1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-30 12:04:07 +00:00
freebsd/sys/dev/ata/ata-raid.c
2002-02-18 11:57:56 +00:00

1049 lines
31 KiB
C

/*-
* Copyright (c) 2000,2001,2002 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_global.h"
#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/devicestat.h>
#include <sys/cons.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-disk.h>
#include <dev/ata/ata-raid.h>
/* device structures */
static d_open_t aropen;
static d_strategy_t arstrategy;
static struct cdevsw ar_cdevsw = {
/* open */ aropen,
/* close */ nullclose,
/* read */ physread,
/* write */ physwrite,
/* ioctl */ noioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ arstrategy,
/* name */ "ar",
/* maj */ 157,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ D_DISK,
};
static struct cdevsw ardisk_cdevsw;
/* prototypes */
static void ar_done(struct bio *);
static void ar_config_changed(struct ar_softc *, int);
static int ar_highpoint_read_conf(struct ad_softc *, struct ar_softc **);
static int ar_highpoint_write_conf(struct ar_softc *);
static int ar_promise_read_conf(struct ad_softc *, struct ar_softc **);
static int ar_promise_write_conf(struct ar_softc *);
static int ar_read(struct ad_softc *, u_int32_t, int, u_int8_t *);
static int ar_write(struct ad_softc *, u_int32_t, int, u_int8_t *);
/* misc defines */
#define AD_STRATEGY(x) si_disk->d_devsw->d_strategy(x)
#define AD_SOFTC(x) ((struct ad_softc *)(x.device->driver))
/* internal vars */
static struct ar_softc **ar_table = NULL;
static MALLOC_DEFINE(M_AR, "AR driver", "ATA RAID driver");
int
ata_raid_probe(struct ad_softc *adp) {
if (!ar_table)
ar_table = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
M_AR, M_NOWAIT | M_ZERO);
if (!ar_table) {
ata_prtdev(adp->device, "no memory for ATA raid array\n");
return 1;
}
switch(adp->device->channel->chiptype) {
case 0x4d33105a:
case 0x4d38105a:
case 0x4d30105a:
case 0x0d30105a:
case 0x4d68105a:
case 0x6268105a:
/* test RAID bit in PCI reg XXX */
return (ar_promise_read_conf(adp, ar_table));
case 0x00041103:
case 0x00051103:
case 0x00081103:
return (ar_highpoint_read_conf(adp, ar_table));
}
return 1;
}
void
ata_raid_attach()
{
struct ar_softc *raid;
dev_t dev;
int array, disk;
if (!ar_table)
return;
for (array = 0; array < MAX_ARRAYS; array++) {
if (!(raid = ar_table[array]) || !raid->flags)
continue;
for (disk = 0; disk < raid->total_disks; disk++) {
switch (raid->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (!(raid->disks[disk].flags & AR_DF_ONLINE))
raid->flags &= ~AR_F_READY;
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (disk < raid->width) {
if (!(raid->disks[disk].flags & AR_DF_ONLINE) &&
!(raid->disks[disk+raid->width].flags&AR_DF_ONLINE))
raid->flags &= ~AR_F_READY;
else if (((raid->disks[disk].flags & AR_DF_ONLINE) &&
!(raid->disks
[disk + raid->width].flags & AR_DF_ONLINE))||
(!(raid->disks[disk].flags & AR_DF_ONLINE) &&
(raid->disks
[disk + raid->width].flags & AR_DF_ONLINE)))
raid->flags |= AR_F_DEGRADED;
}
break;
}
if (raid->disks[disk].device) {
if (raid->disks[disk].flags & AR_DF_ONLINE)
ata_drawerleds(raid->disks[disk].device, ATA_LED_GREEN);
else
ata_drawerleds(raid->disks[disk].device, ATA_LED_RED);
}
}
dev = disk_create(raid->lun, &raid->disk, 0, &ar_cdevsw,&ardisk_cdevsw);
dev->si_drv1 = raid;
dev->si_iosize_max = 256 * DEV_BSIZE;
raid->dev = dev;
printf("ar%d: %lluMB <ATA ",
raid->lun, raid->total_sectors / ((1024L * 1024L) / DEV_BSIZE));
switch (raid->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
printf("RAID0 "); break;
case AR_F_RAID1:
printf("RAID1 "); break;
case AR_F_SPAN:
printf("SPAN "); break;
case (AR_F_RAID0 | AR_F_RAID1):
printf("RAID0+1 "); break;
default:
printf("unknown 0x%x> ", raid->flags);
return;
}
printf("array> [%d/%d/%d] status: ",
raid->cylinders, raid->heads, raid->sectors);
switch (raid->flags & (AR_F_DEGRADED | AR_F_READY)) {
case AR_F_READY:
printf("READY");
break;
case (AR_F_DEGRADED | AR_F_READY):
printf("DEGRADED");
break;
default:
printf("BROKEN");
break;
}
printf(" subdisks:\n");
for (disk = 0; disk < raid->total_disks; disk++) {
if (raid->disks[disk].flags & AR_DF_ONLINE)
printf(" %d READY ", disk);
else if (raid->disks[disk].flags & AR_DF_ASSIGNED)
printf(" %d DOWN ", disk);
else if (raid->disks[disk].flags & AR_DF_SPARE)
printf(" %d SPARE ", disk);
else if (raid->disks[disk].flags & AR_DF_PRESENT)
printf(" %d FREE ", disk);
else
printf(" %d INVALID no RAID config info on this disk\n", disk);
if (raid->disks[disk].flags & AR_DF_PRESENT)
ad_print(AD_SOFTC(raid->disks[disk]), "");
}
}
}
static int
aropen(dev_t dev, int flags, int fmt, struct thread *td)
{
struct ar_softc *rdp = dev->si_drv1;
struct disklabel *dl;
dl = &rdp->disk.d_label;
bzero(dl, sizeof *dl);
dl->d_secsize = DEV_BSIZE;
dl->d_nsectors = rdp->sectors;
dl->d_ntracks = rdp->heads;
dl->d_ncylinders = rdp->cylinders;
dl->d_secpercyl = rdp->sectors * rdp->heads;
dl->d_secperunit = rdp->total_sectors;
return 0;
}
static void
arstrategy(struct bio *bp)
{
struct ar_softc *rdp = bp->bio_dev->si_drv1;
int lba, count, chunk;
caddr_t data;
if (!(rdp->flags & AR_F_READY)) {
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
bp->bio_resid = bp->bio_bcount;
lba = bp->bio_pblkno;
data = bp->bio_data;
for (count = howmany(bp->bio_bcount, DEV_BSIZE); count > 0;
count -= chunk, lba += chunk, data += (chunk * DEV_BSIZE)) {
struct ar_buf *buf1, *buf2;
int plba;
buf1 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT | M_ZERO);
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
plba = lba;
while (plba >=
AD_SOFTC(rdp->disks[buf1->drive])->total_secs-rdp->reserved)
plba -= (AD_SOFTC(rdp->disks[buf1->drive++])->total_secs -
rdp->reserved);
buf1->bp.bio_pblkno = plba;
chunk = min(AD_SOFTC(rdp->disks[buf1->drive])->total_secs -
rdp->reserved - plba, count);
break;
case AR_F_RAID0:
case AR_F_RAID0 | AR_F_RAID1:
plba = lba / rdp->interleave;
chunk = lba % rdp->interleave;
if (plba == rdp->total_sectors / rdp->interleave) {
int lastblksize =
(rdp->total_sectors-(plba*rdp->interleave))/rdp->width;
buf1->drive = chunk / lastblksize;
buf1->bp.bio_pblkno =
((plba / rdp->width) * rdp->interleave) + chunk%lastblksize;
chunk = min(count, lastblksize);
}
else {
buf1->drive = plba % rdp->width;
buf1->bp.bio_pblkno =
((plba / rdp->width) * rdp->interleave) + chunk;
chunk = min(count, rdp->interleave - chunk);
}
break;
case AR_F_RAID1:
buf1->bp.bio_pblkno = lba;
buf1->drive = 0;
chunk = count;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
if (buf1->drive > 0)
buf1->bp.bio_pblkno += rdp->offset;
buf1->bp.bio_caller1 = (void *)rdp;
buf1->bp.bio_bcount = chunk * DEV_BSIZE;
buf1->bp.bio_data = data;
buf1->bp.bio_cmd = bp->bio_cmd;
buf1->bp.bio_flags = bp->bio_flags;
buf1->bp.bio_done = ar_done;
buf1->org = bp;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (!AD_SOFTC(rdp->disks[buf1->drive])->dev->si_disk) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR broken array in strategy\n", rdp->lun);
ar_config_changed(rdp, buf1->drive);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
buf1->bp.bio_dev = AD_SOFTC(rdp->disks[buf1->drive])->dev;
buf1->bp.bio_dev->AD_STRATEGY((struct bio *)buf1);
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (rdp->flags & AR_F_REBUILDING) {
if ((bp->bio_pblkno >= rdp->lock_start &&
bp->bio_pblkno < rdp->lock_end) ||
((bp->bio_pblkno + chunk) >= rdp->lock_start &&
(bp->bio_pblkno + chunk) < rdp->lock_end)) {
tsleep(rdp, PRIBIO, "arwait", 0);
}
}
if (rdp->disks[buf1->drive].flags & AR_DF_ONLINE &&
!AD_SOFTC(rdp->disks[buf1->drive])->dev->si_disk) {
rdp->disks[buf1->drive].flags &= ~AR_DF_ONLINE;
if (rdp->disks[buf1->drive + rdp->width].flags & AR_DF_ONLINE) {
rdp->flags |= AR_F_DEGRADED;
printf("ar%d: WARNING mirror lost in strategy\n", rdp->lun);
}
else
rdp->flags &= ~AR_F_READY;
ar_config_changed(rdp, buf1->drive);
}
if (rdp->disks[buf1->drive + rdp->width].flags & AR_DF_ONLINE &&
!AD_SOFTC(rdp->disks[buf1->drive + rdp->width])->dev->si_disk) {
rdp->disks[buf1->drive + rdp->width].flags &= ~AR_DF_ONLINE;
if (rdp->disks[buf1->drive].flags & AR_DF_ONLINE) {
rdp->flags |= AR_F_DEGRADED;
printf("ar%d: WARNING mirror lost in strategy\n", rdp->lun);
}
else
rdp->flags &= ~AR_F_READY;
ar_config_changed(rdp, buf1->drive);
}
if (!(rdp->flags & AR_F_READY)) {
printf("ar%d: ERROR broken array in strategy\n", rdp->lun);
bp->bio_flags |= BIO_ERROR;
bp->bio_error = EIO;
biodone(bp);
return;
}
if (bp->bio_cmd == BIO_WRITE) {
if (rdp->disks[buf1->drive + rdp->width].flags & AR_DF_ONLINE) {
if (rdp->disks[buf1->drive].flags & AR_DF_ONLINE) {
buf2 = malloc(sizeof(struct ar_buf), M_AR, M_NOWAIT);
bcopy(buf1, buf2, sizeof(struct ar_buf));
buf1->mirror = buf2;
buf2->mirror = buf1;
buf2->drive = buf1->drive + rdp->width;
buf2->bp.bio_dev =
AD_SOFTC(rdp->disks[buf2->drive])->dev;
buf2->bp.bio_dev->AD_STRATEGY((struct bio *)buf2);
rdp->disks[buf2->drive].last_lba =
buf1->bp.bio_pblkno + chunk;
}
else
buf1->drive = buf1->drive + rdp->width;
}
}
if (bp->bio_cmd == BIO_READ) {
if ((buf1->bp.bio_pblkno <
(rdp->disks[buf1->drive].last_lba - AR_PROXIMITY) ||
buf1->bp.bio_pblkno >
(rdp->disks[buf1->drive].last_lba + AR_PROXIMITY) ||
!(rdp->disks[buf1->drive].flags & AR_DF_ONLINE)) &&
(rdp->disks[buf1->drive+rdp->width].flags & AR_DF_ONLINE))
buf1->drive = buf1->drive + rdp->width;
}
buf1->bp.bio_dev = AD_SOFTC(rdp->disks[buf1->drive])->dev;
buf1->bp.bio_dev->AD_STRATEGY((struct bio *)buf1);
rdp->disks[buf1->drive].last_lba = buf1->bp.bio_pblkno + chunk;
break;
default:
printf("ar%d: unknown array type in arstrategy\n", rdp->lun);
}
}
}
static void
ar_done(struct bio *bp)
{
struct ar_softc *rdp = (struct ar_softc *)bp->bio_caller1;
struct ar_buf *buf = (struct ar_buf *)bp;
int s = splbio();
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_SPAN:
case AR_F_RAID0:
if (bp->bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR broken array in done\n", rdp->lun);
ar_config_changed(rdp, buf->drive);
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
else {
buf->org->bio_resid -= buf->bp.bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
case AR_F_RAID1:
case AR_F_RAID0 | AR_F_RAID1:
if (bp->bio_flags & BIO_ERROR) {
rdp->disks[buf->drive].flags &= ~AR_DF_ONLINE;
if ((rdp->flags & AR_F_DEGRADED) &&
!((buf->drive < rdp->width) ?
(rdp->disks[buf->drive + rdp->width].flags & AR_DF_ONLINE) :
(rdp->disks[buf->drive - rdp->width].flags & AR_DF_ONLINE))) {
rdp->flags &= ~AR_F_READY;
printf("ar%d: ERROR broken array in done\n", rdp->lun);
ar_config_changed(rdp, buf->drive);
buf->org->bio_flags |= BIO_ERROR;
buf->org->bio_error = EIO;
biodone(buf->org);
}
else {
rdp->flags |= AR_F_DEGRADED;
printf("ar%d: WARNING mirror lost in done\n", rdp->lun);
ar_config_changed(rdp, buf->drive);
if (bp->bio_cmd == BIO_READ) {
if (buf->drive < rdp->width)
buf->drive = buf->drive + rdp->width;
else
buf->drive = buf->drive - rdp->width;
buf->bp.bio_dev = AD_SOFTC(rdp->disks[buf->drive])->dev;
buf->bp.bio_flags = buf->org->bio_flags;
buf->bp.bio_error = 0;
buf->bp.bio_dev->AD_STRATEGY((struct bio *)buf);
splx(s);
return;
}
if (bp->bio_cmd == BIO_WRITE) {
if (!(buf->flags & AB_F_DONE))
buf->mirror->flags |= AB_F_DONE;
else {
buf->org->bio_resid -= bp->bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
}
}
}
else {
if (bp->bio_cmd == BIO_WRITE) {
if (!(buf->flags & AB_F_DONE) && !(rdp->flags & AR_F_DEGRADED)){
buf->mirror->flags |= AB_F_DONE;
break;
}
}
buf->org->bio_resid -= bp->bio_bcount;
if (buf->org->bio_resid == 0)
biodone(buf->org);
}
break;
default:
printf("ar%d: unknown array type in ar_done\n", rdp->lun);
}
free(buf, M_AR);
splx(s);
}
static void
ar_config_changed(struct ar_softc *rdp, int disk)
{
if (rdp->flags & AR_F_PROMISE_RAID)
ar_promise_write_conf(rdp);
if (rdp->flags & AR_F_HIGHPOINT_RAID)
ar_highpoint_write_conf(rdp);
if (rdp->disks[disk].device && !(rdp->disks[disk].flags & AR_DF_ONLINE))
ata_drawerleds(rdp->disks[disk].device, ATA_LED_RED);
}
static int
ar_highpoint_read_conf(struct ad_softc *adp, struct ar_softc **raidp)
{
struct highpoint_raid_conf *info;
struct ar_softc *raid = NULL;
int array, disk_number = 0, error = 1;
if (!(info = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return error;
if (ar_read(adp, HPT_LBA, sizeof(struct highpoint_raid_conf),
(u_int8_t *)info)) {
if (bootverbose)
printf("ar: HighPoint read conf failed\n");
goto highpoint_out;
}
/* check if this is a HighPoint RAID struct */
if (info->magic != HPT_MAGIC_OK && info->magic != HPT_MAGIC_BAD) {
if (bootverbose)
printf("ar: HighPoint check1 failed\n");
goto highpoint_out;
}
/* is this disk defined, or an old leftover/spare ? */
if (!info->magic_0) {
if (bootverbose)
printf("ar: HighPoint check2 failed\n");
goto highpoint_out;
}
/* now convert HighPoint config info into our generic form */
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto highpoint_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_PROMISE_RAID)
continue;
raid->flags |= AR_F_HIGHPOINT_RAID;
switch (info->type) {
case HPT_T_RAID0:
case HPT_T_RAID01_RAID0:
/* check the order byte to determine what this really is */
switch (info->order) {
case HPT_O_DOWN:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->magic_1 = info->magic_1;
raid->flags |= AR_F_RAID0;
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
info->magic = 0; /* mark bad */
break;
case HPT_O_RAID01DEGRADED:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->magic_1 = info->magic_1;
raid->flags |= AR_F_RAID0;
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
break;
case HPT_O_RAID01SRC:
if ((raid->magic_0 && raid->magic_0 != info->magic_0) ||
(raid->magic_1 && raid->magic_1 != info->magic_1))
continue;
raid->magic_0 = info->magic_0;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
break;
case HPT_O_RAID01DST:
if (raid->magic_1 && raid->magic_1 != info->magic_1)
continue;
raid->magic_1 = info->magic_1;
raid->flags |= (AR_F_RAID0 | AR_F_RAID1);
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number + info->array_width;
break;
case HPT_O_READY:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID0;
raid->interleave = 1 << info->stripe_shift;
disk_number = info->disk_number;
break;
}
break;
case HPT_T_RAID1:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_RAID1;
disk_number = (info->disk_number > 0);
break;
case HPT_T_SPAN:
if (raid->magic_0 && raid->magic_0 != info->magic_0)
continue;
raid->magic_0 = info->magic_0;
raid->flags |= AR_F_SPAN;
disk_number = info->disk_number;
break;
default:
printf("ar%d: HighPoint unknown RAID type 0x%02x\n",
array, info->type);
goto highpoint_out;
}
raid->disks[disk_number].device = adp->device;
raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
if (info->magic == HPT_MAGIC_OK) {
raid->disks[disk_number].flags |= AR_DF_ONLINE;
raid->flags |= AR_F_READY;
raid->lun = array;
raid->width = info->array_width;
raid->heads = 255;
raid->sectors = 63;
raid->cylinders = (info->total_sectors - HPT_LBA) / (63 * 255);
raid->total_sectors = info->total_sectors - (HPT_LBA * raid->width);
raid->offset = 10;
raid->reserved = 10;
}
else
raid->disks[disk_number].flags &= ~ AR_DF_ONLINE;
if ((raid->flags & AR_F_RAID0) && (raid->total_disks < raid->width))
raid->total_disks = raid->width;
if (disk_number >= raid->total_disks)
raid->total_disks = disk_number + 1;
error = 0;
break;
}
highpoint_out:
free(info, M_AR);
return error;
}
static int
ar_highpoint_write_conf(struct ar_softc *rdp)
{
struct highpoint_raid_conf *config;
struct timeval timestamp;
int disk;
if (!(config = (struct highpoint_raid_conf *)
malloc(sizeof(struct highpoint_raid_conf), M_AR, M_NOWAIT)))
return -1;
microtime(&timestamp);
rdp->magic_0 = timestamp.tv_sec + 1;
rdp->magic_1 = timestamp.tv_sec;
for (disk = 0; disk < rdp->total_disks; disk++) {
bzero(config, sizeof(struct highpoint_raid_conf));
if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
(AR_DF_PRESENT | AR_DF_ONLINE))
config->magic = HPT_MAGIC_OK;
if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
config->magic_0 = rdp->magic_0;
config->disk_number = disk;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->type = HPT_T_RAID0;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
config->order = HPT_O_READY;
else
config->order = HPT_O_DOWN;
break;
case AR_F_RAID1:
config->type = HPT_T_RAID1;
config->disk_number = (disk < rdp->width) ? disk : disk + 10;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->magic_1 = rdp->magic_1;
config->type = HPT_T_RAID01_RAID0;
#if 0
if ((rdp->flags & (AR_F_READY | AR_F_DEGRADED)) == AR_F_READY)
if (disk < rdp->width)
config->order = HPT_O_RAID01SRC;
else
config->order = HPT_O_RAID01DST;
else
if (rdp->disks[disk].flags & AR_DF_ONLINE)
config->order = HPT_O_RAID01DEGRADED;
else
config->order = HPT_O_DOWN;
#else
if (rdp->disks[disk].flags & AR_DF_ONLINE)
if (disk < rdp->width)
config->order = HPT_O_RAID01SRC;
else
config->order = HPT_O_RAID01DST;
else
config->order = HPT_O_DOWN;
#endif
if (disk >= rdp->width) {
config->magic_0 = rdp->magic_0 + 1;
config->disk_number -= rdp->width;
}
break;
case AR_F_SPAN:
config->type = HPT_T_SPAN;
break;
}
config->array_width = rdp->width;
config->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
config->total_sectors = rdp->total_sectors;
if (rdp->disks[disk].device && rdp->disks[disk].device->driver &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if (ar_write(AD_SOFTC(rdp->disks[disk]), HPT_LBA,
sizeof(struct highpoint_raid_conf),
(u_int8_t *)config)) {
if (bootverbose)
printf("ar%d: Highpoint write conf failed\n", rdp->lun);
return -1;
}
}
}
return 0;
}
static int
ar_promise_read_conf(struct ad_softc *adp, struct ar_softc **raidp)
{
struct promise_raid_conf *info;
struct ar_softc *raid;
u_int32_t magic, cksum, *ckptr;
int array, count, disk, error = 1;
if (!(info = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
return error;
if (ar_read(adp, PR_LBA(adp), sizeof(struct promise_raid_conf),
(u_int8_t *)info)) {
if (bootverbose)
printf("ar: Promise read conf failed\n");
goto promise_out;
}
/* check if this is a Promise RAID struct */
if (strncmp(info->promise_id, PR_MAGIC, sizeof(PR_MAGIC))) {
if (bootverbose)
printf("ar: Promise check1 failed\n");
goto promise_out;
}
/* check if the checksum is OK */
for (cksum = 0, ckptr = (int32_t *)info, count = 0; count < 511; count++)
cksum += *ckptr++;
if (cksum != *ckptr) {
if (bootverbose)
printf("ar: Promise check2 failed\n");
goto promise_out;
}
/* now convert Promise config info into our generic form */
if (info->raid.integrity != PR_I_VALID) {
if (bootverbose)
printf("ar: Promise check3 failed\n");
goto promise_out;
}
for (array = 0; array < MAX_ARRAYS; array++) {
if (!raidp[array]) {
raidp[array] =
(struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
M_NOWAIT | M_ZERO);
if (!raidp[array]) {
printf("ar%d: failed to allocate raid config storage\n", array);
goto promise_out;
}
}
raid = raidp[array];
if (raid->flags & AR_F_HIGHPOINT_RAID)
continue;
magic = (adp->device->channel->chiptype >> 16) |
(info->raid.array_number << 16);
if (raid->flags & AR_F_PROMISE_RAID && magic != raid->magic_0)
continue;
/* update our knowledge about the array config based on generation */
if (!info->raid.generation || info->raid.generation > raid->generation){
raid->generation = info->raid.generation;
raid->flags = AR_F_PROMISE_RAID;
raid->magic_0 = magic;
raid->lun = array;
if ((info->raid.status &
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
raid->flags |= AR_F_READY;
if (info->raid.status & PR_S_DEGRADED)
raid->flags |= AR_F_DEGRADED;
}
else
raid->flags &= ~AR_F_READY;
switch (info->raid.type) {
case PR_T_RAID0:
raid->flags |= AR_F_RAID0;
break;
case PR_T_RAID1:
raid->flags |= AR_F_RAID1;
if (info->raid.array_width > 1)
raid->flags |= AR_F_RAID0;
break;
case PR_T_SPAN:
raid->flags |= AR_F_SPAN;
break;
default:
printf("ar%d: Promise unknown RAID type 0x%02x\n",
array, info->raid.type);
goto promise_out;
}
raid->interleave = 1 << info->raid.stripe_shift;
raid->width = info->raid.array_width;
raid->total_disks = info->raid.total_disks;
raid->heads = info->raid.heads + 1;
raid->sectors = info->raid.sectors;
raid->cylinders = info->raid.cylinders + 1;
raid->total_sectors = info->raid.total_sectors;
raid->offset = 0;
raid->reserved = 63;
/* convert disk flags to our internal types */
for (disk = 0; disk < info->raid.total_disks; disk++) {
raid->disks[disk].flags = 0;
if (info->raid.disk[disk].flags & PR_F_ONLINE)
raid->disks[disk].flags |= AR_DF_ONLINE;
if (info->raid.disk[disk].flags & PR_F_ASSIGNED)
raid->disks[disk].flags |= AR_DF_ASSIGNED;
if (info->raid.disk[disk].flags & PR_F_SPARE)
raid->disks[disk].flags |= AR_DF_SPARE;
if (info->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN)) {
raid->disks[disk].flags &= ~AR_DF_ONLINE;
raid->disks[disk].flags |= AR_DF_PRESENT;
}
}
}
if (raid->disks[info->raid.disk_number].flags && adp->device) {
raid->disks[info->raid.disk_number].device = adp->device;
raid->disks[info->raid.disk_number].flags |= AR_DF_PRESENT;
error = 0;
}
break;
}
promise_out:
free(info, M_AR);
return error;
}
static int
ar_promise_write_conf(struct ar_softc *rdp)
{
struct promise_raid_conf *config;
struct timeval timestamp;
u_int32_t *ckptr;
int count, disk, drive;
if (!(config = (struct promise_raid_conf *)
malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT)))
return -1;
for (count = 0; count < sizeof(struct promise_raid_conf); count++)
*(((u_int8_t *)config) + count) = 255 - (count % 256);
rdp->generation++;
microtime(&timestamp);
for (disk = 0; disk < rdp->total_disks; disk++) {
bcopy(PR_MAGIC, config->promise_id, sizeof(PR_MAGIC));
config->dummy_0 = 0x00020000;
config->magic_0 = PR_MAGIC0(rdp->disks[disk]) | timestamp.tv_sec;
config->magic_1 = timestamp.tv_sec >> 16;
config->magic_2 = timestamp.tv_sec;
config->raid.integrity = PR_I_VALID;
config->raid.flags = 0;
if (rdp->disks[disk].flags & AR_DF_PRESENT)
config->raid.flags |= PR_F_VALID;
if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
config->raid.flags |= PR_F_ASSIGNED;
if (rdp->disks[disk].flags & AR_DF_ONLINE)
config->raid.flags |= PR_F_ONLINE;
else
config->raid.flags |= PR_F_DOWN;
config->raid.disk_number = disk;
if (rdp->disks[disk].device) {
config->raid.channel = rdp->disks[disk].device->channel->unit;
config->raid.device = (rdp->disks[disk].device->unit != 0);
if (AD_SOFTC(rdp->disks[disk])->dev->si_disk)
config->raid.disk_sectors = PR_LBA(AD_SOFTC(rdp->disks[disk]));
/*config->raid.disk_offset*/
}
config->raid.magic_0 = config->magic_0;
config->raid.rebuild_lba = 0xffffffff;
config->raid.generation = rdp->generation;
if (rdp->flags & AR_F_READY) {
config->raid.status =
(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
if (rdp->flags & AR_F_DEGRADED)
config->raid.status |= PR_S_DEGRADED;
else
config->raid.status |= PR_S_FUNCTIONAL;
}
else
config->raid.status = 0;
switch (rdp->flags & (AR_F_RAID0 | AR_F_RAID1 | AR_F_SPAN)) {
case AR_F_RAID0:
config->raid.type = PR_T_RAID0;
break;
case AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_RAID0 | AR_F_RAID1:
config->raid.type = PR_T_RAID1;
break;
case AR_F_SPAN:
config->raid.type = PR_T_SPAN;
break;
}
config->raid.total_disks = rdp->total_disks;
config->raid.stripe_shift = ffs(rdp->interleave) - 1;
config->raid.array_width = rdp->width;
config->raid.array_number = rdp->magic_0 >> 16;
config->raid.total_sectors = rdp->total_sectors;
config->raid.cylinders = rdp->cylinders - 1;
config->raid.heads = rdp->heads - 1;
config->raid.sectors = rdp->sectors;
config->raid.magic_1 = (u_int64_t)config->magic_2<<16 | config->magic_1;
bzero(&config->raid.disk, 8 * 12);
for (drive = 0; drive < rdp->total_disks; drive++) {
config->raid.disk[drive].flags = 0;
if (rdp->disks[drive].flags & AR_DF_PRESENT)
config->raid.disk[drive].flags |= PR_F_VALID;
if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
config->raid.disk[drive].flags |= PR_F_ASSIGNED;
if (rdp->disks[drive].flags & AR_DF_ONLINE)
config->raid.disk[drive].flags |= PR_F_ONLINE;
else
config->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
if (rdp->disks[drive].flags & AR_DF_SPARE)
config->raid.disk[drive].flags |= PR_F_SPARE;
config->raid.disk[drive].dummy_0 = 0x0;
if (rdp->disks[drive].device) {
config->raid.disk[drive].channel =
rdp->disks[drive].device->channel->unit;
config->raid.disk[drive].device =
(rdp->disks[drive].device->unit != 0);
}
config->raid.disk[drive].magic_0 =
PR_MAGIC0(rdp->disks[drive]) | timestamp.tv_sec;
}
config->checksum = 0;
for (ckptr = (int32_t *)config, count = 0; count < 511; count++)
config->checksum += *ckptr++;
if (rdp->disks[disk].device && rdp->disks[disk].device->driver &&
!(rdp->disks[disk].device->flags & ATA_D_DETACHING)) {
if (ar_write(AD_SOFTC(rdp->disks[disk]),
PR_LBA(AD_SOFTC(rdp->disks[disk])),
sizeof(struct promise_raid_conf), (u_int8_t *)config)){
if (bootverbose)
printf("ar%d: Promise write conf failed\n", rdp->lun);
return -1;
}
}
}
return 0;
}
static int
ar_read(struct ad_softc *adp, u_int32_t lba, int count, u_int8_t *data)
{
if (ata_command(adp->device, count > DEV_BSIZE ? ATA_C_READ_MUL:ATA_C_READ,
lba, count / DEV_BSIZE, 0, ATA_IMMEDIATE)) {
ata_prtdev(adp->device, "RAID read config failed\n");
return 1;
}
if (ata_wait(adp->device, ATA_S_READY | ATA_S_DSC | ATA_S_DRQ)){
ata_prtdev(adp->device, "RAID read config timeout\n");
return 1;
}
ATA_INSW(adp->device->channel->r_io, ATA_DATA, (int16_t *)data,
count/sizeof(int16_t));
if (ata_wait(adp->device, ATA_S_READY | ATA_S_DSC) < 0) {
ata_prtdev(adp->device, "timeout waiting for final ready\n");
return 1;
}
return 0;
}
static int
ar_write(struct ad_softc *adp, u_int32_t lba, int count, u_int8_t *data)
{
if (ata_command(adp->device,count > DEV_BSIZE ? ATA_C_WRITE_MUL:ATA_C_WRITE,
lba, count / DEV_BSIZE, 0, ATA_IMMEDIATE)) {
ata_prtdev(adp->device, "RAID write config failed\n");
return 1;
}
if (ata_wait(adp->device, ATA_S_READY | ATA_S_DSC | ATA_S_DRQ)){
ata_prtdev(adp->device, "RAID write config timeout\n");
return 1;
}
ATA_OUTSW(adp->device->channel->r_io, ATA_DATA, (int16_t *)data,
count/sizeof(int16_t));
if (ata_wait(adp->device, ATA_S_READY | ATA_S_DSC) < 0) {
ata_prtdev(adp->device, "timeout waiting for final ready\n");
return 1;
}
return 0;
}