/*- * Copyright (c) 2003 John Baldwin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi.h" #include #include #include #define NIOAPICS 16 /* Max number of I/O APICs */ #define NLAPICS 16 /* Max number of local APICs */ typedef void madt_entry_handler(APIC_HEADER *entry, void *arg); /* These two arrays are indexed by APIC IDs. */ struct ioapic_info { void *io_apic; UINT32 io_vector; } ioapics[NIOAPICS]; struct lapic_info { u_int la_present:1; u_int la_enabled:1; u_int la_apic_id:8; } lapics[NLAPICS + 1]; static APIC_TABLE *madt; static vm_paddr_t madt_physaddr; static vm_offset_t madt_length; MALLOC_DEFINE(M_MADT, "MADT Table", "ACPI MADT Table Items"); static u_char interrupt_polarity(UINT16 Polarity); static u_char interrupt_trigger(UINT16 TriggerMode); static int madt_find_cpu(u_int acpi_id, u_int *apic_id); static int madt_find_interrupt(int intr, void **apic, u_int *pin); static void *madt_map(vm_paddr_t pa, int offset, vm_offset_t length); static void *madt_map_table(vm_paddr_t pa, int offset, const char *sig); static void madt_parse_apics(APIC_HEADER *entry, void *arg); static void madt_parse_interrupt_override(INTERRUPT_SOURCE_OVERRIDE *intr); static void madt_parse_ints(APIC_HEADER *entry, void *arg __unused); static void madt_parse_local_nmi(LAPIC_NMI *nmi); static void madt_parse_nmi(NMI *nmi); static int madt_probe(void); static int madt_probe_cpus(void); static void madt_probe_cpus_handler(APIC_HEADER *entry, void *arg __unused); static int madt_probe_table(vm_paddr_t address); static void madt_register(void *dummy); static int madt_setup_local(void); static int madt_setup_io(void); static void madt_unmap(void *data, vm_offset_t length); static void madt_unmap_table(void *table); static void madt_walk_table(madt_entry_handler *handler, void *arg); static struct apic_enumerator madt_enumerator = { "MADT", madt_probe, madt_probe_cpus, madt_setup_local, madt_setup_io }; /* * Code to abuse the crashdump map to map in the tables for the early * probe. We cheat and make the following assumptions about how we * use this KVA: page 0 is used to map in the first page of each table * found via the RSDT or XSDT and pages 1 to n are used to map in the * RSDT or XSDT. The offset is in pages; the length is in bytes. */ static void * madt_map(vm_paddr_t pa, int offset, vm_offset_t length) { vm_offset_t va, off; void *data; off = pa & PAGE_MASK; length = roundup(length + off, PAGE_SIZE); pa = pa & PG_FRAME; va = (vm_offset_t)pmap_kenter_temporary(pa, offset) + (offset * PAGE_SIZE); data = (void *)(va + off); length -= PAGE_SIZE; while (length > 0) { va += PAGE_SIZE; pa += PAGE_SIZE; length -= PAGE_SIZE; pmap_kenter(va, pa); invlpg(va); } return (data); } static void madt_unmap(void *data, vm_offset_t length) { vm_offset_t va, off; va = (vm_offset_t)data; off = va & PAGE_MASK; length = roundup(length + off, PAGE_SIZE); va &= ~PAGE_MASK; while (length > 0) { pmap_kremove(va); invlpg(va); va += PAGE_SIZE; length -= PAGE_SIZE; } } static void * madt_map_table(vm_paddr_t pa, int offset, const char *sig) { ACPI_TABLE_HEADER *header; vm_offset_t length; header = madt_map(pa, offset, sizeof(ACPI_TABLE_HEADER)); if (strncmp(header->Signature, sig, 4) != 0) { madt_unmap(header, sizeof(ACPI_TABLE_HEADER)); return (NULL); } length = header->Length; madt_unmap(header, sizeof(ACPI_TABLE_HEADER)); return (madt_map(pa, offset, length)); } static void madt_unmap_table(void *table) { ACPI_TABLE_HEADER *header; header = (ACPI_TABLE_HEADER *)table; madt_unmap(table, header->Length); } /* * Look for an ACPI Multiple APIC Description Table ("APIC") */ static int madt_probe(void) { ACPI_POINTER rsdp_ptr; RSDP_DESCRIPTOR *rsdp; RSDT_DESCRIPTOR *rsdt; XSDT_DESCRIPTOR *xsdt; int i, count; if (resource_disabled("acpi", 0)) return (ENXIO); /* * Map in the RSDP. Since ACPI uses AcpiOsMapMemory() which in turn * calls pmap_mapdev() to find the RSDP, we assume that we can use * pmap_mapdev() to map the RSDP. */ if (AcpiOsGetRootPointer(ACPI_LOGICAL_ADDRESSING, &rsdp_ptr) != AE_OK) return (ENXIO); KASSERT(rsdp_ptr.Pointer.Physical < KERNLOAD, ("RSDP too high")); rsdp = pmap_mapdev(rsdp_ptr.Pointer.Physical, sizeof(RSDP_DESCRIPTOR)); if (rsdp == NULL) { if (bootverbose) printf("MADT: Failed to map RSDP\n"); return (ENXIO); } /* * For ACPI < 2.0, use the RSDT. For ACPI >= 2.0, use the XSDT. * We map the XSDT and RSDT at page 1 in the crashdump area. * Page 0 is used to map in the headers of candidate ACPI tables. */ if (rsdp->Revision >= 2) { xsdt = madt_map_table(rsdp->XsdtPhysicalAddress, 1, XSDT_SIG); if (xsdt == NULL) { if (bootverbose) printf("MADT: Failed to map XSDT\n"); return (ENXIO); } count = (xsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) / sizeof(UINT64); for (i = 0; i < count; i++) if (madt_probe_table(xsdt->TableOffsetEntry[i])) break; madt_unmap_table(xsdt); } else { rsdt = madt_map_table(rsdp->RsdtPhysicalAddress, 1, RSDT_SIG); if (rsdt == NULL) { if (bootverbose) printf("MADT: Failed to map RSDT\n"); return (ENXIO); } count = (rsdt->Header.Length - sizeof(ACPI_TABLE_HEADER)) / sizeof(UINT32); for (i = 0; i < count; i++) if (madt_probe_table(rsdt->TableOffsetEntry[i])) break; madt_unmap_table(rsdt); } pmap_unmapdev((vm_offset_t)rsdp, sizeof(RSDP_DESCRIPTOR)); if (madt_physaddr == 0) { if (bootverbose) printf("MADT: No MADT table found\n"); return (ENXIO); } if (bootverbose) printf("MADT: Found table at 0x%jx\n", (uintmax_t)madt_physaddr); return (0); } /* * See if a given ACPI table is the MADT. */ static int madt_probe_table(vm_paddr_t address) { ACPI_TABLE_HEADER *table; table = madt_map(address, 0, sizeof(ACPI_TABLE_HEADER)); if (table == NULL) { if (bootverbose) printf("MADT: Failed to map table at 0x%jx\n", (uintmax_t)address); return (0); } if (bootverbose) printf("Table '%.4s' at 0x%jx\n", table->Signature, (uintmax_t)address); /* XXX: Verify checksum? */ if (strncmp(table->Signature, APIC_SIG, 4) != 0) { madt_unmap(table, sizeof(ACPI_TABLE_HEADER)); return (0); } madt_physaddr = address; madt_length = table->Length; madt_unmap(table, sizeof(ACPI_TABLE_HEADER)); return (1); } /* * Run through the MP table enumerating CPUs. */ static int madt_probe_cpus(void) { madt = madt_map_table(madt_physaddr, 0, APIC_SIG); KASSERT(madt != NULL, ("Unable to re-map MADT")); madt_walk_table(madt_probe_cpus_handler, NULL); madt_unmap_table(madt); madt = NULL; return (0); } /* * Initialize the local APIC on the BSP. */ static int madt_setup_local(void) { madt = pmap_mapdev(madt_physaddr, madt_length); lapic_init((uintptr_t)madt->LocalApicAddress); printf("ACPI APIC Table: <%.*s %.*s>\n", sizeof(madt->Header.OemId), madt->Header.OemId, sizeof(madt->Header.OemTableId), madt->Header.OemTableId); /* * We ignore 64-bit local APIC override entries. Should we * perhaps emit a warning here if we find one? */ return (0); } /* * Run through the MP table enumerating I/O APICs. */ static int madt_setup_io(void) { int i; /* First, we run through adding I/O APIC's. */ madt_walk_table(madt_parse_apics, NULL); /* Second, we run through the table tweaking interrupt sources. */ madt_walk_table(madt_parse_ints, NULL); /* Third, we register all the I/O APIC's. */ for (i = 0; i < NIOAPICS; i++) if (ioapics[i].io_apic != NULL) ioapic_register(ioapics[i].io_apic); /* Finally, we throw the switch to enable the I/O APIC's. */ acpi_SetDefaultIntrModel(ACPI_INTR_APIC); return (0); } static void madt_register(void *dummy __unused) { apic_register_enumerator(&madt_enumerator); } SYSINIT(madt_register, SI_SUB_TUNABLES - 1, SI_ORDER_FIRST, madt_register, NULL) /* * Call the handler routine for each entry in the MADT table. */ static void madt_walk_table(madt_entry_handler *handler, void *arg) { APIC_HEADER *entry; u_char *p, *end; end = (u_char *)(madt) + madt->Header.Length; for (p = (u_char *)(madt + 1); p < end; ) { entry = (APIC_HEADER *)p; handler(entry, arg); p += entry->Length; } } static void madt_probe_cpus_handler(APIC_HEADER *entry, void *arg) { PROCESSOR_APIC *proc; struct lapic_info *la; switch (entry->Type) { case APIC_PROC: /* * The MADT does not include a BSP flag, so we have to * let the MP code figure out which CPU is the BSP on * its own. */ proc = (PROCESSOR_APIC *)entry; if (bootverbose) printf("MADT: Found CPU APIC ID %d ACPI ID %d: %s\n", proc->LocalApicId, proc->ProcessorApicId, proc->ProcessorEnabled ? "enabled" : "disabled"); if (proc->ProcessorApicId > NLAPICS) panic("%s: CPU ID %d too high", __func__, proc->ProcessorApicId); la = &lapics[proc->ProcessorApicId]; KASSERT(la->la_present == 0, ("Duplicate local ACPI ID %d", proc->ProcessorApicId)); la->la_present = 1; la->la_apic_id = proc->LocalApicId; if (proc->ProcessorEnabled) { la->la_enabled = 1; lapic_create(proc->LocalApicId, 0); } break; } } /* * Add an I/O APIC from an entry in the table. */ static void madt_parse_apics(APIC_HEADER *entry, void *arg __unused) { IO_APIC *apic; switch (entry->Type) { case APIC_IO: apic = (IO_APIC *)entry; if (bootverbose) printf("MADT: Found IO APIC ID %d, Vector %d at %p\n", apic->IoApicId, apic->Vector, (void *)apic->IoApicAddress); if (apic->IoApicId >= NIOAPICS) panic("%s: I/O APIC ID %d too high", __func__, apic->IoApicId); if (ioapics[apic->IoApicId].io_apic != NULL) panic("%s: Double APIC ID %d", __func__, apic->IoApicId); ioapics[apic->IoApicId].io_apic = ioapic_create( (uintptr_t)apic->IoApicAddress, apic->IoApicId, apic->Vector); ioapics[apic->IoApicId].io_vector = apic->Vector; break; default: break; } } /* * Determine properties of an interrupt source. Note that for ACPI, * these are only used for ISA interrupts, so we assume ISA bus values * (Active Hi, Edge Triggered) for conforming values. */ static u_char interrupt_polarity(UINT16 Polarity) { switch (Polarity) { case APIC_POLARITY_CONFORM: case APIC_POLARITY_ACTIVEHI: return (1); case APIC_POLARITY_ACTIVELO: return (0); default: panic("Bogus Interrupt Polarity"); } } static u_char interrupt_trigger(UINT16 TriggerMode) { switch (TriggerMode) { case APIC_TRIGGER_CONFORM: case APIC_TRIGGER_EDGE: return (1); case APIC_TRIGGER_LEVEL: return (0); default: panic("Bogus Interrupt Trigger Mode"); } } /* * Find the local APIC ID associated with a given ACPI Processor ID. */ static int madt_find_cpu(u_int acpi_id, u_int *apic_id) { if (!lapics[acpi_id].la_present) return (ENOENT); *apic_id = lapics[acpi_id].la_apic_id; if (lapics[acpi_id].la_enabled) return (0); else return (ENXIO); } /* * Find the IO APIC and pin on that APIC associated with a given global * interrupt. */ static int madt_find_interrupt(int intr, void **apic, u_int *pin) { int i, best; best = -1; for (i = 0; i < NIOAPICS; i++) { if (ioapics[i].io_apic == NULL || ioapics[i].io_vector > intr) continue; if (best == -1 || ioapics[best].io_vector < ioapics[i].io_vector) best = i; } if (best == -1) return (ENOENT); *apic = ioapics[best].io_apic; *pin = intr - ioapics[best].io_vector; if (*pin > 32) printf("WARNING: Found intpin of %u for vector %d\n", *pin, intr); return (0); } /* * Parse an interrupt source override for an ISA interrupt. */ static void madt_parse_interrupt_override(INTERRUPT_SOURCE_OVERRIDE *intr) { void *new_ioapic, *old_ioapic; u_int new_pin, old_pin; if (bootverbose) printf("MADT: intr override: source %u, irq %u\n", intr->Source, intr->GlobalSystemInterrupt); KASSERT(intr->Bus == 0, ("bus for interrupt overrides must be zero")); if (madt_find_interrupt(intr->GlobalSystemInterrupt, &new_ioapic, &new_pin) != 0) { printf("MADT: Could not find APIC for vector %d (IRQ %d)\n", intr->GlobalSystemInterrupt, intr->Source); return; } if (intr->Source != intr->GlobalSystemInterrupt) { ioapic_remap_vector(new_ioapic, new_pin, intr->Source); if (madt_find_interrupt(intr->Source, &old_ioapic, &old_pin) != 0) printf("MADT: Could not find APIC for source IRQ %d\n", intr->Source); else ioapic_disable_pin(old_ioapic, old_pin); } ioapic_set_triggermode(new_ioapic, new_pin, interrupt_trigger(intr->TriggerMode)); ioapic_set_polarity(new_ioapic, new_pin, interrupt_polarity(intr->Polarity)); } /* * Parse an entry for an NMI routed to an IO APIC. */ static void madt_parse_nmi(NMI *nmi) { void *ioapic; u_int pin; if (madt_find_interrupt(nmi->GlobalSystemInterrupt, &ioapic, &pin) != 0) { printf("MADT: Could not find APIC for vector %d\n", nmi->GlobalSystemInterrupt); return; } ioapic_set_nmi(ioapic, pin); if (nmi->TriggerMode != APIC_TRIGGER_CONFORM) ioapic_set_triggermode(ioapic, pin, interrupt_trigger(nmi->TriggerMode)); if (nmi->Polarity != APIC_TRIGGER_CONFORM) ioapic_set_polarity(ioapic, pin, interrupt_polarity(nmi->Polarity)); } /* * Parse an entry for an NMI routed to a local APIC LVT pin. */ static void madt_parse_local_nmi(LAPIC_NMI *nmi) { u_int apic_id, pin; if (nmi->ProcessorApicId == 0xff) apic_id = APIC_ID_ALL; else if (madt_find_cpu(nmi->ProcessorApicId, &apic_id) != 0) { if (bootverbose) printf("MADT: Ignoring local NMI routed to ACPI CPU %u\n", nmi->ProcessorApicId); return; } if (nmi->LINTPin == 0) pin = LVT_LINT0; else pin = LVT_LINT1; lapic_set_lvt_mode(apic_id, pin, APIC_LVT_DM_NMI); if (nmi->TriggerMode != APIC_TRIGGER_CONFORM) lapic_set_lvt_triggermode(apic_id, pin, interrupt_trigger(nmi->TriggerMode)); if (nmi->Polarity != APIC_POLARITY_CONFORM) lapic_set_lvt_polarity(apic_id, pin, interrupt_polarity(nmi->Polarity)); } /* * Parse interrupt entries. */ static void madt_parse_ints(APIC_HEADER *entry, void *arg __unused) { switch (entry->Type) { case APIC_INTERRUPT_SOURCE_OVERRIDE: madt_parse_interrupt_override( (INTERRUPT_SOURCE_OVERRIDE *)entry); break; case APIC_NMI: madt_parse_nmi((NMI *)entry); break; case APIC_LOCAL_APIC_NMI: madt_parse_local_nmi((LAPIC_NMI *)entry); break; } } /* * Setup per-CPU ACPI IDs. */ static void madt_set_ids(void *dummy) { struct pcpu *pc; u_int i, j; if (madt == NULL) return; for (i = 0; i < MAXCPU; i++) { if (CPU_ABSENT(i)) continue; pc = pcpu_find(i); KASSERT(pc != NULL, ("no pcpu data for CPU %d", i)); for (j = 0; j < NLAPICS + 1; j++) { if (!lapics[j].la_present || !lapics[j].la_enabled) continue; if (lapics[j].la_apic_id == pc->pc_apic_id) { pc->pc_acpi_id = j; if (bootverbose) printf("APIC: CPU %u has ACPI ID %u\n", i, j); break; } } if (j == NLAPICS + 1) panic("Unable to find ACPI ID for CPU %d", i); } } SYSINIT(madt_set_ids, SI_SUB_CPU, SI_ORDER_ANY, madt_set_ids, NULL)