/*- * Copyright (c) 1990 The Regents of the University of California. * Copyright (c) 2010 Alexander Motin * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz and Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)clock.c 7.2 (Berkeley) 5/12/91 */ #include __FBSDID("$FreeBSD$"); /* * Routines to handle clock hardware. */ #include "opt_clock.h" #include "opt_isa.h" #include "opt_mca.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PC98 #include #else #include #endif #ifdef DEV_ISA #ifdef PC98 #include #else #include #endif #include #endif #ifdef DEV_MCA #include #endif int clkintr_pending; #ifndef TIMER_FREQ #ifdef PC98 #define TIMER_FREQ 2457600 #else #define TIMER_FREQ 1193182 #endif #endif u_int i8254_freq = TIMER_FREQ; TUNABLE_INT("hw.i8254.freq", &i8254_freq); int i8254_max_count; static int i8254_timecounter = 1; struct mtx clock_lock; static struct intsrc *i8254_intsrc; static uint16_t i8254_lastcount; static uint16_t i8254_offset; static int (*i8254_pending)(struct intsrc *); static int i8254_ticked; struct attimer_softc { int intr_en; int port_rid, intr_rid; struct resource *port_res; struct resource *intr_res; #ifdef PC98 int port_rid2; struct resource *port_res2; #endif void *intr_handler; struct timecounter tc; struct eventtimer et; int mode; #define MODE_STOP 0 #define MODE_PERIODIC 1 #define MODE_ONESHOT 2 uint32_t period; }; static struct attimer_softc *attimer_sc = NULL; static int timer0_period = -2; static int timer0_mode = 0xffff; static int timer0_last = 0xffff; /* Values for timerX_state: */ #define RELEASED 0 #define RELEASE_PENDING 1 #define ACQUIRED 2 #define ACQUIRE_PENDING 3 static u_char timer2_state; static unsigned i8254_get_timecount(struct timecounter *tc); static void set_i8254_freq(int mode, uint32_t period); void clock_init(void) { /* Init the clock lock */ mtx_init(&clock_lock, "clk", NULL, MTX_SPIN | MTX_NOPROFILE); /* Init the clock in order to use DELAY */ init_ops.early_clock_source_init(); } static int clkintr(void *arg) { struct attimer_softc *sc = (struct attimer_softc *)arg; if (i8254_timecounter && sc->period != 0) { mtx_lock_spin(&clock_lock); if (i8254_ticked) i8254_ticked = 0; else { i8254_offset += i8254_max_count; i8254_lastcount = 0; } clkintr_pending = 0; mtx_unlock_spin(&clock_lock); } if (sc->et.et_active && sc->mode != MODE_STOP) sc->et.et_event_cb(&sc->et, sc->et.et_arg); #ifdef DEV_MCA /* Reset clock interrupt by asserting bit 7 of port 0x61 */ if (MCA_system) outb(0x61, inb(0x61) | 0x80); #endif return (FILTER_HANDLED); } int timer_spkr_acquire(void) { int mode; #ifdef PC98 mode = TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT; #else mode = TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT; #endif if (timer2_state != RELEASED) return (-1); timer2_state = ACQUIRED; /* * This access to the timer registers is as atomic as possible * because it is a single instruction. We could do better if we * knew the rate. Use of splclock() limits glitches to 10-100us, * and this is probably good enough for timer2, so we aren't as * careful with it as with timer0. */ #ifdef PC98 outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f)); #else outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f)); #endif ppi_spkr_on(); /* enable counter2 output to speaker */ return (0); } int timer_spkr_release(void) { if (timer2_state != ACQUIRED) return (-1); timer2_state = RELEASED; #ifdef PC98 outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT); #else outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT); #endif ppi_spkr_off(); /* disable counter2 output to speaker */ return (0); } void timer_spkr_setfreq(int freq) { freq = i8254_freq / freq; mtx_lock_spin(&clock_lock); #ifdef PC98 outb(TIMER_CNTR1, freq & 0xff); outb(TIMER_CNTR1, freq >> 8); #else outb(TIMER_CNTR2, freq & 0xff); outb(TIMER_CNTR2, freq >> 8); #endif mtx_unlock_spin(&clock_lock); } static int getit(void) { int high, low; mtx_lock_spin(&clock_lock); /* Select timer0 and latch counter value. */ outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); low = inb(TIMER_CNTR0); high = inb(TIMER_CNTR0); mtx_unlock_spin(&clock_lock); return ((high << 8) | low); } /* * Wait "n" microseconds. * Relies on timer 1 counting down from (i8254_freq / hz) * Note: timer had better have been programmed before this is first used! */ void i8254_delay(int n) { int delta, prev_tick, tick, ticks_left; #ifdef DELAYDEBUG int getit_calls = 1; int n1; static int state = 0; if (state == 0) { state = 1; for (n1 = 1; n1 <= 10000000; n1 *= 10) DELAY(n1); state = 2; } if (state == 1) printf("DELAY(%d)...", n); #endif /* * Read the counter first, so that the rest of the setup overhead is * counted. Guess the initial overhead is 20 usec (on most systems it * takes about 1.5 usec for each of the i/o's in getit(). The loop * takes about 6 usec on a 486/33 and 13 usec on a 386/20. The * multiplications and divisions to scale the count take a while). * * However, if ddb is active then use a fake counter since reading * the i8254 counter involves acquiring a lock. ddb must not do * locking for many reasons, but it calls here for at least atkbd * input. */ #ifdef KDB if (kdb_active) prev_tick = 1; else #endif prev_tick = getit(); n -= 0; /* XXX actually guess no initial overhead */ /* * Calculate (n * (i8254_freq / 1e6)) without using floating point * and without any avoidable overflows. */ if (n <= 0) ticks_left = 0; else if (n < 256) /* * Use fixed point to avoid a slow division by 1000000. * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest. * 2^15 is the first power of 2 that gives exact results * for n between 0 and 256. */ ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15; else /* * Don't bother using fixed point, although gcc-2.7.2 * generates particularly poor code for the long long * division, since even the slow way will complete long * before the delay is up (unless we're interrupted). */ ticks_left = ((u_int)n * (long long)i8254_freq + 999999) / 1000000; while (ticks_left > 0) { #ifdef KDB if (kdb_active) { #ifdef PC98 outb(0x5f, 0); #else inb(0x84); #endif tick = prev_tick - 1; if (tick <= 0) tick = i8254_max_count; } else #endif tick = getit(); #ifdef DELAYDEBUG ++getit_calls; #endif delta = prev_tick - tick; prev_tick = tick; if (delta < 0) { delta += i8254_max_count; /* * Guard against i8254_max_count being wrong. * This shouldn't happen in normal operation, * but it may happen if set_i8254_freq() is * traced. */ if (delta < 0) delta = 0; } ticks_left -= delta; } #ifdef DELAYDEBUG if (state == 1) printf(" %d calls to getit() at %d usec each\n", getit_calls, (n + 5) / getit_calls); #endif } static void set_i8254_freq(int mode, uint32_t period) { int new_count, new_mode; mtx_lock_spin(&clock_lock); if (mode == MODE_STOP) { if (i8254_timecounter) { mode = MODE_PERIODIC; new_count = 0x10000; } else new_count = -1; } else { new_count = min(((uint64_t)i8254_freq * period + 0x80000000LLU) >> 32, 0x10000); } if (new_count == timer0_period) goto out; i8254_max_count = ((new_count & ~0xffff) != 0) ? 0xffff : new_count; timer0_period = (mode == MODE_PERIODIC) ? new_count : -1; switch (mode) { case MODE_STOP: new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT; outb(TIMER_MODE, new_mode); outb(TIMER_CNTR0, 0); outb(TIMER_CNTR0, 0); break; case MODE_PERIODIC: new_mode = TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT; outb(TIMER_MODE, new_mode); outb(TIMER_CNTR0, new_count & 0xff); outb(TIMER_CNTR0, new_count >> 8); break; case MODE_ONESHOT: if (new_count < 256 && timer0_last < 256) { new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_LSB; if (new_mode != timer0_mode) outb(TIMER_MODE, new_mode); outb(TIMER_CNTR0, new_count & 0xff); break; } new_mode = TIMER_SEL0 | TIMER_INTTC | TIMER_16BIT; if (new_mode != timer0_mode) outb(TIMER_MODE, new_mode); outb(TIMER_CNTR0, new_count & 0xff); outb(TIMER_CNTR0, new_count >> 8); break; default: panic("set_i8254_freq: unknown operational mode"); } timer0_mode = new_mode; timer0_last = new_count; out: mtx_unlock_spin(&clock_lock); } static void i8254_restore(void) { timer0_period = -2; timer0_mode = 0xffff; timer0_last = 0xffff; if (attimer_sc != NULL) set_i8254_freq(attimer_sc->mode, attimer_sc->period); else set_i8254_freq(MODE_STOP, 0); } #ifndef __amd64__ /* * Restore all the timers non-atomically (XXX: should be atomically). * * This function is called from pmtimer_resume() to restore all the timers. * This should not be necessary, but there are broken laptops that do not * restore all the timers on resume. The APM spec was at best vague on the * subject. * pmtimer is used only with the old APM power management, and not with * acpi, which is required for amd64, so skip it in that case. */ void timer_restore(void) { i8254_restore(); /* restore i8254_freq and hz */ #ifndef PC98 atrtc_restore(); /* reenable RTC interrupts */ #endif } #endif /* This is separate from startrtclock() so that it can be called early. */ void i8254_init(void) { #ifdef PC98 if (pc98_machine_type & M_8M) i8254_freq = 1996800L; /* 1.9968 MHz */ #endif set_i8254_freq(MODE_STOP, 0); } void startrtclock() { init_TSC(); } void cpu_initclocks(void) { cpu_initclocks_bsp(); } static int sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS) { int error; u_int freq; /* * Use `i8254' instead of `timer' in external names because `timer' * is too generic. Should use it everywhere. */ freq = i8254_freq; error = sysctl_handle_int(oidp, &freq, 0, req); if (error == 0 && req->newptr != NULL) { i8254_freq = freq; if (attimer_sc != NULL) { set_i8254_freq(attimer_sc->mode, attimer_sc->period); attimer_sc->tc.tc_frequency = freq; } else { set_i8254_freq(MODE_STOP, 0); } } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "i8254 timer frequency"); static unsigned i8254_get_timecount(struct timecounter *tc) { device_t dev = (device_t)tc->tc_priv; struct attimer_softc *sc = device_get_softc(dev); register_t flags; uint16_t count; u_int high, low; if (sc->period == 0) return (i8254_max_count - getit()); #ifdef __amd64__ flags = read_rflags(); #else flags = read_eflags(); #endif mtx_lock_spin(&clock_lock); /* Select timer0 and latch counter value. */ outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); low = inb(TIMER_CNTR0); high = inb(TIMER_CNTR0); count = i8254_max_count - ((high << 8) | low); if (count < i8254_lastcount || (!i8254_ticked && (clkintr_pending || ((count < 20 || (!(flags & PSL_I) && count < i8254_max_count / 2u)) && i8254_pending != NULL && i8254_pending(i8254_intsrc))))) { i8254_ticked = 1; i8254_offset += i8254_max_count; } i8254_lastcount = count; count += i8254_offset; mtx_unlock_spin(&clock_lock); return (count); } static int attimer_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { device_t dev = (device_t)et->et_priv; struct attimer_softc *sc = device_get_softc(dev); if (period != 0) { sc->mode = MODE_PERIODIC; sc->period = period; } else { sc->mode = MODE_ONESHOT; sc->period = first; } if (!sc->intr_en) { i8254_intsrc->is_pic->pic_enable_source(i8254_intsrc); sc->intr_en = 1; } set_i8254_freq(sc->mode, sc->period); return (0); } static int attimer_stop(struct eventtimer *et) { device_t dev = (device_t)et->et_priv; struct attimer_softc *sc = device_get_softc(dev); sc->mode = MODE_STOP; sc->period = 0; set_i8254_freq(sc->mode, sc->period); return (0); } #ifdef DEV_ISA /* * Attach to the ISA PnP descriptors for the timer */ static struct isa_pnp_id attimer_ids[] = { { 0x0001d041 /* PNP0100 */, "AT timer" }, { 0 } }; #ifdef PC98 static void pc98_alloc_resource(device_t dev) { static bus_addr_t iat1[] = {0, 2, 4, 6}; static bus_addr_t iat2[] = {0, 4}; struct attimer_softc *sc; sc = device_get_softc(dev); sc->port_rid = 0; bus_set_resource(dev, SYS_RES_IOPORT, sc->port_rid, IO_TIMER1, 1); sc->port_res = isa_alloc_resourcev(dev, SYS_RES_IOPORT, &sc->port_rid, iat1, 4, RF_ACTIVE); if (sc->port_res == NULL) device_printf(dev, "Warning: Couldn't map I/O.\n"); else isa_load_resourcev(sc->port_res, iat1, 4); sc->port_rid2 = 4; bus_set_resource(dev, SYS_RES_IOPORT, sc->port_rid2, TIMER_CNTR1, 1); sc->port_res2 = isa_alloc_resourcev(dev, SYS_RES_IOPORT, &sc->port_rid2, iat2, 2, RF_ACTIVE); if (sc->port_res2 == NULL) device_printf(dev, "Warning: Couldn't map I/O.\n"); else isa_load_resourcev(sc->port_res2, iat2, 2); } static void pc98_release_resource(device_t dev) { struct attimer_softc *sc; sc = device_get_softc(dev); if (sc->port_res) bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid, sc->port_res); if (sc->port_res2) bus_release_resource(dev, SYS_RES_IOPORT, sc->port_rid2, sc->port_res2); } #endif static int attimer_probe(device_t dev) { int result; result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids); /* ENOENT means no PnP-ID, device is hinted. */ if (result == ENOENT) { device_set_desc(dev, "AT timer"); #ifdef PC98 /* To print resources correctly. */ pc98_alloc_resource(dev); pc98_release_resource(dev); #endif return (BUS_PROBE_LOW_PRIORITY); } return (result); } static int attimer_attach(device_t dev) { struct attimer_softc *sc; rman_res_t s; int i; attimer_sc = sc = device_get_softc(dev); bzero(sc, sizeof(struct attimer_softc)); #ifdef PC98 pc98_alloc_resource(dev); #else if (!(sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid, IO_TIMER1, IO_TIMER1 + 3, 4, RF_ACTIVE))) device_printf(dev,"Warning: Couldn't map I/O.\n"); #endif i8254_intsrc = intr_lookup_source(0); if (i8254_intsrc != NULL) i8254_pending = i8254_intsrc->is_pic->pic_source_pending; resource_int_value(device_get_name(dev), device_get_unit(dev), "timecounter", &i8254_timecounter); set_i8254_freq(MODE_STOP, 0); if (i8254_timecounter) { sc->tc.tc_get_timecount = i8254_get_timecount; sc->tc.tc_counter_mask = 0xffff; sc->tc.tc_frequency = i8254_freq; sc->tc.tc_name = "i8254"; sc->tc.tc_quality = 0; sc->tc.tc_priv = dev; tc_init(&sc->tc); } if (resource_int_value(device_get_name(dev), device_get_unit(dev), "clock", &i) != 0 || i != 0) { sc->intr_rid = 0; while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid, &s, NULL) == 0 && s != 0) sc->intr_rid++; if (!(sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->intr_rid, 0, 0, 1, RF_ACTIVE))) { device_printf(dev,"Can't map interrupt.\n"); return (0); } /* Dirty hack, to make bus_setup_intr to not enable source. */ i8254_intsrc->is_handlers++; if ((bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE | INTR_TYPE_CLK, (driver_filter_t *)clkintr, NULL, sc, &sc->intr_handler))) { device_printf(dev, "Can't setup interrupt.\n"); i8254_intsrc->is_handlers--; return (0); } i8254_intsrc->is_handlers--; i8254_intsrc->is_pic->pic_enable_intr(i8254_intsrc); sc->et.et_name = "i8254"; sc->et.et_flags = ET_FLAGS_PERIODIC; if (!i8254_timecounter) sc->et.et_flags |= ET_FLAGS_ONESHOT; sc->et.et_quality = 100; sc->et.et_frequency = i8254_freq; sc->et.et_min_period = (0x0002LLU << 32) / i8254_freq; sc->et.et_max_period = (0xfffeLLU << 32) / i8254_freq; sc->et.et_start = attimer_start; sc->et.et_stop = attimer_stop; sc->et.et_priv = dev; et_register(&sc->et); } return(0); } static int attimer_resume(device_t dev) { i8254_restore(); return (0); } static device_method_t attimer_methods[] = { /* Device interface */ DEVMETHOD(device_probe, attimer_probe), DEVMETHOD(device_attach, attimer_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, attimer_resume), { 0, 0 } }; static driver_t attimer_driver = { "attimer", attimer_methods, sizeof(struct attimer_softc), }; static devclass_t attimer_devclass; DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0); DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0); #endif /* DEV_ISA */