ sk_setmulti(sc_if); /* Clear and enable interrupts */ SK_XM_READ_2(sc_if, XM_ISR); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); else SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Configure MAC arbiter */ switch(sc_if->sk_xmac_rev) { case XM_XMAC_REV_B2: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; case XM_XMAC_REV_C1: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; default: break; } sk_win_write_2(sc, SK_MACARB_CTL, SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); sc_if->sk_link = 1; return; } static void sk_init_yukon(sc_if) struct sk_if_softc *sc_if; { u_int32_t phy; u_int16_t reg; struct sk_softc *sc; struct ifnet *ifp; int i; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A3) { /* Take PHY out of reset. */ sk_win_write_4(sc, SK_GPIO, (sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9); } /* GMAC and GPHY Reset */ SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); DELAY(1000); phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; switch(sc_if->sk_softc->sk_pmd) { case IFM_1000_SX: case IFM_1000_LX: phy |= SK_GPHY_FIBER; break; case IFM_1000_CX: case IFM_1000_T: phy |= SK_GPHY_COPPER; break; } SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); /* unused read of the interrupt source register */ SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); reg = SK_YU_READ_2(sc_if, YUKON_PAR); /* MIB Counter Clear Mode set */ reg |= YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* MIB Counter Clear Mode clear */ reg &= ~YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* receive control reg */ SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); /* transmit parameter register */ SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); /* serial mode register */ reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) reg |= YU_SMR_MFL_JUMBO; SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); /* Setup Yukon's address */ for (i = 0; i < 3; i++) { /* Write Source Address 1 (unicast filter) */ SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, sc_if->arpcom.ac_enaddr[i * 2] | sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8); } for (i = 0; i < 3; i++) { reg = sk_win_read_2(sc_if->sk_softc, SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); } /* Set promiscuous mode */ sk_setpromisc(sc_if); /* Set multicast filter */ sk_setmulti(sc_if); /* enable interrupt mask for counter overflows */ SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); /* Configure RX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); /* Configure TX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ static void sk_init(xsc) void *xsc; { struct sk_if_softc *sc_if = xsc; struct sk_softc *sc; struct ifnet *ifp; struct mii_data *mii; u_int16_t reg; u_int32_t imr; SK_IF_LOCK(sc_if); ifp = &sc_if->arpcom.ac_if; sc = sc_if->sk_softc; mii = device_get_softc(sc_if->sk_miibus); if (ifp->if_flags & IFF_RUNNING) { SK_IF_UNLOCK(sc_if); return; } /* Cancel pending I/O and free all RX/TX buffers. */ sk_stop(sc_if); if (sc->sk_type == SK_GENESIS) { /* Configure LINK_SYNC LED */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); /* Configure RX LED */ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); /* Configure TX LED */ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); } /* Configure I2C registers */ /* Configure XMAC(s) */ switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); break; } mii_mediachg(mii); if (sc->sk_type == SK_GENESIS) { /* Configure MAC FIFOs */ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); } /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); /* Init descriptors */ if (sk_init_rx_ring(sc_if) == ENOBUFS) { printf("sk%d: initialization failed: no " "memory for rx buffers\n", sc_if->sk_unit); sk_stop(sc_if); SK_IF_UNLOCK(sc_if); return; } sk_init_tx_ring(sc_if); /* Set interrupt moderation if changed via sysctl. */ /* SK_LOCK(sc); */ imr = sk_win_read_4(sc, SK_IMTIMERINIT); if (imr != SK_IM_USECS(sc->sk_int_mod)) { sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod)); printf("skc%d: interrupt moderation is %d us\n", sc->sk_unit, sc->sk_int_mod); } /* SK_UNLOCK(sc); */ /* Configure interrupt handling */ CSR_READ_4(sc, SK_ISSR); if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_INTRS1; else sc->sk_intrmask |= SK_INTRS2; sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Start BMUs. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); switch(sc->sk_type) { case SK_GENESIS: /* Enable XMACs TX and RX state machines */ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: reg = SK_YU_READ_2(sc_if, YUKON_GPCR); reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN); SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; SK_IF_UNLOCK(sc_if); return; } static void sk_stop(sc_if) struct sk_if_softc *sc_if; { int i; struct sk_softc *sc; struct ifnet *ifp; SK_IF_LOCK(sc_if); sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; untimeout(sk_tick, sc_if, sc_if->sk_tick_ch); if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { u_int32_t val; /* Put PHY back into reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) { val |= SK_GPIO_DIR0; val &= ~SK_GPIO_DAT0; } else { val |= SK_GPIO_DIR2; val &= ~SK_GPIO_DAT2; } sk_win_write_4(sc, SK_GPIO, val); } /* Turn off various components of this interface. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); switch (sc->sk_type) { case SK_GENESIS: SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); break; } SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_INTRS1; else sc->sk_intrmask &= ~SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < SK_RX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; } } for (i = 0; i < SK_TX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); SK_IF_UNLOCK(sc_if); return; } static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) { int error, value; if (!arg1) return (EINVAL); value = *(int *)arg1; error = sysctl_handle_int(oidp, &value, 0, req); if (error || !req->newptr) return (error); if (value < low || value > high) return (EINVAL); *(int *)arg1 = value; return (0); } static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS) { return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX)); }