/* * Copyright (c) 1982, 1986, 1989, 1990, 1993 * The Regents of the University of California. All rights reserved. * * sendfile(2) and related extensions: * Copyright (c) 1998, David Greenman. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94 * $Id: uipc_syscalls.c,v 1.50 1999/01/21 08:29:04 dillon Exp $ */ #include "opt_compat.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include static void sf_buf_init(void *arg); SYSINIT(sock_sf, SI_SUB_MBUF, SI_ORDER_ANY, sf_buf_init, NULL) static struct sf_buf *sf_buf_alloc(void); static void sf_buf_ref(caddr_t addr, u_int size); static void sf_buf_free(caddr_t addr, u_int size); static int sendit __P((struct proc *p, int s, struct msghdr *mp, int flags)); static int recvit __P((struct proc *p, int s, struct msghdr *mp, caddr_t namelenp)); static int accept1 __P((struct proc *p, struct accept_args *uap, int compat)); static int getsockname1 __P((struct proc *p, struct getsockname_args *uap, int compat)); static int getpeername1 __P((struct proc *p, struct getpeername_args *uap, int compat)); static SLIST_HEAD(, sf_buf) sf_freelist; static vm_offset_t sf_base; static struct sf_buf *sf_bufs; static int sf_buf_alloc_want; /* * System call interface to the socket abstraction. */ #if defined(COMPAT_43) || defined(COMPAT_SUNOS) #define COMPAT_OLDSOCK #endif extern struct fileops socketops; int socket(p, uap) struct proc *p; register struct socket_args /* { int domain; int type; int protocol; } */ *uap; { struct filedesc *fdp = p->p_fd; struct socket *so; struct file *fp; int fd, error; error = falloc(p, &fp, &fd); if (error) return (error); fp->f_flag = FREAD|FWRITE; fp->f_type = DTYPE_SOCKET; fp->f_ops = &socketops; error = socreate(uap->domain, &so, uap->type, uap->protocol, p); if (error) { fdp->fd_ofiles[fd] = 0; ffree(fp); } else { fp->f_data = (caddr_t)so; p->p_retval[0] = fd; } return (error); } /* ARGSUSED */ int bind(p, uap) struct proc *p; register struct bind_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct file *fp; struct sockaddr *sa; int error; error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); error = getsockaddr(&sa, uap->name, uap->namelen); if (error) return (error); error = sobind((struct socket *)fp->f_data, sa, p); FREE(sa, M_SONAME); return (error); } /* ARGSUSED */ int listen(p, uap) struct proc *p; register struct listen_args /* { int s; int backlog; } */ *uap; { struct file *fp; int error; error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); return (solisten((struct socket *)fp->f_data, uap->backlog, p)); } static int accept1(p, uap, compat) struct proc *p; register struct accept_args /* { int s; caddr_t name; int *anamelen; } */ *uap; int compat; { struct file *fp; struct sockaddr *sa; int namelen, error, s; struct socket *head, *so; int fd; short fflag; /* type must match fp->f_flag */ if (uap->name) { error = copyin((caddr_t)uap->anamelen, (caddr_t)&namelen, sizeof (namelen)); if(error) return (error); } error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); s = splnet(); head = (struct socket *)fp->f_data; if ((head->so_options & SO_ACCEPTCONN) == 0) { splx(s); return (EINVAL); } if ((head->so_state & SS_NBIO) && head->so_comp.tqh_first == NULL) { splx(s); return (EWOULDBLOCK); } while (head->so_comp.tqh_first == NULL && head->so_error == 0) { if (head->so_state & SS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = tsleep((caddr_t)&head->so_timeo, PSOCK | PCATCH, "accept", 0); if (error) { splx(s); return (error); } } if (head->so_error) { error = head->so_error; head->so_error = 0; splx(s); return (error); } /* * At this point we know that there is at least one connection * ready to be accepted. Remove it from the queue prior to * allocating the file descriptor for it since falloc() may * block allowing another process to accept the connection * instead. */ so = head->so_comp.tqh_first; TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; fflag = fp->f_flag; error = falloc(p, &fp, &fd); if (error) { /* * Probably ran out of file descriptors. Put the * unaccepted connection back onto the queue and * do another wakeup so some other process might * have a chance at it. */ TAILQ_INSERT_HEAD(&head->so_comp, so, so_list); head->so_qlen++; wakeup_one(&head->so_timeo); splx(s); return (error); } else p->p_retval[0] = fd; so->so_state &= ~SS_COMP; so->so_head = NULL; if (head->so_sigio != NULL) fsetown(fgetown(head->so_sigio), &so->so_sigio); fp->f_type = DTYPE_SOCKET; fp->f_flag = fflag; fp->f_ops = &socketops; fp->f_data = (caddr_t)so; sa = 0; (void) soaccept(so, &sa); if (sa == 0) { namelen = 0; if (uap->name) goto gotnoname; return 0; } if (uap->name) { /* check sa_len before it is destroyed */ if (namelen > sa->sa_len) namelen = sa->sa_len; #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, (caddr_t)uap->name, (u_int)namelen); if (!error) gotnoname: error = copyout((caddr_t)&namelen, (caddr_t)uap->anamelen, sizeof (*uap->anamelen)); } FREE(sa, M_SONAME); splx(s); return (error); } int accept(p, uap) struct proc *p; struct accept_args *uap; { return (accept1(p, uap, 0)); } #ifdef COMPAT_OLDSOCK int oaccept(p, uap) struct proc *p; struct accept_args *uap; { return (accept1(p, uap, 1)); } #endif /* COMPAT_OLDSOCK */ /* ARGSUSED */ int connect(p, uap) struct proc *p; register struct connect_args /* { int s; caddr_t name; int namelen; } */ *uap; { struct file *fp; register struct socket *so; struct sockaddr *sa; int error, s; error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); so = (struct socket *)fp->f_data; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) return (EALREADY); error = getsockaddr(&sa, uap->name, uap->namelen); if (error) return (error); error = soconnect(so, sa, p); if (error) goto bad; if ((so->so_state & SS_NBIO) && (so->so_state & SS_ISCONNECTING)) { FREE(sa, M_SONAME); return (EINPROGRESS); } s = splnet(); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = tsleep((caddr_t)&so->so_timeo, PSOCK | PCATCH, "connec", 0); if (error) break; } if (error == 0) { error = so->so_error; so->so_error = 0; } splx(s); bad: so->so_state &= ~SS_ISCONNECTING; FREE(sa, M_SONAME); if (error == ERESTART) error = EINTR; return (error); } int socketpair(p, uap) struct proc *p; register struct socketpair_args /* { int domain; int type; int protocol; int *rsv; } */ *uap; { register struct filedesc *fdp = p->p_fd; struct file *fp1, *fp2; struct socket *so1, *so2; int fd, error, sv[2]; error = socreate(uap->domain, &so1, uap->type, uap->protocol, p); if (error) return (error); error = socreate(uap->domain, &so2, uap->type, uap->protocol, p); if (error) goto free1; error = falloc(p, &fp1, &fd); if (error) goto free2; sv[0] = fd; fp1->f_flag = FREAD|FWRITE; fp1->f_type = DTYPE_SOCKET; fp1->f_ops = &socketops; fp1->f_data = (caddr_t)so1; error = falloc(p, &fp2, &fd); if (error) goto free3; fp2->f_flag = FREAD|FWRITE; fp2->f_type = DTYPE_SOCKET; fp2->f_ops = &socketops; fp2->f_data = (caddr_t)so2; sv[1] = fd; error = soconnect2(so1, so2); if (error) goto free4; if (uap->type == SOCK_DGRAM) { /* * Datagram socket connection is asymmetric. */ error = soconnect2(so2, so1); if (error) goto free4; } error = copyout((caddr_t)sv, (caddr_t)uap->rsv, 2 * sizeof (int)); return (error); free4: ffree(fp2); fdp->fd_ofiles[sv[1]] = 0; free3: ffree(fp1); fdp->fd_ofiles[sv[0]] = 0; free2: (void)soclose(so2); free1: (void)soclose(so1); return (error); } static int sendit(p, s, mp, flags) register struct proc *p; int s; register struct msghdr *mp; int flags; { struct file *fp; struct uio auio; register struct iovec *iov; register int i; struct mbuf *control; struct sockaddr *to; int len, error; struct socket *so; #ifdef KTRACE struct iovec *ktriov = NULL; #endif error = getsock(p->p_fd, s, &fp); if (error) return (error); auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_WRITE; auio.uio_procp = p; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) return (EINVAL); } if (mp->msg_name) { error = getsockaddr(&to, mp->msg_name, mp->msg_namelen); if (error) return (error); } else to = 0; if (mp->msg_control) { if (mp->msg_controllen < sizeof(struct cmsghdr) #ifdef COMPAT_OLDSOCK && mp->msg_flags != MSG_COMPAT #endif ) { error = EINVAL; goto bad; } error = sockargs(&control, mp->msg_control, mp->msg_controllen, MT_CONTROL); if (error) goto bad; #ifdef COMPAT_OLDSOCK if (mp->msg_flags == MSG_COMPAT) { register struct cmsghdr *cm; M_PREPEND(control, sizeof(*cm), M_WAIT); if (control == 0) { error = ENOBUFS; goto bad; } else { cm = mtod(control, struct cmsghdr *); cm->cmsg_len = control->m_len; cm->cmsg_level = SOL_SOCKET; cm->cmsg_type = SCM_RIGHTS; } } #endif } else control = 0; #ifdef KTRACE if (KTRPOINT(p, KTR_GENIO)) { int iovlen = auio.uio_iovcnt * sizeof (struct iovec); MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK); bcopy((caddr_t)auio.uio_iov, (caddr_t)ktriov, iovlen); } #endif len = auio.uio_resid; so = (struct socket *)fp->f_data; error = so->so_proto->pr_usrreqs->pru_sosend(so, to, &auio, 0, control, flags, p); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; if (error == EPIPE) psignal(p, SIGPIPE); } if (error == 0) p->p_retval[0] = len - auio.uio_resid; #ifdef KTRACE if (ktriov != NULL) { if (error == 0) ktrgenio(p->p_tracep, s, UIO_WRITE, ktriov, p->p_retval[0], error); FREE(ktriov, M_TEMP); } #endif bad: if (to) FREE(to, M_SONAME); return (error); } int sendto(p, uap) struct proc *p; register struct sendto_args /* { int s; caddr_t buf; size_t len; int flags; caddr_t to; int tolen; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = uap->to; msg.msg_namelen = uap->tolen; msg.msg_iov = &aiov; msg.msg_iovlen = 1; msg.msg_control = 0; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif aiov.iov_base = uap->buf; aiov.iov_len = uap->len; return (sendit(p, uap->s, &msg, uap->flags)); } #ifdef COMPAT_OLDSOCK int osend(p, uap) struct proc *p; register struct osend_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = 0; return (sendit(p, uap->s, &msg, uap->flags)); } int osendmsg(p, uap) struct proc *p; register struct osendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *iov; int error; error = copyin(uap->msg, (caddr_t)&msg, sizeof (struct omsghdr)); if (error) return (error); if ((u_int)msg.msg_iovlen >= UIO_SMALLIOV) { if ((u_int)msg.msg_iovlen >= UIO_MAXIOV) return (EMSGSIZE); MALLOC(iov, struct iovec *, sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV, M_WAITOK); } else iov = aiov; error = copyin((caddr_t)msg.msg_iov, (caddr_t)iov, (unsigned)(msg.msg_iovlen * sizeof (struct iovec))); if (error) goto done; msg.msg_flags = MSG_COMPAT; msg.msg_iov = iov; error = sendit(p, uap->s, &msg, uap->flags); done: if (iov != aiov) FREE(iov, M_IOV); return (error); } #endif int sendmsg(p, uap) struct proc *p; register struct sendmsg_args /* { int s; caddr_t msg; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *iov; int error; error = copyin(uap->msg, (caddr_t)&msg, sizeof (msg)); if (error) return (error); if ((u_int)msg.msg_iovlen >= UIO_SMALLIOV) { if ((u_int)msg.msg_iovlen >= UIO_MAXIOV) return (EMSGSIZE); MALLOC(iov, struct iovec *, sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV, M_WAITOK); } else iov = aiov; if (msg.msg_iovlen && (error = copyin((caddr_t)msg.msg_iov, (caddr_t)iov, (unsigned)(msg.msg_iovlen * sizeof (struct iovec))))) goto done; msg.msg_iov = iov; #ifdef COMPAT_OLDSOCK msg.msg_flags = 0; #endif error = sendit(p, uap->s, &msg, uap->flags); done: if (iov != aiov) FREE(iov, M_IOV); return (error); } static int recvit(p, s, mp, namelenp) register struct proc *p; int s; register struct msghdr *mp; caddr_t namelenp; { struct file *fp; struct uio auio; register struct iovec *iov; register int i; int len, error; struct mbuf *m, *control = 0; caddr_t ctlbuf; struct socket *so; struct sockaddr *fromsa = 0; #ifdef KTRACE struct iovec *ktriov = NULL; #endif error = getsock(p->p_fd, s, &fp); if (error) return (error); auio.uio_iov = mp->msg_iov; auio.uio_iovcnt = mp->msg_iovlen; auio.uio_segflg = UIO_USERSPACE; auio.uio_rw = UIO_READ; auio.uio_procp = p; auio.uio_offset = 0; /* XXX */ auio.uio_resid = 0; iov = mp->msg_iov; for (i = 0; i < mp->msg_iovlen; i++, iov++) { if ((auio.uio_resid += iov->iov_len) < 0) return (EINVAL); } #ifdef KTRACE if (KTRPOINT(p, KTR_GENIO)) { int iovlen = auio.uio_iovcnt * sizeof (struct iovec); MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK); bcopy((caddr_t)auio.uio_iov, (caddr_t)ktriov, iovlen); } #endif len = auio.uio_resid; so = (struct socket *)fp->f_data; error = so->so_proto->pr_usrreqs->pru_soreceive(so, &fromsa, &auio, (struct mbuf **)0, mp->msg_control ? &control : (struct mbuf **)0, &mp->msg_flags); if (error) { if (auio.uio_resid != len && (error == ERESTART || error == EINTR || error == EWOULDBLOCK)) error = 0; } #ifdef KTRACE if (ktriov != NULL) { if (error == 0) ktrgenio(p->p_tracep, s, UIO_READ, ktriov, len - auio.uio_resid, error); FREE(ktriov, M_TEMP); } #endif if (error) goto out; p->p_retval[0] = len - auio.uio_resid; if (mp->msg_name) { len = mp->msg_namelen; if (len <= 0 || fromsa == 0) len = 0; else { #ifndef MIN #define MIN(a,b) ((a)>(b)?(b):(a)) #endif /* save sa_len before it is destroyed by MSG_COMPAT */ len = MIN(len, fromsa->sa_len); #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) ((struct osockaddr *)fromsa)->sa_family = fromsa->sa_family; #endif error = copyout(fromsa, (caddr_t)mp->msg_name, (unsigned)len); if (error) goto out; } mp->msg_namelen = len; if (namelenp && (error = copyout((caddr_t)&len, namelenp, sizeof (int)))) { #ifdef COMPAT_OLDSOCK if (mp->msg_flags & MSG_COMPAT) error = 0; /* old recvfrom didn't check */ else #endif goto out; } } if (mp->msg_control) { #ifdef COMPAT_OLDSOCK /* * We assume that old recvmsg calls won't receive access * rights and other control info, esp. as control info * is always optional and those options didn't exist in 4.3. * If we receive rights, trim the cmsghdr; anything else * is tossed. */ if (control && mp->msg_flags & MSG_COMPAT) { if (mtod(control, struct cmsghdr *)->cmsg_level != SOL_SOCKET || mtod(control, struct cmsghdr *)->cmsg_type != SCM_RIGHTS) { mp->msg_controllen = 0; goto out; } control->m_len -= sizeof (struct cmsghdr); control->m_data += sizeof (struct cmsghdr); } #endif len = mp->msg_controllen; m = control; mp->msg_controllen = 0; ctlbuf = (caddr_t) mp->msg_control; while (m && len > 0) { unsigned int tocopy; if (len >= m->m_len) tocopy = m->m_len; else { mp->msg_flags |= MSG_CTRUNC; tocopy = len; } if (error = copyout((caddr_t)mtod(m, caddr_t), ctlbuf, tocopy)) goto out; ctlbuf += tocopy; len -= tocopy; m = m->m_next; } mp->msg_controllen = ctlbuf - mp->msg_control; } out: if (fromsa) FREE(fromsa, M_SONAME); if (control) m_freem(control); return (error); } int recvfrom(p, uap) struct proc *p; register struct recvfrom_args /* { int s; caddr_t buf; size_t len; int flags; caddr_t from; int *fromlenaddr; } */ *uap; { struct msghdr msg; struct iovec aiov; int error; if (uap->fromlenaddr) { error = copyin((caddr_t)uap->fromlenaddr, (caddr_t)&msg.msg_namelen, sizeof (msg.msg_namelen)); if (error) return (error); } else msg.msg_namelen = 0; msg.msg_name = uap->from; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(p, uap->s, &msg, (caddr_t)uap->fromlenaddr)); } #ifdef COMPAT_OLDSOCK int orecvfrom(p, uap) struct proc *p; struct recvfrom_args *uap; { uap->flags |= MSG_COMPAT; return (recvfrom(p, uap)); } #endif #ifdef COMPAT_OLDSOCK int orecv(p, uap) struct proc *p; register struct orecv_args /* { int s; caddr_t buf; int len; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov; msg.msg_name = 0; msg.msg_namelen = 0; msg.msg_iov = &aiov; msg.msg_iovlen = 1; aiov.iov_base = uap->buf; aiov.iov_len = uap->len; msg.msg_control = 0; msg.msg_flags = uap->flags; return (recvit(p, uap->s, &msg, (caddr_t)0)); } /* * Old recvmsg. This code takes advantage of the fact that the old msghdr * overlays the new one, missing only the flags, and with the (old) access * rights where the control fields are now. */ int orecvmsg(p, uap) struct proc *p; register struct orecvmsg_args /* { int s; struct omsghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *iov; int error; error = copyin((caddr_t)uap->msg, (caddr_t)&msg, sizeof (struct omsghdr)); if (error) return (error); if ((u_int)msg.msg_iovlen >= UIO_SMALLIOV) { if ((u_int)msg.msg_iovlen >= UIO_MAXIOV) return (EMSGSIZE); MALLOC(iov, struct iovec *, sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV, M_WAITOK); } else iov = aiov; msg.msg_flags = uap->flags | MSG_COMPAT; error = copyin((caddr_t)msg.msg_iov, (caddr_t)iov, (unsigned)(msg.msg_iovlen * sizeof (struct iovec))); if (error) goto done; msg.msg_iov = iov; error = recvit(p, uap->s, &msg, (caddr_t)&uap->msg->msg_namelen); if (msg.msg_controllen && error == 0) error = copyout((caddr_t)&msg.msg_controllen, (caddr_t)&uap->msg->msg_accrightslen, sizeof (int)); done: if (iov != aiov) FREE(iov, M_IOV); return (error); } #endif int recvmsg(p, uap) struct proc *p; register struct recvmsg_args /* { int s; struct msghdr *msg; int flags; } */ *uap; { struct msghdr msg; struct iovec aiov[UIO_SMALLIOV], *uiov, *iov; register int error; error = copyin((caddr_t)uap->msg, (caddr_t)&msg, sizeof (msg)); if (error) return (error); if ((u_int)msg.msg_iovlen >= UIO_SMALLIOV) { if ((u_int)msg.msg_iovlen >= UIO_MAXIOV) return (EMSGSIZE); MALLOC(iov, struct iovec *, sizeof(struct iovec) * (u_int)msg.msg_iovlen, M_IOV, M_WAITOK); } else iov = aiov; #ifdef COMPAT_OLDSOCK msg.msg_flags = uap->flags &~ MSG_COMPAT; #else msg.msg_flags = uap->flags; #endif uiov = msg.msg_iov; msg.msg_iov = iov; error = copyin((caddr_t)uiov, (caddr_t)iov, (unsigned)(msg.msg_iovlen * sizeof (struct iovec))); if (error) goto done; error = recvit(p, uap->s, &msg, (caddr_t)0); if (!error) { msg.msg_iov = uiov; error = copyout((caddr_t)&msg, (caddr_t)uap->msg, sizeof(msg)); } done: if (iov != aiov) FREE(iov, M_IOV); return (error); } /* ARGSUSED */ int shutdown(p, uap) struct proc *p; register struct shutdown_args /* { int s; int how; } */ *uap; { struct file *fp; int error; error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); return (soshutdown((struct socket *)fp->f_data, uap->how)); } /* ARGSUSED */ int setsockopt(p, uap) struct proc *p; register struct setsockopt_args /* { int s; int level; int name; caddr_t val; int valsize; } */ *uap; { struct file *fp; struct sockopt sopt; int error; if (uap->val == 0 && uap->valsize != 0) return (EFAULT); if (uap->valsize < 0) return (EINVAL); error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = uap->level; sopt.sopt_name = uap->name; sopt.sopt_val = uap->val; sopt.sopt_valsize = uap->valsize; sopt.sopt_p = p; return (sosetopt((struct socket *)fp->f_data, &sopt)); } /* ARGSUSED */ int getsockopt(p, uap) struct proc *p; register struct getsockopt_args /* { int s; int level; int name; caddr_t val; int *avalsize; } */ *uap; { int valsize, error; struct file *fp; struct sockopt sopt; error = getsock(p->p_fd, uap->s, &fp); if (error) return (error); if (uap->val) { error = copyin((caddr_t)uap->avalsize, (caddr_t)&valsize, sizeof (valsize)); if (error) return (error); if (valsize < 0) return (EINVAL); } else valsize = 0; sopt.sopt_dir = SOPT_GET; sopt.sopt_level = uap->level; sopt.sopt_name = uap->name; sopt.sopt_val = uap->val; sopt.sopt_valsize = (size_t)valsize; /* checked non-negative above */ sopt.sopt_p = p; error = sogetopt((struct socket *)fp->f_data, &sopt); if (error == 0) { valsize = sopt.sopt_valsize; error = copyout((caddr_t)&valsize, (caddr_t)uap->avalsize, sizeof (valsize)); } return (error); } /* * Get socket name. */ /* ARGSUSED */ static int getsockname1(p, uap, compat) struct proc *p; register struct getsockname_args /* { int fdes; caddr_t asa; int *alen; } */ *uap; int compat; { struct file *fp; register struct socket *so; struct sockaddr *sa; int len, error; error = getsock(p->p_fd, uap->fdes, &fp); if (error) return (error); error = copyin((caddr_t)uap->alen, (caddr_t)&len, sizeof (len)); if (error) return (error); so = (struct socket *)fp->f_data; sa = 0; error = (*so->so_proto->pr_usrreqs->pru_sockaddr)(so, &sa); if (error) goto bad; if (sa == 0) { len = 0; goto gotnothing; } len = MIN(len, sa->sa_len); #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, (caddr_t)uap->asa, (u_int)len); if (error == 0) gotnothing: error = copyout((caddr_t)&len, (caddr_t)uap->alen, sizeof (len)); bad: if (sa) FREE(sa, M_SONAME); return (error); } int getsockname(p, uap) struct proc *p; struct getsockname_args *uap; { return (getsockname1(p, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetsockname(p, uap) struct proc *p; struct getsockname_args *uap; { return (getsockname1(p, uap, 1)); } #endif /* COMPAT_OLDSOCK */ /* * Get name of peer for connected socket. */ /* ARGSUSED */ static int getpeername1(p, uap, compat) struct proc *p; register struct getpeername_args /* { int fdes; caddr_t asa; int *alen; } */ *uap; int compat; { struct file *fp; register struct socket *so; struct sockaddr *sa; int len, error; error = getsock(p->p_fd, uap->fdes, &fp); if (error) return (error); so = (struct socket *)fp->f_data; if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) return (ENOTCONN); error = copyin((caddr_t)uap->alen, (caddr_t)&len, sizeof (len)); if (error) return (error); sa = 0; error = (*so->so_proto->pr_usrreqs->pru_peeraddr)(so, &sa); if (error) goto bad; if (sa == 0) { len = 0; goto gotnothing; } len = MIN(len, sa->sa_len); #ifdef COMPAT_OLDSOCK if (compat) ((struct osockaddr *)sa)->sa_family = sa->sa_family; #endif error = copyout(sa, (caddr_t)uap->asa, (u_int)len); if (error) goto bad; gotnothing: error = copyout((caddr_t)&len, (caddr_t)uap->alen, sizeof (len)); bad: if (sa) FREE(sa, M_SONAME); return (error); } int getpeername(p, uap) struct proc *p; struct getpeername_args *uap; { return (getpeername1(p, uap, 0)); } #ifdef COMPAT_OLDSOCK int ogetpeername(p, uap) struct proc *p; struct ogetpeername_args *uap; { /* XXX uap should have type `getpeername_args *' to begin with. */ return (getpeername1(p, (struct getpeername_args *)uap, 1)); } #endif /* COMPAT_OLDSOCK */ int sockargs(mp, buf, buflen, type) struct mbuf **mp; caddr_t buf; int buflen, type; { register struct sockaddr *sa; register struct mbuf *m; int error; if ((u_int)buflen > MLEN) { #ifdef COMPAT_OLDSOCK if (type == MT_SONAME && (u_int)buflen <= 112) buflen = MLEN; /* unix domain compat. hack */ else #endif return (EINVAL); } m = m_get(M_WAIT, type); if (m == NULL) return (ENOBUFS); m->m_len = buflen; error = copyin(buf, mtod(m, caddr_t), (u_int)buflen); if (error) (void) m_free(m); else { *mp = m; if (type == MT_SONAME) { sa = mtod(m, struct sockaddr *); #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = buflen; } } return (error); } int getsockaddr(namp, uaddr, len) struct sockaddr **namp; caddr_t uaddr; size_t len; { struct sockaddr *sa; int error; if (len > SOCK_MAXADDRLEN) return ENAMETOOLONG; MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK); error = copyin(uaddr, sa, len); if (error) { FREE(sa, M_SONAME); } else { #if defined(COMPAT_OLDSOCK) && BYTE_ORDER != BIG_ENDIAN if (sa->sa_family == 0 && sa->sa_len < AF_MAX) sa->sa_family = sa->sa_len; #endif sa->sa_len = len; *namp = sa; } return error; } int getsock(fdp, fdes, fpp) struct filedesc *fdp; int fdes; struct file **fpp; { register struct file *fp; if ((unsigned)fdes >= fdp->fd_nfiles || (fp = fdp->fd_ofiles[fdes]) == NULL) return (EBADF); if (fp->f_type != DTYPE_SOCKET) return (ENOTSOCK); *fpp = fp; return (0); } /* * Allocate a pool of sf_bufs (sendfile(2) or "super-fast" if you prefer. :-)) * XXX - The sf_buf functions are currently private to sendfile(2), so have * been made static, but may be useful in the future for doing zero-copy in * other parts of the networking code. */ static void sf_buf_init(void *arg) { int i; SLIST_INIT(&sf_freelist); sf_base = kmem_alloc_pageable(kernel_map, nsfbufs * PAGE_SIZE); sf_bufs = malloc(nsfbufs * sizeof(struct sf_buf), M_TEMP, M_NOWAIT); bzero(sf_bufs, nsfbufs * sizeof(struct sf_buf)); for (i = 0; i < nsfbufs; i++) { sf_bufs[i].kva = sf_base + i * PAGE_SIZE; SLIST_INSERT_HEAD(&sf_freelist, &sf_bufs[i], free_list); } } /* * Get an sf_buf from the freelist. Will block if none are available. */ static struct sf_buf * sf_buf_alloc() { struct sf_buf *sf; int s; s = splimp(); while ((sf = SLIST_FIRST(&sf_freelist)) == NULL) { sf_buf_alloc_want = 1; tsleep(&sf_freelist, PVM, "sfbufa", 0); } SLIST_REMOVE_HEAD(&sf_freelist, free_list); splx(s); sf->refcnt = 1; return (sf); } #define dtosf(x) (&sf_bufs[((uintptr_t)(x) - (uintptr_t)sf_base) >> PAGE_SHIFT]) static void sf_buf_ref(caddr_t addr, u_int size) { struct sf_buf *sf; sf = dtosf(addr); if (sf->refcnt == 0) panic("sf_buf_ref: referencing a free sf_buf"); sf->refcnt++; } /* * Lose a reference to an sf_buf. When none left, detach mapped page * and release resources back to the system. * * Must be called at splimp. */ static void sf_buf_free(caddr_t addr, u_int size) { struct sf_buf *sf; struct vm_page *m; int s; sf = dtosf(addr); if (sf->refcnt == 0) panic("sf_buf_free: freeing free sf_buf"); sf->refcnt--; if (sf->refcnt == 0) { pmap_qremove((vm_offset_t)addr, 1); m = sf->m; s = splvm(); vm_page_unwire(m, 0); /* * Check for the object going away on us. This can * happen since we don't hold a reference to it. * If so, we're responsible for freeing the page. */ if (m->wire_count == 0 && m->object == NULL) vm_page_free(m); splx(s); sf->m = NULL; SLIST_INSERT_HEAD(&sf_freelist, sf, free_list); if (sf_buf_alloc_want) { sf_buf_alloc_want = 0; wakeup(&sf_freelist); } } } /* * sendfile(2). * int sendfile(int fd, int s, off_t offset, size_t nbytes, * struct sf_hdtr *hdtr, off_t *sbytes, int flags) * * Send a file specified by 'fd' and starting at 'offset' to a socket * specified by 's'. Send only 'nbytes' of the file or until EOF if * nbytes == 0. Optionally add a header and/or trailer to the socket * output. If specified, write the total number of bytes sent into *sbytes. */ int sendfile(struct proc *p, struct sendfile_args *uap) { struct file *fp; struct filedesc *fdp = p->p_fd; struct vnode *vp; struct vm_object *obj; struct socket *so; struct mbuf *m; struct sf_buf *sf; struct vm_page *pg; struct writev_args nuap; struct sf_hdtr hdtr; off_t off, xfsize, sbytes = 0; int error = 0, s; /* * Do argument checking. Must be a regular file in, stream * type and connected socket out, positive offset. */ if (((u_int)uap->fd) >= fdp->fd_nfiles || (fp = fdp->fd_ofiles[uap->fd]) == NULL || (fp->f_flag & FREAD) == 0) { error = EBADF; goto done; } if (fp->f_type != DTYPE_VNODE) { error = EINVAL; goto done; } vp = (struct vnode *)fp->f_data; obj = vp->v_object; if (vp->v_type != VREG || obj == NULL) { error = EINVAL; goto done; } error = getsock(p->p_fd, uap->s, &fp); if (error) goto done; so = (struct socket *)fp->f_data; if (so->so_type != SOCK_STREAM) { error = EINVAL; goto done; } if ((so->so_state & SS_ISCONNECTED) == 0) { error = ENOTCONN; goto done; } if (uap->offset < 0) { error = EINVAL; goto done; } /* * If specified, get the pointer to the sf_hdtr struct for * any headers/trailers. */ if (uap->hdtr != NULL) { error = copyin(uap->hdtr, &hdtr, sizeof(hdtr)); if (error) goto done; /* * Send any headers. Wimp out and use writev(2). */ if (hdtr.headers != NULL) { nuap.fd = uap->s; nuap.iovp = hdtr.headers; nuap.iovcnt = hdtr.hdr_cnt; error = writev(p, &nuap); if (error) goto done; sbytes += p->p_retval[0]; } } /* * Protect against multiple writers to the socket. */ (void) sblock(&so->so_snd, M_WAITOK); /* * Loop through the pages in the file, starting with the requested * offset. Get a file page (do I/O if necessary), map the file page * into an sf_buf, attach an mbuf header to the sf_buf, and queue * it on the socket. */ for (off = uap->offset; ; off += xfsize, sbytes += xfsize) { vm_pindex_t pindex; vm_offset_t pgoff; pindex = OFF_TO_IDX(off); retry_lookup: /* * Calculate the amount to transfer. Not to exceed a page, * the EOF, or the passed in nbytes. */ xfsize = obj->un_pager.vnp.vnp_size - off; if (xfsize > PAGE_SIZE) xfsize = PAGE_SIZE; pgoff = (vm_offset_t)(off & PAGE_MASK); if (PAGE_SIZE - pgoff < xfsize) xfsize = PAGE_SIZE - pgoff; if (uap->nbytes && xfsize > (uap->nbytes - sbytes)) xfsize = uap->nbytes - sbytes; if (xfsize <= 0) break; /* * Optimize the non-blocking case by looking at the socket space * before going to the extra work of constituting the sf_buf. */ if ((so->so_state & SS_NBIO) && sbspace(&so->so_snd) <= 0) { if (so->so_state & SS_CANTSENDMORE) error = EPIPE; else error = EAGAIN; sbunlock(&so->so_snd); goto done; } /* * Attempt to look up the page. If the page doesn't exist or the * part we're interested in isn't valid, then read it from disk. * If some other part of the kernel has this page (i.e. it's busy), * then disk I/O may be occuring on it, so wait and retry. */ pg = vm_page_lookup(obj, pindex); if (pg == NULL || (!(pg->flags & PG_BUSY) && !pg->busy && !vm_page_is_valid(pg, pgoff, xfsize))) { struct uio auio; struct iovec aiov; int bsize; if (pg == NULL) { pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL); if (pg == NULL) { VM_WAIT; goto retry_lookup; } /* * don't just clear PG_BUSY manually - * vm_page_alloc() should be considered opaque, * use the VM routine provided to clear * PG_BUSY. */ vm_page_wakeup(pg); } /* * Ensure that our page is still around when the I/O completes. */ vm_page_io_start(pg); vm_page_wire(pg); /* * Get the page from backing store. */ bsize = vp->v_mount->mnt_stat.f_iosize; auio.uio_iov = &aiov; auio.uio_iovcnt = 1; aiov.iov_base = 0; aiov.iov_len = MAXBSIZE; auio.uio_resid = MAXBSIZE; auio.uio_offset = trunc_page(off); auio.uio_segflg = UIO_NOCOPY; auio.uio_rw = UIO_READ; auio.uio_procp = p; vn_lock(vp, LK_SHARED | LK_NOPAUSE | LK_RETRY, p); error = VOP_READ(vp, &auio, IO_VMIO | ((MAXBSIZE / bsize) << 16), p->p_ucred); VOP_UNLOCK(vp, 0, p); vm_page_flag_clear(pg, PG_ZERO); vm_page_io_finish(pg); if (error) { vm_page_unwire(pg, 0); /* * See if anyone else might know about this page. * If not and it is not valid, then free it. */ if (pg->wire_count == 0 && pg->valid == 0 && pg->busy == 0 && !(pg->flags & PG_BUSY) && pg->hold_count == 0) vm_page_free(pg); sbunlock(&so->so_snd); goto done; } } else { if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) goto retry_lookup; /* * Protect from having the page ripped out from * beneath us. */ vm_page_wire(pg); } /* * Allocate a kernel virtual page and insert the physical page * into it. */ sf = sf_buf_alloc(); sf->m = pg; pmap_qenter(sf->kva, &pg, 1); /* * Get an mbuf header and set it up as having external storage. */ MGETHDR(m, M_WAIT, MT_DATA); m->m_ext.ext_free = sf_buf_free; m->m_ext.ext_ref = sf_buf_ref; m->m_ext.ext_buf = (void *)sf->kva; m->m_ext.ext_size = PAGE_SIZE; m->m_data = (char *) sf->kva + pgoff; m->m_flags |= M_EXT; m->m_pkthdr.len = m->m_len = xfsize; /* * Add the buffer to the socket buffer chain. */ s = splnet(); retry_space: /* * Make sure that the socket is still able to take more data. * CANTSENDMORE being true usually means that the connection * was closed. so_error is true when an error was sensed after * a previous send. * The state is checked after the page mapping and buffer * allocation above since those operations may block and make * any socket checks stale. From this point forward, nothing * blocks before the pru_send (or more accurately, any blocking * results in a loop back to here to re-check). */ if ((so->so_state & SS_CANTSENDMORE) || so->so_error) { if (so->so_state & SS_CANTSENDMORE) { error = EPIPE; } else { error = so->so_error; so->so_error = 0; } m_freem(m); sbunlock(&so->so_snd); splx(s); goto done; } /* * Wait for socket space to become available. We do this just * after checking the connection state above in order to avoid * a race condition with sbwait(). */ if (sbspace(&so->so_snd) < so->so_snd.sb_lowat) { if (so->so_state & SS_NBIO) { m_freem(m); sbunlock(&so->so_snd); splx(s); error = EAGAIN; goto done; } error = sbwait(&so->so_snd); /* * An error from sbwait usually indicates that we've * been interrupted by a signal. If we've sent anything * then return bytes sent, otherwise return the error. */ if (error) { m_freem(m); sbunlock(&so->so_snd); splx(s); goto done; } goto retry_space; } error = (*so->so_proto->pr_usrreqs->pru_send)(so, 0, m, 0, 0, p); splx(s); if (error) { sbunlock(&so->so_snd); goto done; } } sbunlock(&so->so_snd); /* * Send trailers. Wimp out and use writev(2). */ if (uap->hdtr != NULL && hdtr.trailers != NULL) { nuap.fd = uap->s; nuap.iovp = hdtr.trailers; nuap.iovcnt = hdtr.trl_cnt; error = writev(p, &nuap); if (error) goto done; sbytes += p->p_retval[0]; } done: if (uap->sbytes != NULL) { copyout(&sbytes, uap->sbytes, sizeof(off_t)); } return (error); }