1
0
mirror of https://git.FreeBSD.org/src.git synced 2024-12-30 12:04:07 +00:00
freebsd/contrib/gcc/c-common.c
2006-08-26 21:37:21 +00:00

5913 lines
176 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines shared by all languages that are variants of C.
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
2001, 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "intl.h"
#include "tree.h"
#include "flags.h"
#include "output.h"
#include "c-pragma.h"
#include "rtl.h"
#include "ggc.h"
#include "varray.h"
#include "expr.h"
#include "c-common.h"
#include "diagnostic.h"
#include "tm_p.h"
#include "obstack.h"
#include "cpplib.h"
#include "target.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "c-tree.h"
#include "toplev.h"
cpp_reader *parse_in; /* Declared in c-pragma.h. */
/* We let tm.h override the types used here, to handle trivial differences
such as the choice of unsigned int or long unsigned int for size_t.
When machines start needing nontrivial differences in the size type,
it would be best to do something here to figure out automatically
from other information what type to use. */
#ifndef SIZE_TYPE
#define SIZE_TYPE "long unsigned int"
#endif
#ifndef WCHAR_TYPE
#define WCHAR_TYPE "int"
#endif
/* WCHAR_TYPE gets overridden by -fshort-wchar. */
#define MODIFIED_WCHAR_TYPE \
(flag_short_wchar ? "short unsigned int" : WCHAR_TYPE)
#ifndef PTRDIFF_TYPE
#define PTRDIFF_TYPE "long int"
#endif
#ifndef WINT_TYPE
#define WINT_TYPE "unsigned int"
#endif
#ifndef INTMAX_TYPE
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
? "int" \
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
? "long int" \
: "long long int"))
#endif
#ifndef UINTMAX_TYPE
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
? "unsigned int" \
: ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
? "long unsigned int" \
: "long long unsigned int"))
#endif
/* The following symbols are subsumed in the c_global_trees array, and
listed here individually for documentation purposes.
INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
tree short_integer_type_node;
tree long_integer_type_node;
tree long_long_integer_type_node;
tree short_unsigned_type_node;
tree long_unsigned_type_node;
tree long_long_unsigned_type_node;
tree truthvalue_type_node;
tree truthvalue_false_node;
tree truthvalue_true_node;
tree ptrdiff_type_node;
tree unsigned_char_type_node;
tree signed_char_type_node;
tree wchar_type_node;
tree signed_wchar_type_node;
tree unsigned_wchar_type_node;
tree float_type_node;
tree double_type_node;
tree long_double_type_node;
tree complex_integer_type_node;
tree complex_float_type_node;
tree complex_double_type_node;
tree complex_long_double_type_node;
tree intQI_type_node;
tree intHI_type_node;
tree intSI_type_node;
tree intDI_type_node;
tree intTI_type_node;
tree unsigned_intQI_type_node;
tree unsigned_intHI_type_node;
tree unsigned_intSI_type_node;
tree unsigned_intDI_type_node;
tree unsigned_intTI_type_node;
tree widest_integer_literal_type_node;
tree widest_unsigned_literal_type_node;
Nodes for types `void *' and `const void *'.
tree ptr_type_node, const_ptr_type_node;
Nodes for types `char *' and `const char *'.
tree string_type_node, const_string_type_node;
Type `char[SOMENUMBER]'.
Used when an array of char is needed and the size is irrelevant.
tree char_array_type_node;
Type `int[SOMENUMBER]' or something like it.
Used when an array of int needed and the size is irrelevant.
tree int_array_type_node;
Type `wchar_t[SOMENUMBER]' or something like it.
Used when a wide string literal is created.
tree wchar_array_type_node;
Type `int ()' -- used for implicit declaration of functions.
tree default_function_type;
A VOID_TYPE node, packaged in a TREE_LIST.
tree void_list_node;
The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
VAR_DECLS, but C++ does.)
tree function_name_decl_node;
tree pretty_function_name_decl_node;
tree c99_function_name_decl_node;
Stack of nested function name VAR_DECLs.
tree saved_function_name_decls;
*/
tree c_global_trees[CTI_MAX];
/* TRUE if a code represents a statement. The front end init
langhook should take care of initialization of this array. */
bool statement_code_p[MAX_TREE_CODES];
/* Switches common to the C front ends. */
/* Nonzero if prepreprocessing only. */
int flag_preprocess_only;
/* Nonzero means don't output line number information. */
char flag_no_line_commands;
/* Nonzero causes -E output not to be done, but directives such as
#define that have side effects are still obeyed. */
char flag_no_output;
/* Nonzero means dump macros in some fashion. */
char flag_dump_macros;
/* Nonzero means pass #include lines through to the output. */
char flag_dump_includes;
/* The file name to which we should write a precompiled header, or
NULL if no header will be written in this compile. */
const char *pch_file;
/* Nonzero if an ISO standard was selected. It rejects macros in the
user's namespace. */
int flag_iso;
/* Nonzero if -undef was given. It suppresses target built-in macros
and assertions. */
int flag_undef;
/* Nonzero means don't recognize the non-ANSI builtin functions. */
int flag_no_builtin;
/* Nonzero means don't recognize the non-ANSI builtin functions.
-ansi sets this. */
int flag_no_nonansi_builtin;
/* Nonzero means give `double' the same size as `float'. */
int flag_short_double;
/* Nonzero means give `wchar_t' the same size as `short'. */
int flag_short_wchar;
/* Nonzero means allow Microsoft extensions without warnings or errors. */
int flag_ms_extensions;
/* Nonzero means don't recognize the keyword `asm'. */
int flag_no_asm;
/* Nonzero means give string constants the type `const char *', as mandated
by the standard. */
int flag_const_strings;
/* Nonzero means to treat bitfields as signed unless they say `unsigned'. */
int flag_signed_bitfields = 1;
int explicit_flag_signed_bitfields;
/* Nonzero means warn about pointer casts that can drop a type qualifier
from the pointer target type. */
int warn_cast_qual;
/* Warn about functions which might be candidates for format attributes. */
int warn_missing_format_attribute;
/* Nonzero means warn about sizeof(function) or addition/subtraction
of function pointers. */
int warn_pointer_arith;
/* Nonzero means do not warn that K&R style main() is not a function prototype. */
int flag_bsd_no_warn_kr_main;
/* Nonzero means warn for any global function def
without separate previous prototype decl. */
int warn_missing_prototypes;
/* Warn if adding () is suggested. */
int warn_parentheses;
/* Warn if initializer is not completely bracketed. */
int warn_missing_braces;
/* Warn about comparison of signed and unsigned values.
If -1, neither -Wsign-compare nor -Wno-sign-compare has been specified
(in which case -Wextra gets to decide). */
int warn_sign_compare = -1;
/* Nonzero means warn about usage of long long when `-pedantic'. */
int warn_long_long = 1;
/* Nonzero means warn about deprecated conversion from string constant to
`char *'. */
int warn_write_strings;
/* Nonzero means warn about multiple (redundant) decls for the same single
variable or function. */
int warn_redundant_decls;
/* Warn about testing equality of floating point numbers. */
int warn_float_equal;
/* Warn about a subscript that has type char. */
int warn_char_subscripts;
/* Warn if a type conversion is done that might have confusing results. */
int warn_conversion;
/* Warn about #pragma directives that are not recognized. */
int warn_unknown_pragmas; /* Tri state variable. */
/* Warn about format/argument anomalies in calls to formatted I/O functions
(*printf, *scanf, strftime, strfmon, etc.). */
int warn_format;
/* Warn about Y2K problems with strftime formats. */
int warn_format_y2k;
/* Warn about excess arguments to formats. */
int warn_format_extra_args;
/* Warn about zero-length formats. */
int warn_format_zero_length;
/* Warn about non-literal format arguments. */
int warn_format_nonliteral;
/* Warn about possible security problems with calls to format functions. */
int warn_format_security;
/* Zero means that faster, ...NonNil variants of objc_msgSend...
calls will be used in ObjC; passing nil receivers to such calls
will most likely result in crashes. */
int flag_nil_receivers = 1;
/* Nonzero means that we will allow new ObjC exception syntax (@throw,
@try, etc.) in source code. */
int flag_objc_exceptions = 0;
/* Nonzero means that code generation will be altered to support
"zero-link" execution. This currently affects ObjC only, but may
affect other languages in the future. */
int flag_zero_link = 0;
/* Nonzero means emit an '__OBJC, __image_info' for the current translation
unit. It will inform the ObjC runtime that class definition(s) herein
contained are to replace one(s) previously loaded. */
int flag_replace_objc_classes = 0;
/* C/ObjC language option variables. */
/* Nonzero means message about use of implicit function declarations;
1 means warning; 2 means error. */
int mesg_implicit_function_declaration = -1;
/* Nonzero means allow type mismatches in conditional expressions;
just make their values `void'. */
int flag_cond_mismatch;
/* Nonzero means enable C89 Amendment 1 features. */
int flag_isoc94;
/* Nonzero means use the ISO C99 dialect of C. */
int flag_isoc99;
/* Nonzero means allow the BSD kernel printf enhancements. */
int flag_bsd_format;
/* Nonzero means that we have builtin functions, and main is an int. */
int flag_hosted = 1;
/* Nonzero means warn when casting a function call to a type that does
not match the return type (e.g. (float)sqrt() or (anything*)malloc()
when there is no previous declaration of sqrt or malloc. */
int warn_bad_function_cast;
/* Warn about traditional constructs whose meanings changed in ANSI C. */
int warn_traditional;
/* Nonzero means warn for a declaration found after a statement. */
int warn_declaration_after_statement;
/* Nonzero means warn for non-prototype function decls
or non-prototyped defs without previous prototype. */
int warn_strict_prototypes;
/* Nonzero means warn for any global function def
without separate previous decl. */
int warn_missing_declarations;
/* Nonzero means warn about declarations of objects not at
file-scope level and about *all* declarations of functions (whether
or static) not at file-scope level. Note that we exclude
implicit function declarations. To get warnings about those, use
-Wimplicit. */
int warn_nested_externs;
/* Warn if main is suspicious. */
int warn_main;
/* Nonzero means warn about possible violations of sequence point rules. */
int warn_sequence_point;
/* Nonzero means warn about uninitialized variable when it is initialized with itself.
For example: int i = i;, GCC will not warn about this when warn_init_self is nonzero. */
int warn_init_self;
/* Nonzero means to warn about compile-time division by zero. */
int warn_div_by_zero = 1;
/* Nonzero means warn about use of implicit int. */
int warn_implicit_int;
/* Warn about NULL being passed to argument slots marked as requiring
non-NULL. */
int warn_nonnull;
/* Warn about old-style parameter declaration. */
int warn_old_style_definition;
/* ObjC language option variables. */
/* Open and close the file for outputting class declarations, if
requested (ObjC). */
int flag_gen_declaration;
/* Generate code for GNU or NeXT runtime environment. */
#ifdef NEXT_OBJC_RUNTIME
int flag_next_runtime = 1;
#else
int flag_next_runtime = 0;
#endif
/* Tells the compiler that this is a special run. Do not perform any
compiling, instead we are to test some platform dependent features
and output a C header file with appropriate definitions. */
int print_struct_values;
/* ???. Undocumented. */
const char *constant_string_class_name;
/* Warn if multiple methods are seen for the same selector, but with
different argument types. Performs the check on the whole selector
table at the end of compilation. */
int warn_selector;
/* Warn if a @selector() is found, and no method with that selector
has been previously declared. The check is done on each
@selector() as soon as it is found - so it warns about forward
declarations. */
int warn_undeclared_selector;
/* Warn if methods required by a protocol are not implemented in the
class adopting it. When turned off, methods inherited to that
class are also considered implemented. */
int warn_protocol = 1;
/* C++ language option variables. */
/* Nonzero means don't recognize any extension keywords. */
int flag_no_gnu_keywords;
/* Nonzero means do emit exported implementations of functions even if
they can be inlined. */
int flag_implement_inlines = 1;
/* Nonzero means that implicit instantiations will be emitted if needed. */
int flag_implicit_templates = 1;
/* Nonzero means that implicit instantiations of inline templates will be
emitted if needed, even if instantiations of non-inline templates
aren't. */
int flag_implicit_inline_templates = 1;
/* Nonzero means generate separate instantiation control files and
juggle them at link time. */
int flag_use_repository;
/* Nonzero if we want to issue diagnostics that the standard says are not
required. */
int flag_optional_diags = 1;
/* Nonzero means we should attempt to elide constructors when possible. */
int flag_elide_constructors = 1;
/* Nonzero means that member functions defined in class scope are
inline by default. */
int flag_default_inline = 1;
/* Controls whether compiler generates 'type descriptor' that give
run-time type information. */
int flag_rtti = 1;
/* Nonzero if we want to conserve space in the .o files. We do this
by putting uninitialized data and runtime initialized data into
.common instead of .data at the expense of not flagging multiple
definitions. */
int flag_conserve_space;
/* Nonzero if we want to obey access control semantics. */
int flag_access_control = 1;
/* Nonzero if we want to check the return value of new and avoid calling
constructors if it is a null pointer. */
int flag_check_new;
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
initialization variables.
0: Old rules, set by -fno-for-scope.
2: New ISO rules, set by -ffor-scope.
1: Try to implement new ISO rules, but with backup compatibility
(and warnings). This is the default, for now. */
int flag_new_for_scope = 1;
/* Nonzero if we want to emit defined symbols with common-like linkage as
weak symbols where possible, in order to conform to C++ semantics.
Otherwise, emit them as local symbols. */
int flag_weak = 1;
/* 0 means we want the preprocessor to not emit line directives for
the current working directory. 1 means we want it to do it. -1
means we should decide depending on whether debugging information
is being emitted or not. */
int flag_working_directory = -1;
/* Nonzero to use __cxa_atexit, rather than atexit, to register
destructors for local statics and global objects. */
int flag_use_cxa_atexit = DEFAULT_USE_CXA_ATEXIT;
/* Nonzero means make the default pedwarns warnings instead of errors.
The value of this flag is ignored if -pedantic is specified. */
int flag_permissive;
/* Nonzero means to implement standard semantics for exception
specifications, calling unexpected if an exception is thrown that
doesn't match the specification. Zero means to treat them as
assertions and optimize accordingly, but not check them. */
int flag_enforce_eh_specs = 1;
/* Nonzero means warn about things that will change when compiling
with an ABI-compliant compiler. */
int warn_abi = 0;
/* Nonzero means warn about invalid uses of offsetof. */
int warn_invalid_offsetof = 1;
/* Nonzero means warn about implicit declarations. */
int warn_implicit = 1;
/* Nonzero means warn when all ctors or dtors are private, and the class
has no friends. */
int warn_ctor_dtor_privacy = 0;
/* Nonzero means warn in function declared in derived class has the
same name as a virtual in the base class, but fails to match the
type signature of any virtual function in the base class. */
int warn_overloaded_virtual;
/* Nonzero means warn when declaring a class that has a non virtual
destructor, when it really ought to have a virtual one. */
int warn_nonvdtor;
/* Nonzero means warn when the compiler will reorder code. */
int warn_reorder;
/* Nonzero means warn when synthesis behavior differs from Cfront's. */
int warn_synth;
/* Nonzero means warn when we convert a pointer to member function
into a pointer to (void or function). */
int warn_pmf2ptr = 1;
/* Nonzero means warn about violation of some Effective C++ style rules. */
int warn_ecpp;
/* Nonzero means warn where overload resolution chooses a promotion from
unsigned to signed over a conversion to an unsigned of the same size. */
int warn_sign_promo;
/* Nonzero means warn when an old-style cast is used. */
int warn_old_style_cast;
/* Nonzero means warn when non-templatized friend functions are
declared within a template */
int warn_nontemplate_friend = 1;
/* Nonzero means complain about deprecated features. */
int warn_deprecated = 1;
/* Maximum template instantiation depth. This limit is rather
arbitrary, but it exists to limit the time it takes to notice
infinite template instantiations. */
int max_tinst_depth = 500;
/* The elements of `ridpointers' are identifier nodes for the reserved
type names and storage classes. It is indexed by a RID_... value. */
tree *ridpointers;
tree (*make_fname_decl) (tree, int);
/* If non-NULL, the address of a language-specific function that takes
any action required right before expand_function_end is called. */
void (*lang_expand_function_end) (void);
/* Nonzero means the expression being parsed will never be evaluated.
This is a count, since unevaluated expressions can nest. */
int skip_evaluation;
/* Information about how a function name is generated. */
struct fname_var_t
{
tree *const decl; /* pointer to the VAR_DECL. */
const unsigned rid; /* RID number for the identifier. */
const int pretty; /* How pretty is it? */
};
/* The three ways of getting then name of the current function. */
const struct fname_var_t fname_vars[] =
{
/* C99 compliant __func__, must be first. */
{&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
/* GCC __FUNCTION__ compliant. */
{&function_name_decl_node, RID_FUNCTION_NAME, 0},
/* GCC __PRETTY_FUNCTION__ compliant. */
{&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
{NULL, 0, 0},
};
static int constant_fits_type_p (tree, tree);
/* Keep a stack of if statements. We record the number of compound
statements seen up to the if keyword, as well as the line number
and file of the if. If a potentially ambiguous else is seen, that
fact is recorded; the warning is issued when we can be sure that
the enclosing if statement does not have an else branch. */
typedef struct
{
int compstmt_count;
location_t locus;
int needs_warning;
tree if_stmt;
} if_elt;
static if_elt *if_stack;
/* Amount of space in the if statement stack. */
static int if_stack_space = 0;
/* Stack pointer. */
static int if_stack_pointer = 0;
static tree handle_packed_attribute (tree *, tree, tree, int, bool *);
static tree handle_nocommon_attribute (tree *, tree, tree, int, bool *);
static tree handle_common_attribute (tree *, tree, tree, int, bool *);
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
static tree handle_always_inline_attribute (tree *, tree, tree, int,
bool *);
static tree handle_used_attribute (tree *, tree, tree, int, bool *);
static tree handle_unused_attribute (tree *, tree, tree, int, bool *);
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
static tree handle_transparent_union_attribute (tree *, tree, tree,
int, bool *);
static tree handle_constructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_destructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_mode_attribute (tree *, tree, tree, int, bool *);
static tree handle_section_attribute (tree *, tree, tree, int, bool *);
static tree handle_aligned_attribute (tree *, tree, tree, int, bool *);
static tree handle_weak_attribute (tree *, tree, tree, int, bool *) ;
static tree handle_alias_attribute (tree *, tree, tree, int, bool *);
static tree handle_visibility_attribute (tree *, tree, tree, int,
bool *);
static tree handle_tls_model_attribute (tree *, tree, tree, int,
bool *);
static tree handle_no_instrument_function_attribute (tree *, tree,
tree, int, bool *);
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
static tree handle_no_limit_stack_attribute (tree *, tree, tree, int,
bool *);
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
static tree handle_deprecated_attribute (tree *, tree, tree, int,
bool *);
static tree handle_vector_size_attribute (tree *, tree, tree, int,
bool *);
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
static tree handle_cleanup_attribute (tree *, tree, tree, int, bool *);
static tree handle_warn_unused_result_attribute (tree *, tree, tree, int,
bool *);
static void check_function_nonnull (tree, tree);
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
static bool get_nonnull_operand (tree, unsigned HOST_WIDE_INT *);
static int resort_field_decl_cmp (const void *, const void *);
/* Table of machine-independent attributes common to all C-like languages. */
const struct attribute_spec c_common_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "packed", 0, 0, false, false, false,
handle_packed_attribute },
{ "nocommon", 0, 0, true, false, false,
handle_nocommon_attribute },
{ "common", 0, 0, true, false, false,
handle_common_attribute },
/* FIXME: logically, noreturn attributes should be listed as
"false, true, true" and apply to function types. But implementing this
would require all the places in the compiler that use TREE_THIS_VOLATILE
on a decl to identify non-returning functions to be located and fixed
to check the function type instead. */
{ "noreturn", 0, 0, true, false, false,
handle_noreturn_attribute },
{ "volatile", 0, 0, true, false, false,
handle_noreturn_attribute },
{ "noinline", 0, 0, true, false, false,
handle_noinline_attribute },
{ "always_inline", 0, 0, true, false, false,
handle_always_inline_attribute },
{ "used", 0, 0, true, false, false,
handle_used_attribute },
{ "unused", 0, 0, false, false, false,
handle_unused_attribute },
/* The same comments as for noreturn attributes apply to const ones. */
{ "const", 0, 0, true, false, false,
handle_const_attribute },
{ "transparent_union", 0, 0, false, false, false,
handle_transparent_union_attribute },
{ "constructor", 0, 0, true, false, false,
handle_constructor_attribute },
{ "destructor", 0, 0, true, false, false,
handle_destructor_attribute },
{ "mode", 1, 1, false, true, false,
handle_mode_attribute },
{ "section", 1, 1, true, false, false,
handle_section_attribute },
{ "aligned", 0, 1, false, false, false,
handle_aligned_attribute },
{ "weak", 0, 0, true, false, false,
handle_weak_attribute },
{ "alias", 1, 1, true, false, false,
handle_alias_attribute },
{ "no_instrument_function", 0, 0, true, false, false,
handle_no_instrument_function_attribute },
{ "malloc", 0, 0, true, false, false,
handle_malloc_attribute },
{ "no_stack_limit", 0, 0, true, false, false,
handle_no_limit_stack_attribute },
{ "pure", 0, 0, true, false, false,
handle_pure_attribute },
{ "deprecated", 0, 0, false, false, false,
handle_deprecated_attribute },
{ "vector_size", 1, 1, false, true, false,
handle_vector_size_attribute },
{ "visibility", 1, 1, true, false, false,
handle_visibility_attribute },
{ "tls_model", 1, 1, true, false, false,
handle_tls_model_attribute },
{ "nonnull", 0, -1, false, true, true,
handle_nonnull_attribute },
{ "nothrow", 0, 0, true, false, false,
handle_nothrow_attribute },
{ "may_alias", 0, 0, false, true, false, NULL },
{ "cleanup", 1, 1, true, false, false,
handle_cleanup_attribute },
{ "warn_unused_result", 0, 0, false, true, true,
handle_warn_unused_result_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Give the specifications for the format attributes, used by C and all
descendants. */
const struct attribute_spec c_common_format_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
{ "format", 3, 3, false, true, true,
handle_format_attribute },
{ "format_arg", 1, 1, false, true, true,
handle_format_arg_attribute },
{ NULL, 0, 0, false, false, false, NULL }
};
/* Record the start of an if-then, and record the start of it
for ambiguous else detection.
COND is the condition for the if-then statement.
IF_STMT is the statement node that has already been created for
this if-then statement. It is created before parsing the
condition to keep line number information accurate. */
void
c_expand_start_cond (tree cond, int compstmt_count, tree if_stmt)
{
/* Make sure there is enough space on the stack. */
if (if_stack_space == 0)
{
if_stack_space = 10;
if_stack = xmalloc (10 * sizeof (if_elt));
}
else if (if_stack_space == if_stack_pointer)
{
if_stack_space += 10;
if_stack = xrealloc (if_stack, if_stack_space * sizeof (if_elt));
}
IF_COND (if_stmt) = cond;
add_stmt (if_stmt);
/* Record this if statement. */
if_stack[if_stack_pointer].compstmt_count = compstmt_count;
if_stack[if_stack_pointer].locus = input_location;
if_stack[if_stack_pointer].needs_warning = 0;
if_stack[if_stack_pointer].if_stmt = if_stmt;
if_stack_pointer++;
}
/* Called after the then-clause for an if-statement is processed. */
void
c_finish_then (void)
{
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
RECHAIN_STMTS (if_stmt, THEN_CLAUSE (if_stmt));
}
/* Record the end of an if-then. Optionally warn if a nested
if statement had an ambiguous else clause. */
void
c_expand_end_cond (void)
{
if_stack_pointer--;
if (if_stack[if_stack_pointer].needs_warning)
warning ("%Hsuggest explicit braces to avoid ambiguous `else'",
&if_stack[if_stack_pointer].locus);
last_expr_type = NULL_TREE;
}
/* Called between the then-clause and the else-clause
of an if-then-else. */
void
c_expand_start_else (void)
{
/* An ambiguous else warning must be generated for the enclosing if
statement, unless we see an else branch for that one, too. */
if (warn_parentheses
&& if_stack_pointer > 1
&& (if_stack[if_stack_pointer - 1].compstmt_count
== if_stack[if_stack_pointer - 2].compstmt_count))
if_stack[if_stack_pointer - 2].needs_warning = 1;
/* Even if a nested if statement had an else branch, it can't be
ambiguous if this one also has an else. So don't warn in that
case. Also don't warn for any if statements nested in this else. */
if_stack[if_stack_pointer - 1].needs_warning = 0;
if_stack[if_stack_pointer - 1].compstmt_count--;
}
/* Called after the else-clause for an if-statement is processed. */
void
c_finish_else (void)
{
tree if_stmt = if_stack[if_stack_pointer - 1].if_stmt;
RECHAIN_STMTS (if_stmt, ELSE_CLAUSE (if_stmt));
}
/* Begin an if-statement. Returns a newly created IF_STMT if
appropriate.
Unlike the C++ front-end, we do not call add_stmt here; it is
probably safe to do so, but I am not very familiar with this
code so I am being extra careful not to change its behavior
beyond what is strictly necessary for correctness. */
tree
c_begin_if_stmt (void)
{
tree r;
r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
return r;
}
/* Begin a while statement. Returns a newly created WHILE_STMT if
appropriate.
Unlike the C++ front-end, we do not call add_stmt here; it is
probably safe to do so, but I am not very familiar with this
code so I am being extra careful not to change its behavior
beyond what is strictly necessary for correctness. */
tree
c_begin_while_stmt (void)
{
tree r;
r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
return r;
}
void
c_finish_while_stmt_cond (tree cond, tree while_stmt)
{
WHILE_COND (while_stmt) = cond;
}
/* Push current bindings for the function name VAR_DECLS. */
void
start_fname_decls (void)
{
unsigned ix;
tree saved = NULL_TREE;
for (ix = 0; fname_vars[ix].decl; ix++)
{
tree decl = *fname_vars[ix].decl;
if (decl)
{
saved = tree_cons (decl, build_int_2 (ix, 0), saved);
*fname_vars[ix].decl = NULL_TREE;
}
}
if (saved || saved_function_name_decls)
/* Normally they'll have been NULL, so only push if we've got a
stack, or they are non-NULL. */
saved_function_name_decls = tree_cons (saved, NULL_TREE,
saved_function_name_decls);
}
/* Finish up the current bindings, adding them into the
current function's statement tree. This is done by wrapping the
function's body in a COMPOUND_STMT containing these decls too. This
must be done _before_ finish_stmt_tree is called. If there is no
current function, we must be at file scope and no statements are
involved. Pop the previous bindings. */
void
finish_fname_decls (void)
{
unsigned ix;
tree body = NULL_TREE;
tree stack = saved_function_name_decls;
for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
body = chainon (TREE_VALUE (stack), body);
if (body)
{
/* They were called into existence, so add to statement tree. Add
the DECL_STMTs inside the outermost scope. */
tree *p = &DECL_SAVED_TREE (current_function_decl);
/* Skip the dummy EXPR_STMT and any EH_SPEC_BLOCK. */
while (TREE_CODE (*p) != COMPOUND_STMT)
{
if (TREE_CODE (*p) == EXPR_STMT)
p = &TREE_CHAIN (*p);
else
p = &TREE_OPERAND(*p, 0);
}
p = &COMPOUND_BODY (*p);
if (TREE_CODE (*p) == SCOPE_STMT)
p = &TREE_CHAIN (*p);
body = chainon (body, *p);
*p = body;
}
for (ix = 0; fname_vars[ix].decl; ix++)
*fname_vars[ix].decl = NULL_TREE;
if (stack)
{
/* We had saved values, restore them. */
tree saved;
for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
{
tree decl = TREE_PURPOSE (saved);
unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
*fname_vars[ix].decl = decl;
}
stack = TREE_CHAIN (stack);
}
saved_function_name_decls = stack;
}
/* Return the text name of the current function, suitably prettified
by PRETTY_P. */
const char *
fname_as_string (int pretty_p)
{
const char *name = "top level";
int vrb = 2;
if (! pretty_p)
{
name = "";
vrb = 0;
}
if (current_function_decl)
name = (*lang_hooks.decl_printable_name) (current_function_decl, vrb);
return name;
}
/* Return the VAR_DECL for a const char array naming the current
function. If the VAR_DECL has not yet been created, create it
now. RID indicates how it should be formatted and IDENTIFIER_NODE
ID is its name (unfortunately C and C++ hold the RID values of
keywords in different places, so we can't derive RID from ID in
this language independent code. */
tree
fname_decl (unsigned int rid, tree id)
{
unsigned ix;
tree decl = NULL_TREE;
for (ix = 0; fname_vars[ix].decl; ix++)
if (fname_vars[ix].rid == rid)
break;
decl = *fname_vars[ix].decl;
if (!decl)
{
tree saved_last_tree = last_tree;
/* If a tree is built here, it would normally have the lineno of
the current statement. Later this tree will be moved to the
beginning of the function and this line number will be wrong.
To avoid this problem set the lineno to 0 here; that prevents
it from appearing in the RTL. */
int saved_lineno = input_line;
input_line = 0;
decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
if (last_tree != saved_last_tree)
{
/* We created some statement tree for the decl. This belongs
at the start of the function, so remove it now and reinsert
it after the function is complete. */
tree stmts = TREE_CHAIN (saved_last_tree);
TREE_CHAIN (saved_last_tree) = NULL_TREE;
last_tree = saved_last_tree;
saved_function_name_decls = tree_cons (decl, stmts,
saved_function_name_decls);
}
*fname_vars[ix].decl = decl;
input_line = saved_lineno;
}
if (!ix && !current_function_decl)
pedwarn ("'%D' is not defined outside of function scope", decl);
return decl;
}
/* Given a STRING_CST, give it a suitable array-of-chars data type. */
tree
fix_string_type (tree value)
{
const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
const int wide_flag = TREE_TYPE (value) == wchar_array_type_node;
const int nchars_max = flag_isoc99 ? 4095 : 509;
int length = TREE_STRING_LENGTH (value);
int nchars;
/* Compute the number of elements, for the array type. */
nchars = wide_flag ? length / wchar_bytes : length;
if (pedantic && nchars - 1 > nchars_max && !c_dialect_cxx ())
pedwarn ("string length `%d' is greater than the length `%d' ISO C%d compilers are required to support",
nchars - 1, nchars_max, flag_isoc99 ? 99 : 89);
/* Create the array type for the string constant.
-Wwrite-strings says make the string constant an array of const char
so that copying it to a non-const pointer will get a warning.
For C++, this is the standard behavior. */
if (flag_const_strings && ! flag_writable_strings)
{
tree elements
= build_type_variant (wide_flag ? wchar_type_node : char_type_node,
1, 0);
TREE_TYPE (value)
= build_array_type (elements,
build_index_type (build_int_2 (nchars - 1, 0)));
}
else
TREE_TYPE (value)
= build_array_type (wide_flag ? wchar_type_node : char_type_node,
build_index_type (build_int_2 (nchars - 1, 0)));
TREE_CONSTANT (value) = 1;
TREE_READONLY (value) = ! flag_writable_strings;
TREE_STATIC (value) = 1;
return value;
}
/* Print a warning if a constant expression had overflow in folding.
Invoke this function on every expression that the language
requires to be a constant expression.
Note the ANSI C standard says it is erroneous for a
constant expression to overflow. */
void
constant_expression_warning (tree value)
{
if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
|| TREE_CODE (value) == VECTOR_CST
|| TREE_CODE (value) == COMPLEX_CST)
&& TREE_CONSTANT_OVERFLOW (value) && pedantic)
pedwarn ("overflow in constant expression");
}
/* Print a warning if an expression had overflow in folding.
Invoke this function on every expression that
(1) appears in the source code, and
(2) might be a constant expression that overflowed, and
(3) is not already checked by convert_and_check;
however, do not invoke this function on operands of explicit casts. */
void
overflow_warning (tree value)
{
if ((TREE_CODE (value) == INTEGER_CST
|| (TREE_CODE (value) == COMPLEX_CST
&& TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
&& TREE_OVERFLOW (value))
{
TREE_OVERFLOW (value) = 0;
if (skip_evaluation == 0)
warning ("integer overflow in expression");
}
else if ((TREE_CODE (value) == REAL_CST
|| (TREE_CODE (value) == COMPLEX_CST
&& TREE_CODE (TREE_REALPART (value)) == REAL_CST))
&& TREE_OVERFLOW (value))
{
TREE_OVERFLOW (value) = 0;
if (skip_evaluation == 0)
warning ("floating point overflow in expression");
}
else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
{
TREE_OVERFLOW (value) = 0;
if (skip_evaluation == 0)
warning ("vector overflow in expression");
}
}
/* Print a warning if a large constant is truncated to unsigned,
or if -Wconversion is used and a constant < 0 is converted to unsigned.
Invoke this function on every expression that might be implicitly
converted to an unsigned type. */
void
unsigned_conversion_warning (tree result, tree operand)
{
tree type = TREE_TYPE (result);
if (TREE_CODE (operand) == INTEGER_CST
&& TREE_CODE (type) == INTEGER_TYPE
&& TREE_UNSIGNED (type)
&& skip_evaluation == 0
&& !int_fits_type_p (operand, type))
{
if (!int_fits_type_p (operand, c_common_signed_type (type)))
/* This detects cases like converting -129 or 256 to unsigned char. */
warning ("large integer implicitly truncated to unsigned type");
else if (warn_conversion)
warning ("negative integer implicitly converted to unsigned type");
}
}
/* Nonzero if constant C has a value that is permissible
for type TYPE (an INTEGER_TYPE). */
static int
constant_fits_type_p (tree c, tree type)
{
if (TREE_CODE (c) == INTEGER_CST)
return int_fits_type_p (c, type);
c = convert (type, c);
return !TREE_OVERFLOW (c);
}
/* Nonzero if vector types T1 and T2 can be converted to each other
without an explicit cast. */
int
vector_types_convertible_p (tree t1, tree t2)
{
return targetm.vector_opaque_p (t1)
|| targetm.vector_opaque_p (t2)
|| (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
&& INTEGRAL_TYPE_P (TREE_TYPE (t1))
== INTEGRAL_TYPE_P (TREE_TYPE (t2)));
}
/* Convert EXPR to TYPE, warning about conversion problems with constants.
Invoke this function on every expression that is converted implicitly,
i.e. because of language rules and not because of an explicit cast. */
tree
convert_and_check (tree type, tree expr)
{
tree t = convert (type, expr);
if (TREE_CODE (t) == INTEGER_CST)
{
if (TREE_OVERFLOW (t))
{
TREE_OVERFLOW (t) = 0;
/* Do not diagnose overflow in a constant expression merely
because a conversion overflowed. */
TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (expr);
/* No warning for converting 0x80000000 to int. */
if (!(TREE_UNSIGNED (type) < TREE_UNSIGNED (TREE_TYPE (expr))
&& TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
/* If EXPR fits in the unsigned version of TYPE,
don't warn unless pedantic. */
if ((pedantic
|| TREE_UNSIGNED (type)
|| ! constant_fits_type_p (expr,
c_common_unsigned_type (type)))
&& skip_evaluation == 0)
warning ("overflow in implicit constant conversion");
}
else
unsigned_conversion_warning (t, expr);
}
return t;
}
/* A node in a list that describes references to variables (EXPR), which are
either read accesses if WRITER is zero, or write accesses, in which case
WRITER is the parent of EXPR. */
struct tlist
{
struct tlist *next;
tree expr, writer;
};
/* Used to implement a cache the results of a call to verify_tree. We only
use this for SAVE_EXPRs. */
struct tlist_cache
{
struct tlist_cache *next;
struct tlist *cache_before_sp;
struct tlist *cache_after_sp;
tree expr;
};
/* Obstack to use when allocating tlist structures, and corresponding
firstobj. */
static struct obstack tlist_obstack;
static char *tlist_firstobj = 0;
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
warnings. */
static struct tlist *warned_ids;
/* SAVE_EXPRs need special treatment. We process them only once and then
cache the results. */
static struct tlist_cache *save_expr_cache;
static void add_tlist (struct tlist **, struct tlist *, tree, int);
static void merge_tlist (struct tlist **, struct tlist *, int);
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
static int warning_candidate_p (tree);
static void warn_for_collisions (struct tlist *);
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
static struct tlist *new_tlist (struct tlist *, tree, tree);
static void verify_sequence_points (tree);
/* Create a new struct tlist and fill in its fields. */
static struct tlist *
new_tlist (struct tlist *next, tree t, tree writer)
{
struct tlist *l;
l = obstack_alloc (&tlist_obstack, sizeof *l);
l->next = next;
l->expr = t;
l->writer = writer;
return l;
}
/* Add duplicates of the nodes found in ADD to the list *TO. If EXCLUDE_WRITER
is nonnull, we ignore any node we find which has a writer equal to it. */
static void
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
{
while (add)
{
struct tlist *next = add->next;
if (! copy)
add->next = *to;
if (! exclude_writer || add->writer != exclude_writer)
*to = copy ? new_tlist (*to, add->expr, add->writer) : add;
add = next;
}
}
/* Merge the nodes of ADD into TO. This merging process is done so that for
each variable that already exists in TO, no new node is added; however if
there is a write access recorded in ADD, and an occurrence on TO is only
a read access, then the occurrence in TO will be modified to record the
write. */
static void
merge_tlist (struct tlist **to, struct tlist *add, int copy)
{
struct tlist **end = to;
while (*end)
end = &(*end)->next;
while (add)
{
int found = 0;
struct tlist *tmp2;
struct tlist *next = add->next;
for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
if (tmp2->expr == add->expr)
{
found = 1;
if (! tmp2->writer)
tmp2->writer = add->writer;
}
if (! found)
{
*end = copy ? add : new_tlist (NULL, add->expr, add->writer);
end = &(*end)->next;
*end = 0;
}
add = next;
}
}
/* WRITTEN is a variable, WRITER is its parent. Warn if any of the variable
references in list LIST conflict with it, excluding reads if ONLY writers
is nonzero. */
static void
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
int only_writes)
{
struct tlist *tmp;
/* Avoid duplicate warnings. */
for (tmp = warned_ids; tmp; tmp = tmp->next)
if (tmp->expr == written)
return;
while (list)
{
if (list->expr == written
&& list->writer != writer
&& (! only_writes || list->writer))
{
warned_ids = new_tlist (warned_ids, written, NULL_TREE);
warning ("operation on `%s' may be undefined",
IDENTIFIER_POINTER (DECL_NAME (list->expr)));
}
list = list->next;
}
}
/* Given a list LIST of references to variables, find whether any of these
can cause conflicts due to missing sequence points. */
static void
warn_for_collisions (struct tlist *list)
{
struct tlist *tmp;
for (tmp = list; tmp; tmp = tmp->next)
{
if (tmp->writer)
warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
}
}
/* Return nonzero if X is a tree that can be verified by the sequence point
warnings. */
static int
warning_candidate_p (tree x)
{
return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
}
/* Walk the tree X, and record accesses to variables. If X is written by the
parent tree, WRITER is the parent.
We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP. If this
expression or its only operand forces a sequence point, then everything up
to the sequence point is stored in PBEFORE_SP. Everything else gets stored
in PNO_SP.
Once we return, we will have emitted warnings if any subexpression before
such a sequence point could be undefined. On a higher level, however, the
sequence point may not be relevant, and we'll merge the two lists.
Example: (b++, a) + b;
The call that processes the COMPOUND_EXPR will store the increment of B
in PBEFORE_SP, and the use of A in PNO_SP. The higher-level call that
processes the PLUS_EXPR will need to merge the two lists so that
eventually, all accesses end up on the same list (and we'll warn about the
unordered subexpressions b++ and b.
A note on merging. If we modify the former example so that our expression
becomes
(b++, b) + a
care must be taken not simply to add all three expressions into the final
PNO_SP list. The function merge_tlist takes care of that by merging the
before-SP list of the COMPOUND_EXPR into its after-SP list in a special
way, so that no more than one access to B is recorded. */
static void
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
tree writer)
{
struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
enum tree_code code;
char class;
/* X may be NULL if it is the operand of an empty statement expression
({ }). */
if (x == NULL)
return;
restart:
code = TREE_CODE (x);
class = TREE_CODE_CLASS (code);
if (warning_candidate_p (x))
{
*pno_sp = new_tlist (*pno_sp, x, writer);
return;
}
switch (code)
{
case CONSTRUCTOR:
return;
case COMPOUND_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
tmp_before = tmp_nosp = tmp_list3 = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
merge_tlist (pbefore_sp, tmp_before, 0);
merge_tlist (pbefore_sp, tmp_nosp, 0);
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
merge_tlist (pbefore_sp, tmp_list3, 0);
return;
case COND_EXPR:
tmp_before = tmp_list2 = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
warn_for_collisions (tmp_list2);
merge_tlist (pbefore_sp, tmp_before, 0);
merge_tlist (pbefore_sp, tmp_list2, 1);
tmp_list3 = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
merge_tlist (pbefore_sp, tmp_list3, 0);
tmp_list3 = tmp_list2 = 0;
verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
warn_for_collisions (tmp_list2);
merge_tlist (pbefore_sp, tmp_list3, 0);
/* Rather than add both tmp_nosp and tmp_list2, we have to merge the
two first, to avoid warning for (a ? b++ : b++). */
merge_tlist (&tmp_nosp, tmp_list2, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
return;
case PREDECREMENT_EXPR:
case PREINCREMENT_EXPR:
case POSTDECREMENT_EXPR:
case POSTINCREMENT_EXPR:
verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
return;
case MODIFY_EXPR:
tmp_before = tmp_nosp = tmp_list3 = 0;
verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
/* Expressions inside the LHS are not ordered wrt. the sequence points
in the RHS. Example:
*a = (a++, 2)
Despite the fact that the modification of "a" is in the before_sp
list (tmp_before), it conflicts with the use of "a" in the LHS.
We can handle this by adding the contents of tmp_list3
to those of tmp_before, and redoing the collision warnings for that
list. */
add_tlist (&tmp_before, tmp_list3, x, 1);
warn_for_collisions (tmp_before);
/* Exclude the LHS itself here; we first have to merge it into the
tmp_nosp list. This is done to avoid warning for "a = a"; if we
didn't exclude the LHS, we'd get it twice, once as a read and once
as a write. */
add_tlist (pno_sp, tmp_list3, x, 0);
warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
merge_tlist (pbefore_sp, tmp_before, 0);
if (warning_candidate_p (TREE_OPERAND (x, 0)))
merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
return;
case CALL_EXPR:
/* We need to warn about conflicts among arguments and conflicts between
args and the function address. Side effects of the function address,
however, are not ordered by the sequence point of the call. */
tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
if (TREE_OPERAND (x, 1))
verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
merge_tlist (&tmp_list3, tmp_list2, 0);
add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
warn_for_collisions (tmp_before);
add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
return;
case TREE_LIST:
/* Scan all the list, e.g. indices of multi dimensional array. */
while (x)
{
tmp_before = tmp_nosp = 0;
verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
merge_tlist (&tmp_nosp, tmp_before, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
x = TREE_CHAIN (x);
}
return;
case SAVE_EXPR:
{
struct tlist_cache *t;
for (t = save_expr_cache; t; t = t->next)
if (t->expr == x)
break;
if (! t)
{
t = obstack_alloc (&tlist_obstack, sizeof *t);
t->next = save_expr_cache;
t->expr = x;
save_expr_cache = t;
tmp_before = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
warn_for_collisions (tmp_nosp);
tmp_list3 = 0;
while (tmp_nosp)
{
struct tlist *t = tmp_nosp;
tmp_nosp = t->next;
merge_tlist (&tmp_list3, t, 0);
}
t->cache_before_sp = tmp_before;
t->cache_after_sp = tmp_list3;
}
merge_tlist (pbefore_sp, t->cache_before_sp, 1);
add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
return;
}
default:
break;
}
if (class == '1')
{
if (first_rtl_op (code) == 0)
return;
x = TREE_OPERAND (x, 0);
writer = 0;
goto restart;
}
switch (class)
{
case 'r':
case '<':
case '2':
case 'b':
case 'e':
case 's':
case 'x':
{
int lp;
int max = first_rtl_op (TREE_CODE (x));
for (lp = 0; lp < max; lp++)
{
tmp_before = tmp_nosp = 0;
verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, NULL_TREE);
merge_tlist (&tmp_nosp, tmp_before, 0);
add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
}
break;
}
}
}
/* Try to warn for undefined behavior in EXPR due to missing sequence
points. */
static void
verify_sequence_points (tree expr)
{
struct tlist *before_sp = 0, *after_sp = 0;
warned_ids = 0;
save_expr_cache = 0;
if (tlist_firstobj == 0)
{
gcc_obstack_init (&tlist_obstack);
tlist_firstobj = obstack_alloc (&tlist_obstack, 0);
}
verify_tree (expr, &before_sp, &after_sp, 0);
warn_for_collisions (after_sp);
obstack_free (&tlist_obstack, tlist_firstobj);
}
tree
c_expand_expr_stmt (tree expr)
{
/* Do default conversion if safe and possibly important,
in case within ({...}). */
if ((TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE
&& (flag_isoc99 || lvalue_p (expr)))
|| TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)
expr = default_conversion (expr);
if (warn_sequence_point)
verify_sequence_points (expr);
if (TREE_TYPE (expr) != error_mark_node
&& !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
&& TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
error ("expression statement has incomplete type");
last_expr_type = TREE_TYPE (expr);
return add_stmt (build_stmt (EXPR_STMT, expr));
}
/* Validate the expression after `case' and apply default promotions. */
tree
check_case_value (tree value)
{
if (value == NULL_TREE)
return value;
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
STRIP_TYPE_NOPS (value);
/* In C++, the following is allowed:
const int i = 3;
switch (...) { case i: ... }
So, we try to reduce the VALUE to a constant that way. */
if (c_dialect_cxx ())
{
value = decl_constant_value (value);
STRIP_TYPE_NOPS (value);
value = fold (value);
}
if (TREE_CODE (value) != INTEGER_CST
&& value != error_mark_node)
{
error ("case label does not reduce to an integer constant");
value = error_mark_node;
}
else
/* Promote char or short to int. */
value = default_conversion (value);
constant_expression_warning (value);
return value;
}
/* Return an integer type with BITS bits of precision,
that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
tree
c_common_type_for_size (unsigned int bits, int unsignedp)
{
if (bits == TYPE_PRECISION (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (bits == TYPE_PRECISION (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (bits == TYPE_PRECISION (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (bits == TYPE_PRECISION (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (bits == TYPE_PRECISION (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
return (unsignedp ? widest_unsigned_literal_type_node
: widest_integer_literal_type_node);
if (bits <= TYPE_PRECISION (intQI_type_node))
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
if (bits <= TYPE_PRECISION (intHI_type_node))
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (bits <= TYPE_PRECISION (intSI_type_node))
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (bits <= TYPE_PRECISION (intDI_type_node))
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
return 0;
}
/* Used for communication between c_common_type_for_mode and
c_register_builtin_type. */
static GTY(()) tree registered_builtin_types;
/* Return a data type that has machine mode MODE.
If the mode is an integer,
then UNSIGNEDP selects between signed and unsigned types. */
tree
c_common_type_for_mode (enum machine_mode mode, int unsignedp)
{
tree t;
if (mode == TYPE_MODE (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (mode == TYPE_MODE (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (mode == TYPE_MODE (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (mode == TYPE_MODE (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (mode == TYPE_MODE (long_long_integer_type_node))
return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
if (mode == TYPE_MODE (widest_integer_literal_type_node))
return unsignedp ? widest_unsigned_literal_type_node
: widest_integer_literal_type_node;
if (mode == QImode)
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
if (mode == HImode)
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (mode == SImode)
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (mode == DImode)
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
if (mode == TYPE_MODE (intTI_type_node))
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (mode == TYPE_MODE (float_type_node))
return float_type_node;
if (mode == TYPE_MODE (double_type_node))
return double_type_node;
if (mode == TYPE_MODE (long_double_type_node))
return long_double_type_node;
if (mode == TYPE_MODE (void_type_node))
return void_type_node;
if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
return unsignedp ? make_unsigned_type (mode) : make_signed_type (mode);
if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
return unsignedp ? make_unsigned_type (mode) : make_signed_type (mode);
switch (mode)
{
case V16QImode:
return unsignedp ? unsigned_V16QI_type_node : V16QI_type_node;
case V8HImode:
return unsignedp ? unsigned_V8HI_type_node : V8HI_type_node;
case V4SImode:
return unsignedp ? unsigned_V4SI_type_node : V4SI_type_node;
case V2DImode:
return unsignedp ? unsigned_V2DI_type_node : V2DI_type_node;
case V2SImode:
return unsignedp ? unsigned_V2SI_type_node : V2SI_type_node;
case V2HImode:
return unsignedp ? unsigned_V2HI_type_node : V2HI_type_node;
case V4HImode:
return unsignedp ? unsigned_V4HI_type_node : V4HI_type_node;
case V8QImode:
return unsignedp ? unsigned_V8QI_type_node : V8QI_type_node;
case V1DImode:
return unsignedp ? unsigned_V1DI_type_node : V1DI_type_node;
case V16SFmode:
return V16SF_type_node;
case V4SFmode:
return V4SF_type_node;
case V2SFmode:
return V2SF_type_node;
case V2DFmode:
return V2DF_type_node;
case V4DFmode:
return V4DF_type_node;
default:
break;
}
for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
if (TYPE_MODE (TREE_VALUE (t)) == mode)
return TREE_VALUE (t);
return 0;
}
/* Return an unsigned type the same as TYPE in other respects. */
tree
c_common_unsigned_type (tree type)
{
tree type1 = TYPE_MAIN_VARIANT (type);
if (type1 == signed_char_type_node || type1 == char_type_node)
return unsigned_char_type_node;
if (type1 == integer_type_node)
return unsigned_type_node;
if (type1 == short_integer_type_node)
return short_unsigned_type_node;
if (type1 == long_integer_type_node)
return long_unsigned_type_node;
if (type1 == long_long_integer_type_node)
return long_long_unsigned_type_node;
if (type1 == widest_integer_literal_type_node)
return widest_unsigned_literal_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
if (type1 == intTI_type_node)
return unsigned_intTI_type_node;
#endif
if (type1 == intDI_type_node)
return unsigned_intDI_type_node;
if (type1 == intSI_type_node)
return unsigned_intSI_type_node;
if (type1 == intHI_type_node)
return unsigned_intHI_type_node;
if (type1 == intQI_type_node)
return unsigned_intQI_type_node;
return c_common_signed_or_unsigned_type (1, type);
}
/* Return a signed type the same as TYPE in other respects. */
tree
c_common_signed_type (tree type)
{
tree type1 = TYPE_MAIN_VARIANT (type);
if (type1 == unsigned_char_type_node || type1 == char_type_node)
return signed_char_type_node;
if (type1 == unsigned_type_node)
return integer_type_node;
if (type1 == short_unsigned_type_node)
return short_integer_type_node;
if (type1 == long_unsigned_type_node)
return long_integer_type_node;
if (type1 == long_long_unsigned_type_node)
return long_long_integer_type_node;
if (type1 == widest_unsigned_literal_type_node)
return widest_integer_literal_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
if (type1 == unsigned_intTI_type_node)
return intTI_type_node;
#endif
if (type1 == unsigned_intDI_type_node)
return intDI_type_node;
if (type1 == unsigned_intSI_type_node)
return intSI_type_node;
if (type1 == unsigned_intHI_type_node)
return intHI_type_node;
if (type1 == unsigned_intQI_type_node)
return intQI_type_node;
return c_common_signed_or_unsigned_type (0, type);
}
/* Return a type the same as TYPE except unsigned or
signed according to UNSIGNEDP. */
tree
c_common_signed_or_unsigned_type (int unsignedp, tree type)
{
if (! INTEGRAL_TYPE_P (type)
|| TREE_UNSIGNED (type) == unsignedp)
return type;
/* Must check the mode of the types, not the precision. Enumeral types
in C++ have precision set to match their range, but may use a wider
mode to match an ABI. If we change modes, we may wind up with bad
conversions. */
if (TYPE_MODE (type) == TYPE_MODE (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (TYPE_MODE (type) == TYPE_MODE (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (TYPE_MODE (type) == TYPE_MODE (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (TYPE_MODE (type) == TYPE_MODE (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (TYPE_MODE (type) == TYPE_MODE (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
if (TYPE_MODE (type) == TYPE_MODE (widest_integer_literal_type_node))
return (unsignedp ? widest_unsigned_literal_type_node
: widest_integer_literal_type_node);
#if HOST_BITS_PER_WIDE_INT >= 64
if (TYPE_MODE (type) == TYPE_MODE (intTI_type_node))
return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
if (TYPE_MODE (type) == TYPE_MODE (intDI_type_node))
return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
if (TYPE_MODE (type) == TYPE_MODE (intSI_type_node))
return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
if (TYPE_MODE (type) == TYPE_MODE (intHI_type_node))
return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
if (TYPE_MODE (type) == TYPE_MODE (intQI_type_node))
return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
return type;
}
/* The C version of the register_builtin_type langhook. */
void
c_register_builtin_type (tree type, const char* name)
{
tree decl;
decl = build_decl (TYPE_DECL, get_identifier (name), type);
DECL_ARTIFICIAL (decl) = 1;
if (!TYPE_NAME (type))
TYPE_NAME (type) = decl;
pushdecl (decl);
registered_builtin_types = tree_cons (0, type, registered_builtin_types);
}
/* Return the minimum number of bits needed to represent VALUE in a
signed or unsigned type, UNSIGNEDP says which. */
unsigned int
min_precision (tree value, int unsignedp)
{
int log;
/* If the value is negative, compute its negative minus 1. The latter
adjustment is because the absolute value of the largest negative value
is one larger than the largest positive value. This is equivalent to
a bit-wise negation, so use that operation instead. */
if (tree_int_cst_sgn (value) < 0)
value = fold (build1 (BIT_NOT_EXPR, TREE_TYPE (value), value));
/* Return the number of bits needed, taking into account the fact
that we need one more bit for a signed than unsigned type. */
if (integer_zerop (value))
log = 0;
else
log = tree_floor_log2 (value);
return log + 1 + ! unsignedp;
}
/* Print an error message for invalid operands to arith operation
CODE. NOP_EXPR is used as a special case (see
c_common_truthvalue_conversion). */
void
binary_op_error (enum tree_code code)
{
const char *opname;
switch (code)
{
case NOP_EXPR:
error ("invalid truth-value expression");
return;
case PLUS_EXPR:
opname = "+"; break;
case MINUS_EXPR:
opname = "-"; break;
case MULT_EXPR:
opname = "*"; break;
case MAX_EXPR:
opname = "max"; break;
case MIN_EXPR:
opname = "min"; break;
case EQ_EXPR:
opname = "=="; break;
case NE_EXPR:
opname = "!="; break;
case LE_EXPR:
opname = "<="; break;
case GE_EXPR:
opname = ">="; break;
case LT_EXPR:
opname = "<"; break;
case GT_EXPR:
opname = ">"; break;
case LSHIFT_EXPR:
opname = "<<"; break;
case RSHIFT_EXPR:
opname = ">>"; break;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
opname = "%"; break;
case TRUNC_DIV_EXPR:
case FLOOR_DIV_EXPR:
opname = "/"; break;
case BIT_AND_EXPR:
opname = "&"; break;
case BIT_IOR_EXPR:
opname = "|"; break;
case TRUTH_ANDIF_EXPR:
opname = "&&"; break;
case TRUTH_ORIF_EXPR:
opname = "||"; break;
case BIT_XOR_EXPR:
opname = "^"; break;
case LROTATE_EXPR:
case RROTATE_EXPR:
opname = "rotate"; break;
default:
opname = "unknown"; break;
}
error ("invalid operands to binary %s", opname);
}
/* Subroutine of build_binary_op, used for comparison operations.
See if the operands have both been converted from subword integer types
and, if so, perhaps change them both back to their original type.
This function is also responsible for converting the two operands
to the proper common type for comparison.
The arguments of this function are all pointers to local variables
of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
If this function returns nonzero, it means that the comparison has
a constant value. What this function returns is an expression for
that value. */
tree
shorten_compare (tree *op0_ptr, tree *op1_ptr, tree *restype_ptr,
enum tree_code *rescode_ptr)
{
tree type;
tree op0 = *op0_ptr;
tree op1 = *op1_ptr;
int unsignedp0, unsignedp1;
int real1, real2;
tree primop0, primop1;
enum tree_code code = *rescode_ptr;
/* Throw away any conversions to wider types
already present in the operands. */
primop0 = get_narrower (op0, &unsignedp0);
primop1 = get_narrower (op1, &unsignedp1);
/* Handle the case that OP0 does not *contain* a conversion
but it *requires* conversion to FINAL_TYPE. */
if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
unsignedp0 = TREE_UNSIGNED (TREE_TYPE (op0));
if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
unsignedp1 = TREE_UNSIGNED (TREE_TYPE (op1));
/* If one of the operands must be floated, we cannot optimize. */
real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
/* If first arg is constant, swap the args (changing operation
so value is preserved), for canonicalization. Don't do this if
the second arg is 0. */
if (TREE_CONSTANT (primop0)
&& ! integer_zerop (primop1) && ! real_zerop (primop1))
{
tree tem = primop0;
int temi = unsignedp0;
primop0 = primop1;
primop1 = tem;
tem = op0;
op0 = op1;
op1 = tem;
*op0_ptr = op0;
*op1_ptr = op1;
unsignedp0 = unsignedp1;
unsignedp1 = temi;
temi = real1;
real1 = real2;
real2 = temi;
switch (code)
{
case LT_EXPR:
code = GT_EXPR;
break;
case GT_EXPR:
code = LT_EXPR;
break;
case LE_EXPR:
code = GE_EXPR;
break;
case GE_EXPR:
code = LE_EXPR;
break;
default:
break;
}
*rescode_ptr = code;
}
/* If comparing an integer against a constant more bits wide,
maybe we can deduce a value of 1 or 0 independent of the data.
Or else truncate the constant now
rather than extend the variable at run time.
This is only interesting if the constant is the wider arg.
Also, it is not safe if the constant is unsigned and the
variable arg is signed, since in this case the variable
would be sign-extended and then regarded as unsigned.
Our technique fails in this case because the lowest/highest
possible unsigned results don't follow naturally from the
lowest/highest possible values of the variable operand.
For just EQ_EXPR and NE_EXPR there is another technique that
could be used: see if the constant can be faithfully represented
in the other operand's type, by truncating it and reextending it
and see if that preserves the constant's value. */
if (!real1 && !real2
&& TREE_CODE (primop1) == INTEGER_CST
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
{
int min_gt, max_gt, min_lt, max_lt;
tree maxval, minval;
/* 1 if comparison is nominally unsigned. */
int unsignedp = TREE_UNSIGNED (*restype_ptr);
tree val;
type = c_common_signed_or_unsigned_type (unsignedp0,
TREE_TYPE (primop0));
/* In C, if TYPE is an enumeration, then we need to get its
min/max values from it's underlying integral type, not the
enumerated type itself. In C++, TYPE_MAX_VALUE and
TYPE_MIN_VALUE have already been set correctly on the
enumeration type. */
if (!c_dialect_cxx() && TREE_CODE (type) == ENUMERAL_TYPE)
type = c_common_type_for_size (TYPE_PRECISION (type), unsignedp0);
maxval = TYPE_MAX_VALUE (type);
minval = TYPE_MIN_VALUE (type);
if (unsignedp && !unsignedp0)
*restype_ptr = c_common_signed_type (*restype_ptr);
if (TREE_TYPE (primop1) != *restype_ptr)
primop1 = convert (*restype_ptr, primop1);
if (type != *restype_ptr)
{
minval = convert (*restype_ptr, minval);
maxval = convert (*restype_ptr, maxval);
}
if (unsignedp && unsignedp0)
{
min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
}
else
{
min_gt = INT_CST_LT (primop1, minval);
max_gt = INT_CST_LT (primop1, maxval);
min_lt = INT_CST_LT (minval, primop1);
max_lt = INT_CST_LT (maxval, primop1);
}
val = 0;
/* This used to be a switch, but Genix compiler can't handle that. */
if (code == NE_EXPR)
{
if (max_lt || min_gt)
val = truthvalue_true_node;
}
else if (code == EQ_EXPR)
{
if (max_lt || min_gt)
val = truthvalue_false_node;
}
else if (code == LT_EXPR)
{
if (max_lt)
val = truthvalue_true_node;
if (!min_lt)
val = truthvalue_false_node;
}
else if (code == GT_EXPR)
{
if (min_gt)
val = truthvalue_true_node;
if (!max_gt)
val = truthvalue_false_node;
}
else if (code == LE_EXPR)
{
if (!max_gt)
val = truthvalue_true_node;
if (min_gt)
val = truthvalue_false_node;
}
else if (code == GE_EXPR)
{
if (!min_lt)
val = truthvalue_true_node;
if (max_lt)
val = truthvalue_false_node;
}
/* If primop0 was sign-extended and unsigned comparison specd,
we did a signed comparison above using the signed type bounds.
But the comparison we output must be unsigned.
Also, for inequalities, VAL is no good; but if the signed
comparison had *any* fixed result, it follows that the
unsigned comparison just tests the sign in reverse
(positive values are LE, negative ones GE).
So we can generate an unsigned comparison
against an extreme value of the signed type. */
if (unsignedp && !unsignedp0)
{
if (val != 0)
switch (code)
{
case LT_EXPR:
case GE_EXPR:
primop1 = TYPE_MIN_VALUE (type);
val = 0;
break;
case LE_EXPR:
case GT_EXPR:
primop1 = TYPE_MAX_VALUE (type);
val = 0;
break;
default:
break;
}
type = c_common_unsigned_type (type);
}
if (TREE_CODE (primop0) != INTEGER_CST)
{
if (val == truthvalue_false_node)
warning ("comparison is always false due to limited range of data type");
if (val == truthvalue_true_node)
warning ("comparison is always true due to limited range of data type");
}
if (val != 0)
{
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
if (TREE_SIDE_EFFECTS (primop0))
return build (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
return val;
}
/* Value is not predetermined, but do the comparison
in the type of the operand that is not constant.
TYPE is already properly set. */
}
else if (real1 && real2
&& (TYPE_PRECISION (TREE_TYPE (primop0))
== TYPE_PRECISION (TREE_TYPE (primop1))))
type = TREE_TYPE (primop0);
/* If args' natural types are both narrower than nominal type
and both extend in the same manner, compare them
in the type of the wider arg.
Otherwise must actually extend both to the nominal
common type lest different ways of extending
alter the result.
(eg, (short)-1 == (unsigned short)-1 should be 0.) */
else if (unsignedp0 == unsignedp1 && real1 == real2
&& TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
&& TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
{
type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
type = c_common_signed_or_unsigned_type (unsignedp0
|| TREE_UNSIGNED (*restype_ptr),
type);
/* Make sure shorter operand is extended the right way
to match the longer operand. */
primop0
= convert (c_common_signed_or_unsigned_type (unsignedp0,
TREE_TYPE (primop0)),
primop0);
primop1
= convert (c_common_signed_or_unsigned_type (unsignedp1,
TREE_TYPE (primop1)),
primop1);
}
else
{
/* Here we must do the comparison on the nominal type
using the args exactly as we received them. */
type = *restype_ptr;
primop0 = op0;
primop1 = op1;
if (!real1 && !real2 && integer_zerop (primop1)
&& TREE_UNSIGNED (*restype_ptr))
{
tree value = 0;
switch (code)
{
case GE_EXPR:
/* All unsigned values are >= 0, so we warn if extra warnings
are requested. However, if OP0 is a constant that is
>= 0, the signedness of the comparison isn't an issue,
so suppress the warning. */
if (extra_warnings && !in_system_header
&& ! (TREE_CODE (primop0) == INTEGER_CST
&& ! TREE_OVERFLOW (convert (c_common_signed_type (type),
primop0))))
warning ("comparison of unsigned expression >= 0 is always true");
value = truthvalue_true_node;
break;
case LT_EXPR:
if (extra_warnings && !in_system_header
&& ! (TREE_CODE (primop0) == INTEGER_CST
&& ! TREE_OVERFLOW (convert (c_common_signed_type (type),
primop0))))
warning ("comparison of unsigned expression < 0 is always false");
value = truthvalue_false_node;
break;
default:
break;
}
if (value != 0)
{
/* Don't forget to evaluate PRIMOP0 if it has side effects. */
if (TREE_SIDE_EFFECTS (primop0))
return build (COMPOUND_EXPR, TREE_TYPE (value),
primop0, value);
return value;
}
}
}
*op0_ptr = convert (type, primop0);
*op1_ptr = convert (type, primop1);
*restype_ptr = truthvalue_type_node;
return 0;
}
/* Return a tree for the sum or difference (RESULTCODE says which)
of pointer PTROP and integer INTOP. */
tree
pointer_int_sum (enum tree_code resultcode, tree ptrop, tree intop)
{
tree size_exp;
tree result;
tree folded;
/* The result is a pointer of the same type that is being added. */
tree result_type = TREE_TYPE (ptrop);
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("pointer of type `void *' used in arithmetic");
size_exp = integer_one_node;
}
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("pointer to a function used in arithmetic");
size_exp = integer_one_node;
}
else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("pointer to member function used in arithmetic");
size_exp = integer_one_node;
}
else
size_exp = size_in_bytes (TREE_TYPE (result_type));
/* If what we are about to multiply by the size of the elements
contains a constant term, apply distributive law
and multiply that constant term separately.
This helps produce common subexpressions. */
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
&& ! TREE_CONSTANT (intop)
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
&& TREE_CONSTANT (size_exp)
/* If the constant comes from pointer subtraction,
skip this optimization--it would cause an error. */
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
/* If the constant is unsigned, and smaller than the pointer size,
then we must skip this optimization. This is because it could cause
an overflow error if the constant is negative but INTOP is not. */
&& (! TREE_UNSIGNED (TREE_TYPE (intop))
|| (TYPE_PRECISION (TREE_TYPE (intop))
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
{
enum tree_code subcode = resultcode;
tree int_type = TREE_TYPE (intop);
if (TREE_CODE (intop) == MINUS_EXPR)
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
/* Convert both subexpression types to the type of intop,
because weird cases involving pointer arithmetic
can result in a sum or difference with different type args. */
ptrop = build_binary_op (subcode, ptrop,
convert (int_type, TREE_OPERAND (intop, 1)), 1);
intop = convert (int_type, TREE_OPERAND (intop, 0));
}
/* Convert the integer argument to a type the same size as sizetype
so the multiply won't overflow spuriously. */
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|| TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
TREE_UNSIGNED (sizetype)), intop);
/* Replace the integer argument with a suitable product by the object size.
Do this multiplication as signed, then convert to the appropriate
pointer type (actually unsigned integral). */
intop = convert (result_type,
build_binary_op (MULT_EXPR, intop,
convert (TREE_TYPE (intop), size_exp), 1));
/* Create the sum or difference. */
result = build (resultcode, result_type, ptrop, intop);
folded = fold (result);
if (folded == result)
TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
return folded;
}
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
or validate its data type for an `if' or `while' statement or ?..: exp.
This preparation consists of taking the ordinary
representation of an expression expr and producing a valid tree
boolean expression describing whether expr is nonzero. We could
simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
but we optimize comparisons, &&, ||, and !.
The resulting type should always be `truthvalue_type_node'. */
tree
c_common_truthvalue_conversion (tree expr)
{
if (TREE_CODE (expr) == ERROR_MARK)
return expr;
if (TREE_CODE (expr) == FUNCTION_DECL)
expr = build_unary_op (ADDR_EXPR, expr, 0);
#if 0 /* This appears to be wrong for C++. */
/* These really should return error_mark_node after 2.4 is stable.
But not all callers handle ERROR_MARK properly. */
switch (TREE_CODE (TREE_TYPE (expr)))
{
case RECORD_TYPE:
error ("struct type value used where scalar is required");
return truthvalue_false_node;
case UNION_TYPE:
error ("union type value used where scalar is required");
return truthvalue_false_node;
case ARRAY_TYPE:
error ("array type value used where scalar is required");
return truthvalue_false_node;
default:
break;
}
#endif /* 0 */
switch (TREE_CODE (expr))
{
case EQ_EXPR:
case NE_EXPR: case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_NOT_EXPR:
TREE_TYPE (expr) = truthvalue_type_node;
return expr;
case ERROR_MARK:
return expr;
case INTEGER_CST:
return integer_zerop (expr) ? truthvalue_false_node : truthvalue_true_node;
case REAL_CST:
return real_zerop (expr) ? truthvalue_false_node : truthvalue_true_node;
case ADDR_EXPR:
{
if (TREE_CODE (TREE_OPERAND (expr, 0)) == FUNCTION_DECL
&& ! DECL_WEAK (TREE_OPERAND (expr, 0)))
{
/* Common Ada/Pascal programmer's mistake. We always warn
about this since it is so bad. */
warning ("the address of `%D', will always evaluate as `true'",
TREE_OPERAND (expr, 0));
return truthvalue_true_node;
}
/* If we are taking the address of an external decl, it might be
zero if it is weak, so we cannot optimize. */
if (DECL_P (TREE_OPERAND (expr, 0))
&& DECL_EXTERNAL (TREE_OPERAND (expr, 0)))
break;
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 0)))
return build (COMPOUND_EXPR, truthvalue_type_node,
TREE_OPERAND (expr, 0), truthvalue_true_node);
else
return truthvalue_true_node;
}
case COMPLEX_EXPR:
return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
0);
case NEGATE_EXPR:
case ABS_EXPR:
case FLOAT_EXPR:
/* These don't change whether an object is nonzero or zero. */
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
case LROTATE_EXPR:
case RROTATE_EXPR:
/* These don't change whether an object is zero or nonzero, but
we can't ignore them if their second arg has side-effects. */
if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
return build (COMPOUND_EXPR, truthvalue_type_node, TREE_OPERAND (expr, 1),
c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
else
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
case COND_EXPR:
/* Distribute the conversion into the arms of a COND_EXPR. */
return fold (build (COND_EXPR, truthvalue_type_node, TREE_OPERAND (expr, 0),
c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
c_common_truthvalue_conversion (TREE_OPERAND (expr, 2))));
case CONVERT_EXPR:
/* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
since that affects how `default_conversion' will behave. */
if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
|| TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
break;
/* Fall through.... */
case NOP_EXPR:
/* If this is widening the argument, we can ignore it. */
if (TYPE_PRECISION (TREE_TYPE (expr))
>= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
break;
case MINUS_EXPR:
/* Perhaps reduce (x - y) != 0 to (x != y). The expressions
aren't guaranteed to the be same for modes that can represent
infinity, since if x and y are both +infinity, or both
-infinity, then x - y is not a number.
Note that this transformation is safe when x or y is NaN.
(x - y) is then NaN, and both (x - y) != 0 and x != y will
be false. */
if (HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0)))))
break;
/* Fall through.... */
case BIT_XOR_EXPR:
/* This and MINUS_EXPR can be changed into a comparison of the
two objects. */
if (TREE_TYPE (TREE_OPERAND (expr, 0))
== TREE_TYPE (TREE_OPERAND (expr, 1)))
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1), 1);
return build_binary_op (NE_EXPR, TREE_OPERAND (expr, 0),
fold (build1 (NOP_EXPR,
TREE_TYPE (TREE_OPERAND (expr, 0)),
TREE_OPERAND (expr, 1))), 1);
case BIT_AND_EXPR:
if (integer_onep (TREE_OPERAND (expr, 1))
&& TREE_TYPE (expr) != truthvalue_type_node)
/* Using convert here would cause infinite recursion. */
return build1 (NOP_EXPR, truthvalue_type_node, expr);
break;
case MODIFY_EXPR:
if (warn_parentheses && C_EXP_ORIGINAL_CODE (expr) == MODIFY_EXPR)
warning ("suggest parentheses around assignment used as truth value");
break;
default:
break;
}
if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
{
tree t = save_expr (expr);
return (build_binary_op
((TREE_SIDE_EFFECTS (expr)
? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
c_common_truthvalue_conversion (build_unary_op (REALPART_EXPR, t, 0)),
c_common_truthvalue_conversion (build_unary_op (IMAGPART_EXPR, t, 0)),
0));
}
return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
}
static tree builtin_function_2 (const char *, const char *, tree, tree,
int, enum built_in_class, int, int,
tree);
/* Make a variant type in the proper way for C/C++, propagating qualifiers
down to the element type of an array. */
tree
c_build_qualified_type (tree type, int type_quals)
{
if (type == error_mark_node)
return type;
if (TREE_CODE (type) == ARRAY_TYPE)
return build_array_type (c_build_qualified_type (TREE_TYPE (type),
type_quals),
TYPE_DOMAIN (type));
/* A restrict-qualified pointer type must be a pointer to object or
incomplete type. Note that the use of POINTER_TYPE_P also allows
REFERENCE_TYPEs, which is appropriate for C++. */
if ((type_quals & TYPE_QUAL_RESTRICT)
&& (!POINTER_TYPE_P (type)
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
{
error ("invalid use of `restrict'");
type_quals &= ~TYPE_QUAL_RESTRICT;
}
return build_qualified_type (type, type_quals);
}
/* Apply the TYPE_QUALS to the new DECL. */
void
c_apply_type_quals_to_decl (int type_quals, tree decl)
{
tree type = TREE_TYPE (decl);
if (type == error_mark_node)
return;
if (((type_quals & TYPE_QUAL_CONST)
|| (type && TREE_CODE (type) == REFERENCE_TYPE))
/* An object declared 'const' is only readonly after it is
initialized. We don't have any way of expressing this currently,
so we need to be conservative and unset TREE_READONLY for types
with constructors. Otherwise aliasing code will ignore stores in
an inline constructor. */
&& !(type && TYPE_NEEDS_CONSTRUCTING (type)))
TREE_READONLY (decl) = 1;
if (type_quals & TYPE_QUAL_VOLATILE)
{
TREE_SIDE_EFFECTS (decl) = 1;
TREE_THIS_VOLATILE (decl) = 1;
}
if (type_quals & TYPE_QUAL_RESTRICT)
{
while (type && TREE_CODE (type) == ARRAY_TYPE)
/* Allow 'restrict' on arrays of pointers.
FIXME currently we just ignore it. */
type = TREE_TYPE (type);
if (!type
|| !POINTER_TYPE_P (type)
|| !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
error ("invalid use of `restrict'");
else if (flag_strict_aliasing && type == TREE_TYPE (decl))
/* Indicate we need to make a unique alias set for this pointer.
We can't do it here because it might be pointing to an
incomplete type. */
DECL_POINTER_ALIAS_SET (decl) = -2;
}
}
/* Return the typed-based alias set for T, which may be an expression
or a type. Return -1 if we don't do anything special. */
HOST_WIDE_INT
c_common_get_alias_set (tree t)
{
tree u;
/* Permit type-punning when accessing a union, provided the access
is directly through the union. For example, this code does not
permit taking the address of a union member and then storing
through it. Even the type-punning allowed here is a GCC
extension, albeit a common and useful one; the C standard says
that such accesses have implementation-defined behavior. */
for (u = t;
TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
u = TREE_OPERAND (u, 0))
if (TREE_CODE (u) == COMPONENT_REF
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
return 0;
/* That's all the expressions we handle specially. */
if (! TYPE_P (t))
return -1;
/* The C standard guarantees that any object may be accessed via an
lvalue that has character type. */
if (t == char_type_node
|| t == signed_char_type_node
|| t == unsigned_char_type_node)
return 0;
/* If it has the may_alias attribute, it can alias anything. */
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (t)))
return 0;
/* The C standard specifically allows aliasing between signed and
unsigned variants of the same type. We treat the signed
variant as canonical. */
if (TREE_CODE (t) == INTEGER_TYPE && TREE_UNSIGNED (t))
{
tree t1 = c_common_signed_type (t);
/* t1 == t can happen for boolean nodes which are always unsigned. */
if (t1 != t)
return get_alias_set (t1);
}
else if (POINTER_TYPE_P (t))
{
tree t1;
/* Unfortunately, there is no canonical form of a pointer type.
In particular, if we have `typedef int I', then `int *', and
`I *' are different types. So, we have to pick a canonical
representative. We do this below.
Technically, this approach is actually more conservative that
it needs to be. In particular, `const int *' and `int *'
should be in different alias sets, according to the C and C++
standard, since their types are not the same, and so,
technically, an `int **' and `const int **' cannot point at
the same thing.
But, the standard is wrong. In particular, this code is
legal C++:
int *ip;
int **ipp = &ip;
const int* const* cipp = &ipp;
And, it doesn't make sense for that to be legal unless you
can dereference IPP and CIPP. So, we ignore cv-qualifiers on
the pointed-to types. This issue has been reported to the
C++ committee. */
t1 = build_type_no_quals (t);
if (t1 != t)
return get_alias_set (t1);
}
return -1;
}
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where the
second parameter indicates which OPERATOR is being applied. The COMPLAIN
flag controls whether we should diagnose possibly ill-formed
constructs or not. */
tree
c_sizeof_or_alignof_type (tree type, enum tree_code op, int complain)
{
const char *op_name;
tree value = NULL;
enum tree_code type_code = TREE_CODE (type);
my_friendly_assert (op == SIZEOF_EXPR || op == ALIGNOF_EXPR, 20020720);
op_name = op == SIZEOF_EXPR ? "sizeof" : "__alignof__";
if (type_code == FUNCTION_TYPE)
{
if (op == SIZEOF_EXPR)
{
if (complain && (pedantic || warn_pointer_arith))
pedwarn ("invalid application of `sizeof' to a function type");
value = size_one_node;
}
else
value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
}
else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
{
if (type_code == VOID_TYPE
&& complain && (pedantic || warn_pointer_arith))
pedwarn ("invalid application of `%s' to a void type", op_name);
value = size_one_node;
}
else if (!COMPLETE_TYPE_P (type))
{
if (complain)
error ("invalid application of `%s' to incomplete type `%T' ",
op_name, type);
value = size_zero_node;
}
else
{
if (op == SIZEOF_EXPR)
/* Convert in case a char is more than one unit. */
value = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
size_int (TYPE_PRECISION (char_type_node)
/ BITS_PER_UNIT));
else
value = size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
}
/* VALUE will have an integer type with TYPE_IS_SIZETYPE set.
TYPE_IS_SIZETYPE means that certain things (like overflow) will
never happen. However, this node should really have type
`size_t', which is just a typedef for an ordinary integer type. */
value = fold (build1 (NOP_EXPR, size_type_node, value));
my_friendly_assert (!TYPE_IS_SIZETYPE (TREE_TYPE (value)), 20001021);
return value;
}
/* Implement the __alignof keyword: Return the minimum required
alignment of EXPR, measured in bytes. For VAR_DECL's and
FIELD_DECL's return DECL_ALIGN (which can be set from an
"aligned" __attribute__ specification). */
tree
c_alignof_expr (tree expr)
{
tree t;
if (TREE_CODE (expr) == VAR_DECL)
t = size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
else if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
{
error ("`__alignof' applied to a bit-field");
t = size_one_node;
}
else if (TREE_CODE (expr) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
t = size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
else if (TREE_CODE (expr) == INDIRECT_REF)
{
tree t = TREE_OPERAND (expr, 0);
tree best = t;
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
while (TREE_CODE (t) == NOP_EXPR
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
{
int thisalign;
t = TREE_OPERAND (t, 0);
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
if (thisalign > bestalign)
best = t, bestalign = thisalign;
}
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
}
else
return c_alignof (TREE_TYPE (expr));
return fold (build1 (NOP_EXPR, size_type_node, t));
}
/* Handle C and C++ default attributes. */
enum built_in_attribute
{
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
ATTR_LAST
};
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
static void c_init_attributes (void);
/* Build tree nodes and builtin functions common to both C and C++ language
frontends. */
void
c_common_nodes_and_builtins (void)
{
enum builtin_type
{
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_POINTER_TYPE
BT_LAST
};
typedef enum builtin_type builtin_type;
tree builtin_types[(int) BT_LAST];
int wchar_type_size;
tree array_domain_type;
tree va_list_ref_type_node;
tree va_list_arg_type_node;
/* Define `int' and `char' first so that dbx will output them first. */
record_builtin_type (RID_INT, NULL, integer_type_node);
record_builtin_type (RID_CHAR, "char", char_type_node);
/* `signed' is the same as `int'. FIXME: the declarations of "signed",
"unsigned long", "long long unsigned" and "unsigned short" were in C++
but not C. Are the conditionals here needed? */
if (c_dialect_cxx ())
record_builtin_type (RID_SIGNED, NULL, integer_type_node);
record_builtin_type (RID_LONG, "long int", long_integer_type_node);
record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
record_builtin_type (RID_MAX, "long unsigned int",
long_unsigned_type_node);
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
record_builtin_type (RID_MAX, "long long int",
long_long_integer_type_node);
record_builtin_type (RID_MAX, "long long unsigned int",
long_long_unsigned_type_node);
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "long long unsigned",
long_long_unsigned_type_node);
record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
record_builtin_type (RID_MAX, "short unsigned int",
short_unsigned_type_node);
if (c_dialect_cxx ())
record_builtin_type (RID_MAX, "unsigned short",
short_unsigned_type_node);
/* Define both `signed char' and `unsigned char'. */
record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
/* These are types that c_common_type_for_size and
c_common_type_for_mode use. */
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
intQI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
intHI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
intSI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__int128_t"),
intTI_type_node));
#endif
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
unsigned_intQI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
unsigned_intHI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
unsigned_intSI_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
unsigned_intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__uint128_t"),
unsigned_intTI_type_node));
#endif
/* Create the widest literal types. */
widest_integer_literal_type_node
= make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
widest_integer_literal_type_node));
widest_unsigned_literal_type_node
= make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL, NULL_TREE,
widest_unsigned_literal_type_node));
/* `unsigned long' is the standard type for sizeof.
Note that stddef.h uses `unsigned long',
and this must agree, even if long and int are the same size. */
size_type_node =
TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
signed_size_type_node = c_common_signed_type (size_type_node);
set_sizetype (size_type_node);
build_common_tree_nodes_2 (flag_short_double);
record_builtin_type (RID_FLOAT, NULL, float_type_node);
record_builtin_type (RID_DOUBLE, NULL, double_type_node);
record_builtin_type (RID_MAX, "long double", long_double_type_node);
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("complex int"),
complex_integer_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("complex float"),
complex_float_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("complex double"),
complex_double_type_node));
(*lang_hooks.decls.pushdecl)
(build_decl (TYPE_DECL, get_identifier ("complex long double"),
complex_long_double_type_node));
/* Types which are common to the fortran compiler and libf2c. When
changing these, you also need to be concerned with f/com.h. */
if (TYPE_PRECISION (float_type_node)
== TYPE_PRECISION (long_integer_type_node))
{
g77_integer_type_node = long_integer_type_node;
g77_uinteger_type_node = long_unsigned_type_node;
}
else if (TYPE_PRECISION (float_type_node)
== TYPE_PRECISION (integer_type_node))
{
g77_integer_type_node = integer_type_node;
g77_uinteger_type_node = unsigned_type_node;
}
else
g77_integer_type_node = g77_uinteger_type_node = NULL_TREE;
if (g77_integer_type_node != NULL_TREE)
{
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__g77_integer"),
g77_integer_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__g77_uinteger"),
g77_uinteger_type_node));
}
if (TYPE_PRECISION (float_type_node) * 2
== TYPE_PRECISION (long_integer_type_node))
{
g77_longint_type_node = long_integer_type_node;
g77_ulongint_type_node = long_unsigned_type_node;
}
else if (TYPE_PRECISION (float_type_node) * 2
== TYPE_PRECISION (long_long_integer_type_node))
{
g77_longint_type_node = long_long_integer_type_node;
g77_ulongint_type_node = long_long_unsigned_type_node;
}
else
g77_longint_type_node = g77_ulongint_type_node = NULL_TREE;
if (g77_longint_type_node != NULL_TREE)
{
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__g77_longint"),
g77_longint_type_node));
(*lang_hooks.decls.pushdecl) (build_decl (TYPE_DECL,
get_identifier ("__g77_ulongint"),
g77_ulongint_type_node));
}
record_builtin_type (RID_VOID, NULL, void_type_node);
void_zero_node = build_int_2 (0, 0);
TREE_TYPE (void_zero_node) = void_type_node;
void_list_node = build_void_list_node ();
/* Make a type to be the domain of a few array types
whose domains don't really matter.
200 is small enough that it always fits in size_t
and large enough that it can hold most function names for the
initializations of __FUNCTION__ and __PRETTY_FUNCTION__. */
array_domain_type = build_index_type (size_int (200));
/* Make a type for arrays of characters.
With luck nothing will ever really depend on the length of this
array type. */
char_array_type_node
= build_array_type (char_type_node, array_domain_type);
/* Likewise for arrays of ints. */
int_array_type_node
= build_array_type (integer_type_node, array_domain_type);
string_type_node = build_pointer_type (char_type_node);
const_string_type_node
= build_pointer_type (build_qualified_type
(char_type_node, TYPE_QUAL_CONST));
/* This is special for C++ so functions can be overloaded. */
wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
wchar_type_size = TYPE_PRECISION (wchar_type_node);
if (c_dialect_cxx ())
{
if (TREE_UNSIGNED (wchar_type_node))
wchar_type_node = make_unsigned_type (wchar_type_size);
else
wchar_type_node = make_signed_type (wchar_type_size);
record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
}
else
{
signed_wchar_type_node = c_common_signed_type (wchar_type_node);
unsigned_wchar_type_node = c_common_unsigned_type (wchar_type_node);
}
/* This is for wide string constants. */
wchar_array_type_node
= build_array_type (wchar_type_node, array_domain_type);
wint_type_node =
TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
intmax_type_node =
TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
uintmax_type_node =
TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
default_function_type = build_function_type (integer_type_node, NULL_TREE);
ptrdiff_type_node
= TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
(*lang_hooks.decls.pushdecl)
(build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
va_list_type_node));
(*lang_hooks.decls.pushdecl)
(build_decl (TYPE_DECL, get_identifier ("__builtin_ptrdiff_t"),
ptrdiff_type_node));
(*lang_hooks.decls.pushdecl)
(build_decl (TYPE_DECL, get_identifier ("__builtin_size_t"),
sizetype));
if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
{
va_list_arg_type_node = va_list_ref_type_node =
build_pointer_type (TREE_TYPE (va_list_type_node));
}
else
{
va_list_arg_type_node = va_list_type_node;
va_list_ref_type_node = build_reference_type (va_list_type_node);
}
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
builtin_types[(int) ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
builtin_types[(int) ENUM] \
= build_function_type (builtin_types[(int) RETURN], \
void_list_node);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
builtin_types[(int) ENUM] \
= build_function_type (builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
void_list_node));
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
builtin_types[(int) ENUM] \
= build_function_type \
(builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG2], \
void_list_node)));
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
builtin_types[(int) ENUM] \
= build_function_type \
(builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG2], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG3], \
void_list_node))));
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
builtin_types[(int) ENUM] \
= build_function_type \
(builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG2], \
tree_cons \
(NULL_TREE, \
builtin_types[(int) ARG3], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG4], \
void_list_node)))));
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
builtin_types[(int) ENUM] \
= build_function_type (builtin_types[(int) RETURN], NULL_TREE);
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
builtin_types[(int) ENUM] \
= build_function_type (builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
NULL_TREE));
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
builtin_types[(int) ENUM] \
= build_function_type \
(builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG2], \
NULL_TREE)));
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
builtin_types[(int) ENUM] \
= build_function_type \
(builtin_types[(int) RETURN], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG1], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG2], \
tree_cons (NULL_TREE, \
builtin_types[(int) ARG3], \
NULL_TREE))));
#define DEF_POINTER_TYPE(ENUM, TYPE) \
builtin_types[(int) ENUM] \
= build_pointer_type (builtin_types[(int) TYPE]);
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_POINTER_TYPE
c_init_attributes ();
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, \
BOTH_P, FALLBACK_P, NONANSI_P, ATTRS, IMPLICIT) \
if (NAME) \
{ \
tree decl; \
\
if (strncmp (NAME, "__builtin_", strlen ("__builtin_")) != 0) \
abort (); \
\
if (!BOTH_P) \
decl = builtin_function (NAME, builtin_types[TYPE], ENUM, \
CLASS, \
(FALLBACK_P \
? (NAME + strlen ("__builtin_")) \
: NULL), \
built_in_attributes[(int) ATTRS]); \
else \
decl = builtin_function_2 (NAME, \
NAME + strlen ("__builtin_"), \
builtin_types[TYPE], \
builtin_types[LIBTYPE], \
ENUM, \
CLASS, \
FALLBACK_P, \
NONANSI_P, \
built_in_attributes[(int) ATTRS]); \
\
built_in_decls[(int) ENUM] = decl; \
if (IMPLICIT) \
implicit_built_in_decls[(int) ENUM] = decl; \
}
#include "builtins.def"
#undef DEF_BUILTIN
(*targetm.init_builtins) ();
main_identifier_node = get_identifier ("main");
}
tree
build_va_arg (tree expr, tree type)
{
return build1 (VA_ARG_EXPR, type, expr);
}
/* Linked list of disabled built-in functions. */
typedef struct disabled_builtin
{
const char *name;
struct disabled_builtin *next;
} disabled_builtin;
static disabled_builtin *disabled_builtins = NULL;
static bool builtin_function_disabled_p (const char *);
/* Disable a built-in function specified by -fno-builtin-NAME. If NAME
begins with "__builtin_", give an error. */
void
disable_builtin_function (const char *name)
{
if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
error ("cannot disable built-in function `%s'", name);
else
{
disabled_builtin *new = xmalloc (sizeof (disabled_builtin));
new->name = name;
new->next = disabled_builtins;
disabled_builtins = new;
}
}
/* Return true if the built-in function NAME has been disabled, false
otherwise. */
static bool
builtin_function_disabled_p (const char *name)
{
disabled_builtin *p;
for (p = disabled_builtins; p != NULL; p = p->next)
{
if (strcmp (name, p->name) == 0)
return true;
}
return false;
}
/* Possibly define a builtin function with one or two names. BUILTIN_NAME
is an __builtin_-prefixed name; NAME is the ordinary name; one or both
of these may be NULL (though both being NULL is useless).
BUILTIN_TYPE is the type of the __builtin_-prefixed function;
TYPE is the type of the function with the ordinary name. These
may differ if the ordinary name is declared with a looser type to avoid
conflicts with headers. FUNCTION_CODE and CLASS are as for
builtin_function. If LIBRARY_NAME_P is nonzero, NAME is passed as
the LIBRARY_NAME parameter to builtin_function when declaring BUILTIN_NAME.
If NONANSI_P is nonzero, the name NAME is treated as a non-ANSI name;
ATTRS is the tree list representing the builtin's function attributes.
Returns the declaration of BUILTIN_NAME, if any, otherwise
the declaration of NAME. Does not declare NAME if flag_no_builtin,
or if NONANSI_P and flag_no_nonansi_builtin. */
static tree
builtin_function_2 (const char *builtin_name, const char *name,
tree builtin_type, tree type, int function_code,
enum built_in_class class, int library_name_p,
int nonansi_p, tree attrs)
{
tree bdecl = NULL_TREE;
tree decl = NULL_TREE;
if (builtin_name != 0)
bdecl = builtin_function (builtin_name, builtin_type, function_code,
class, library_name_p ? name : NULL, attrs);
if (name != 0 && !flag_no_builtin && !builtin_function_disabled_p (name)
&& !(nonansi_p && flag_no_nonansi_builtin))
decl = builtin_function (name, type, function_code, class, NULL, attrs);
return (bdecl != 0 ? bdecl : decl);
}
/* Nonzero if the type T promotes to int. This is (nearly) the
integral promotions defined in ISO C99 6.3.1.1/2. */
bool
c_promoting_integer_type_p (tree t)
{
switch (TREE_CODE (t))
{
case INTEGER_TYPE:
return (TYPE_MAIN_VARIANT (t) == char_type_node
|| TYPE_MAIN_VARIANT (t) == signed_char_type_node
|| TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
|| TYPE_MAIN_VARIANT (t) == short_integer_type_node
|| TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
|| TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
case ENUMERAL_TYPE:
/* ??? Technically all enumerations not larger than an int
promote to an int. But this is used along code paths
that only want to notice a size change. */
return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
case BOOLEAN_TYPE:
return 1;
default:
return 0;
}
}
/* Return 1 if PARMS specifies a fixed number of parameters
and none of their types is affected by default promotions. */
int
self_promoting_args_p (tree parms)
{
tree t;
for (t = parms; t; t = TREE_CHAIN (t))
{
tree type = TREE_VALUE (t);
if (TREE_CHAIN (t) == 0 && type != void_type_node)
return 0;
if (type == 0)
return 0;
if (TYPE_MAIN_VARIANT (type) == float_type_node)
return 0;
if (c_promoting_integer_type_p (type))
return 0;
}
return 1;
}
/* Recursively examines the array elements of TYPE, until a non-array
element type is found. */
tree
strip_array_types (tree type)
{
while (TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
return type;
}
/* Recursively remove any '*' or '&' operator from TYPE. */
tree
strip_pointer_operator (tree t)
{
while (POINTER_TYPE_P (t))
t = TREE_TYPE (t);
return t;
}
static tree expand_unordered_cmp (tree, tree, enum tree_code, enum tree_code);
/* Expand a call to an unordered comparison function such as
__builtin_isgreater(). FUNCTION is the function's declaration and
PARAMS a list of the values passed. For __builtin_isunordered(),
UNORDERED_CODE is UNORDERED_EXPR and ORDERED_CODE is NOP_EXPR. In
other cases, UNORDERED_CODE and ORDERED_CODE are comparison codes
that give the opposite of the desired result. UNORDERED_CODE is
used for modes that can hold NaNs and ORDERED_CODE is used for the
rest. */
static tree
expand_unordered_cmp (tree function, tree params,
enum tree_code unordered_code,
enum tree_code ordered_code)
{
tree arg0, arg1, type;
enum tree_code code0, code1;
/* Check that we have exactly two arguments. */
if (params == 0 || TREE_CHAIN (params) == 0)
{
error ("too few arguments to function `%s'",
IDENTIFIER_POINTER (DECL_NAME (function)));
return error_mark_node;
}
else if (TREE_CHAIN (TREE_CHAIN (params)) != 0)
{
error ("too many arguments to function `%s'",
IDENTIFIER_POINTER (DECL_NAME (function)));
return error_mark_node;
}
arg0 = TREE_VALUE (params);
arg1 = TREE_VALUE (TREE_CHAIN (params));
code0 = TREE_CODE (TREE_TYPE (arg0));
code1 = TREE_CODE (TREE_TYPE (arg1));
/* Make sure that the arguments have a common type of REAL. */
type = 0;
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
type = common_type (TREE_TYPE (arg0), TREE_TYPE (arg1));
if (type == 0 || TREE_CODE (type) != REAL_TYPE)
{
error ("non-floating-point argument to function `%s'",
IDENTIFIER_POINTER (DECL_NAME (function)));
return error_mark_node;
}
if (unordered_code == UNORDERED_EXPR)
{
if (MODE_HAS_NANS (TYPE_MODE (type)))
return build_binary_op (unordered_code,
convert (type, arg0),
convert (type, arg1),
0);
else
return integer_zero_node;
}
return build_unary_op (TRUTH_NOT_EXPR,
build_binary_op (MODE_HAS_NANS (TYPE_MODE (type))
? unordered_code
: ordered_code,
convert (type, arg0),
convert (type, arg1),
0),
0);
}
/* Recognize certain built-in functions so we can make tree-codes
other than CALL_EXPR. We do this when it enables fold-const.c
to do something useful. */
/* ??? By rights this should go in builtins.c, but only C and C++
implement build_{binary,unary}_op. Not exactly sure what bits
of functionality are actually needed from those functions, or
where the similar functionality exists in the other front ends. */
tree
expand_tree_builtin (tree function, tree params, tree coerced_params)
{
if (DECL_BUILT_IN_CLASS (function) != BUILT_IN_NORMAL)
return NULL_TREE;
switch (DECL_FUNCTION_CODE (function))
{
case BUILT_IN_ABS:
case BUILT_IN_LABS:
case BUILT_IN_LLABS:
case BUILT_IN_IMAXABS:
case BUILT_IN_FABS:
case BUILT_IN_FABSL:
case BUILT_IN_FABSF:
if (coerced_params == 0)
return integer_zero_node;
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
case BUILT_IN_CONJ:
case BUILT_IN_CONJF:
case BUILT_IN_CONJL:
if (coerced_params == 0)
return integer_zero_node;
return build_unary_op (CONJ_EXPR, TREE_VALUE (coerced_params), 0);
case BUILT_IN_CREAL:
case BUILT_IN_CREALF:
case BUILT_IN_CREALL:
if (coerced_params == 0)
return integer_zero_node;
return non_lvalue (build_unary_op (REALPART_EXPR,
TREE_VALUE (coerced_params), 0));
case BUILT_IN_CIMAG:
case BUILT_IN_CIMAGF:
case BUILT_IN_CIMAGL:
if (coerced_params == 0)
return integer_zero_node;
return non_lvalue (build_unary_op (IMAGPART_EXPR,
TREE_VALUE (coerced_params), 0));
case BUILT_IN_ISGREATER:
return expand_unordered_cmp (function, params, UNLE_EXPR, LE_EXPR);
case BUILT_IN_ISGREATEREQUAL:
return expand_unordered_cmp (function, params, UNLT_EXPR, LT_EXPR);
case BUILT_IN_ISLESS:
return expand_unordered_cmp (function, params, UNGE_EXPR, GE_EXPR);
case BUILT_IN_ISLESSEQUAL:
return expand_unordered_cmp (function, params, UNGT_EXPR, GT_EXPR);
case BUILT_IN_ISLESSGREATER:
return expand_unordered_cmp (function, params, UNEQ_EXPR, EQ_EXPR);
case BUILT_IN_ISUNORDERED:
return expand_unordered_cmp (function, params, UNORDERED_EXPR, NOP_EXPR);
default:
break;
}
return NULL_TREE;
}
/* Walk the statement tree, rooted at *tp. Apply FUNC to all the
sub-trees of *TP in a pre-order traversal. FUNC is called with the
DATA and the address of each sub-tree. If FUNC returns a non-NULL
value, the traversal is aborted, and the value returned by FUNC is
returned. If FUNC sets WALK_SUBTREES to zero, then the subtrees of
the node being visited are not walked.
We don't need a without_duplicates variant of this one because the
statement tree is a tree, not a graph. */
tree
walk_stmt_tree (tree *tp, walk_tree_fn func, void *data)
{
enum tree_code code;
int walk_subtrees;
tree result;
int i, len;
#define WALK_SUBTREE(NODE) \
do \
{ \
result = walk_stmt_tree (&(NODE), func, data); \
if (result) \
return result; \
} \
while (0)
/* Skip empty subtrees. */
if (!*tp)
return NULL_TREE;
/* Skip subtrees below non-statement nodes. */
if (!STATEMENT_CODE_P (TREE_CODE (*tp)))
return NULL_TREE;
/* Call the function. */
walk_subtrees = 1;
result = (*func) (tp, &walk_subtrees, data);
/* If we found something, return it. */
if (result)
return result;
/* FUNC may have modified the tree, recheck that we're looking at a
statement node. */
code = TREE_CODE (*tp);
if (!STATEMENT_CODE_P (code))
return NULL_TREE;
/* Visit the subtrees unless FUNC decided that there was nothing
interesting below this point in the tree. */
if (walk_subtrees)
{
/* Walk over all the sub-trees of this operand. Statement nodes
never contain RTL, and we needn't worry about TARGET_EXPRs. */
len = TREE_CODE_LENGTH (code);
/* Go through the subtrees. We need to do this in forward order so
that the scope of a FOR_EXPR is handled properly. */
for (i = 0; i < len; ++i)
WALK_SUBTREE (TREE_OPERAND (*tp, i));
}
/* Finally visit the chain. This can be tail-recursion optimized if
we write it this way. */
return walk_stmt_tree (&TREE_CHAIN (*tp), func, data);
#undef WALK_SUBTREE
}
/* Used to compare case labels. K1 and K2 are actually tree nodes
representing case labels, or NULL_TREE for a `default' label.
Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
K2, and 0 if K1 and K2 are equal. */
int
case_compare (splay_tree_key k1, splay_tree_key k2)
{
/* Consider a NULL key (such as arises with a `default' label) to be
smaller than anything else. */
if (!k1)
return k2 ? -1 : 0;
else if (!k2)
return k1 ? 1 : 0;
return tree_int_cst_compare ((tree) k1, (tree) k2);
}
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE. If
LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
actually a `default' label. If only HIGH_VALUE is NULL_TREE, then
case label was declared using the usual C/C++ syntax, rather than
the GNU case range extension. CASES is a tree containing all the
case ranges processed so far; COND is the condition for the
switch-statement itself. Returns the CASE_LABEL created, or
ERROR_MARK_NODE if no CASE_LABEL is created. */
tree
c_add_case_label (splay_tree cases, tree cond, tree low_value,
tree high_value)
{
tree type;
tree label;
tree case_label;
splay_tree_node node;
/* Create the LABEL_DECL itself. */
label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
DECL_CONTEXT (label) = current_function_decl;
/* If there was an error processing the switch condition, bail now
before we get more confused. */
if (!cond || cond == error_mark_node)
{
/* Add a label anyhow so that the back-end doesn't think that
the beginning of the switch is unreachable. */
if (!cases->root)
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
return error_mark_node;
}
if ((low_value && TREE_TYPE (low_value)
&& POINTER_TYPE_P (TREE_TYPE (low_value)))
|| (high_value && TREE_TYPE (high_value)
&& POINTER_TYPE_P (TREE_TYPE (high_value))))
error ("pointers are not permitted as case values");
/* Case ranges are a GNU extension. */
if (high_value && pedantic)
pedwarn ("range expressions in switch statements are non-standard");
type = TREE_TYPE (cond);
if (low_value)
{
low_value = check_case_value (low_value);
low_value = convert_and_check (type, low_value);
}
if (high_value)
{
high_value = check_case_value (high_value);
high_value = convert_and_check (type, high_value);
}
/* If an error has occurred, bail out now. */
if (low_value == error_mark_node || high_value == error_mark_node)
{
if (!cases->root)
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
return error_mark_node;
}
/* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
really a case range, even though it was written that way. Remove
the HIGH_VALUE to simplify later processing. */
if (tree_int_cst_equal (low_value, high_value))
high_value = NULL_TREE;
if (low_value && high_value
&& !tree_int_cst_lt (low_value, high_value))
warning ("empty range specified");
/* Look up the LOW_VALUE in the table of case labels we already
have. */
node = splay_tree_lookup (cases, (splay_tree_key) low_value);
/* If there was not an exact match, check for overlapping ranges.
There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
that's a `default' label and the only overlap is an exact match. */
if (!node && (low_value || high_value))
{
splay_tree_node low_bound;
splay_tree_node high_bound;
/* Even though there wasn't an exact match, there might be an
overlap between this case range and another case range.
Since we've (inductively) not allowed any overlapping case
ranges, we simply need to find the greatest low case label
that is smaller that LOW_VALUE, and the smallest low case
label that is greater than LOW_VALUE. If there is an overlap
it will occur in one of these two ranges. */
low_bound = splay_tree_predecessor (cases,
(splay_tree_key) low_value);
high_bound = splay_tree_successor (cases,
(splay_tree_key) low_value);
/* Check to see if the LOW_BOUND overlaps. It is smaller than
the LOW_VALUE, so there is no need to check unless the
LOW_BOUND is in fact itself a case range. */
if (low_bound
&& CASE_HIGH ((tree) low_bound->value)
&& tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
low_value) >= 0)
node = low_bound;
/* Check to see if the HIGH_BOUND overlaps. The low end of that
range is bigger than the low end of the current range, so we
are only interested if the current range is a real range, and
not an ordinary case label. */
else if (high_bound
&& high_value
&& (tree_int_cst_compare ((tree) high_bound->key,
high_value)
<= 0))
node = high_bound;
}
/* If there was an overlap, issue an error. */
if (node)
{
tree duplicate = CASE_LABEL_DECL ((tree) node->value);
if (high_value)
{
error ("duplicate (or overlapping) case value");
error ("%Jthis is the first entry overlapping that value", duplicate);
}
else if (low_value)
{
error ("duplicate case value") ;
error ("%Jpreviously used here", duplicate);
}
else
{
error ("multiple default labels in one switch");
error ("%Jthis is the first default label", duplicate);
}
if (!cases->root)
add_stmt (build_case_label (NULL_TREE, NULL_TREE, label));
}
/* Add a CASE_LABEL to the statement-tree. */
case_label = add_stmt (build_case_label (low_value, high_value, label));
/* Register this case label in the splay tree. */
splay_tree_insert (cases,
(splay_tree_key) low_value,
(splay_tree_value) case_label);
return case_label;
}
/* Finish an expression taking the address of LABEL (an
IDENTIFIER_NODE). Returns an expression for the address. */
tree
finish_label_address_expr (tree label)
{
tree result;
if (pedantic)
pedwarn ("taking the address of a label is non-standard");
if (label == error_mark_node)
return error_mark_node;
label = lookup_label (label);
if (label == NULL_TREE)
result = null_pointer_node;
else
{
TREE_USED (label) = 1;
result = build1 (ADDR_EXPR, ptr_type_node, label);
TREE_CONSTANT (result) = 1;
/* The current function in not necessarily uninlinable.
Computed gotos are incompatible with inlining, but the value
here could be used only in a diagnostic, for example. */
}
return result;
}
/* Hook used by expand_expr to expand language-specific tree codes. */
rtx
c_expand_expr (tree exp, rtx target, enum machine_mode tmode,
int modifier /* Actually enum_modifier. */,
rtx *alt_rtl)
{
switch (TREE_CODE (exp))
{
case STMT_EXPR:
{
tree rtl_expr;
rtx result;
bool preserve_result = false;
if (STMT_EXPR_WARN_UNUSED_RESULT (exp) && target == const0_rtx)
{
tree stmt = STMT_EXPR_STMT (exp);
tree scope;
for (scope = COMPOUND_BODY (stmt);
scope && TREE_CODE (scope) != SCOPE_STMT;
scope = TREE_CHAIN (scope));
if (scope && SCOPE_STMT_BLOCK (scope))
warning ("%Hignoring return value of `%D', "
"declared with attribute warn_unused_result",
&expr_wfl_stack->location,
BLOCK_ABSTRACT_ORIGIN (SCOPE_STMT_BLOCK (scope)));
else
warning ("%Hignoring return value of function "
"declared with attribute warn_unused_result",
&expr_wfl_stack->location);
}
/* Since expand_expr_stmt calls free_temp_slots after every
expression statement, we must call push_temp_slots here.
Otherwise, any temporaries in use now would be considered
out-of-scope after the first EXPR_STMT from within the
STMT_EXPR. */
push_temp_slots ();
rtl_expr = expand_start_stmt_expr (!STMT_EXPR_NO_SCOPE (exp));
/* If we want the result of this expression, find the last
EXPR_STMT in the COMPOUND_STMT and mark it as addressable. */
if (target != const0_rtx
&& TREE_CODE (STMT_EXPR_STMT (exp)) == COMPOUND_STMT
&& TREE_CODE (COMPOUND_BODY (STMT_EXPR_STMT (exp))) == SCOPE_STMT)
{
tree expr = COMPOUND_BODY (STMT_EXPR_STMT (exp));
tree last = TREE_CHAIN (expr);
while (TREE_CHAIN (last))
{
expr = last;
last = TREE_CHAIN (last);
}
if (TREE_CODE (last) == SCOPE_STMT
&& TREE_CODE (expr) == EXPR_STMT)
{
/* Otherwise, note that we want the value from the last
expression. */
TREE_ADDRESSABLE (expr) = 1;
preserve_result = true;
}
}
expand_stmt (STMT_EXPR_STMT (exp));
expand_end_stmt_expr (rtl_expr);
result = expand_expr_real (rtl_expr, target, tmode, modifier, alt_rtl);
if (preserve_result && GET_CODE (result) == MEM)
{
if (GET_MODE (result) != BLKmode)
result = copy_to_reg (result);
else
preserve_temp_slots (result);
}
/* If the statment-expression does not have a scope, then the
new temporaries we created within it must live beyond the
statement-expression. */
if (STMT_EXPR_NO_SCOPE (exp))
preserve_temp_slots (NULL_RTX);
pop_temp_slots ();
return result;
}
break;
case COMPOUND_LITERAL_EXPR:
{
/* Initialize the anonymous variable declared in the compound
literal, then return the variable. */
tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
emit_local_var (decl);
return expand_expr_real (decl, target, tmode, modifier, alt_rtl);
}
default:
abort ();
}
abort ();
return NULL;
}
/* Hook used by safe_from_p to handle language-specific tree codes. */
int
c_safe_from_p (rtx target, tree exp)
{
/* We can see statements here when processing the body of a
statement-expression. For a declaration statement declaring a
variable, look at the variable's initializer. */
if (TREE_CODE (exp) == DECL_STMT)
{
tree decl = DECL_STMT_DECL (exp);
if (TREE_CODE (decl) == VAR_DECL
&& DECL_INITIAL (decl)
&& !safe_from_p (target, DECL_INITIAL (decl), /*top_p=*/0))
return 0;
}
/* For any statement, we must follow the statement-chain. */
if (STATEMENT_CODE_P (TREE_CODE (exp)) && TREE_CHAIN (exp))
return safe_from_p (target, TREE_CHAIN (exp), /*top_p=*/0);
/* Assume everything else is safe. */
return 1;
}
/* Hook used by unsafe_for_reeval to handle language-specific tree codes. */
int
c_common_unsafe_for_reeval (tree exp)
{
/* Statement expressions may not be reevaluated, likewise compound
literals. */
if (TREE_CODE (exp) == STMT_EXPR
|| TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
return 2;
/* Walk all other expressions. */
return -1;
}
/* Hook used by staticp to handle language-specific tree codes. */
int
c_staticp (tree exp)
{
if (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
&& TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
return 1;
return 0;
}
/* Given a boolean expression ARG, return a tree representing an increment
or decrement (as indicated by CODE) of ARG. The front end must check for
invalid cases (e.g., decrement in C++). */
tree
boolean_increment (enum tree_code code, tree arg)
{
tree val;
tree true_res = boolean_true_node;
arg = stabilize_reference (arg);
switch (code)
{
case PREINCREMENT_EXPR:
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
break;
case POSTINCREMENT_EXPR:
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
arg = save_expr (arg);
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
break;
case PREDECREMENT_EXPR:
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
break;
case POSTDECREMENT_EXPR:
val = build (MODIFY_EXPR, TREE_TYPE (arg), arg, invert_truthvalue (arg));
arg = save_expr (arg);
val = build (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
val = build (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
break;
default:
abort ();
}
TREE_SIDE_EFFECTS (val) = 1;
return val;
}
/* Built-in macros for stddef.h, that require macros defined in this
file. */
void
c_stddef_cpp_builtins(void)
{
builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
}
static void
c_init_attributes (void)
{
/* Fill in the built_in_attributes array. */
#define DEF_ATTR_NULL_TREE(ENUM) \
built_in_attributes[(int) ENUM] = NULL_TREE;
#define DEF_ATTR_INT(ENUM, VALUE) \
built_in_attributes[(int) ENUM] = build_int_2 (VALUE, VALUE < 0 ? -1 : 0);
#define DEF_ATTR_IDENT(ENUM, STRING) \
built_in_attributes[(int) ENUM] = get_identifier (STRING);
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
built_in_attributes[(int) ENUM] \
= tree_cons (built_in_attributes[(int) PURPOSE], \
built_in_attributes[(int) VALUE], \
built_in_attributes[(int) CHAIN]);
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
}
/* Attribute handlers common to C front ends. */
/* Handle a "packed" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_packed_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags, bool *no_add_attrs)
{
if (TYPE_P (*node))
{
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
*node = build_type_copy (*node);
TYPE_PACKED (*node) = 1;
if (TYPE_MAIN_VARIANT (*node) == *node)
{
/* If it is the main variant, then pack the other variants
too. This happens in,
struct Foo {
struct Foo const *ptr; // creates a variant w/o packed flag
} __ attribute__((packed)); // packs it now.
*/
tree probe;
for (probe = *node; probe; probe = TYPE_NEXT_VARIANT (probe))
TYPE_PACKED (probe) = 1;
}
}
else if (TREE_CODE (*node) == FIELD_DECL)
DECL_PACKED (*node) = 1;
/* We can't set DECL_PACKED for a VAR_DECL, because the bit is
used for DECL_REGISTER. It wouldn't mean anything anyway.
We can't set DECL_PACKED on the type of a TYPE_DECL, because
that changes what the typedef is typing. */
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "nocommon" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_nocommon_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == VAR_DECL)
DECL_COMMON (*node) = 0;
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "common" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_common_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == VAR_DECL)
DECL_COMMON (*node) = 1;
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "noreturn" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_noreturn_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree type = TREE_TYPE (*node);
/* See FIXME comment in c_common_attribute_table. */
if (TREE_CODE (*node) == FUNCTION_DECL)
TREE_THIS_VOLATILE (*node) = 1;
else if (TREE_CODE (type) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
TREE_TYPE (*node)
= build_pointer_type
(build_type_variant (TREE_TYPE (type),
TREE_READONLY (TREE_TYPE (type)), 1));
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "noinline" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_noinline_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
DECL_UNINLINABLE (*node) = 1;
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "always_inline" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_always_inline_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
{
/* Do nothing else, just set the attribute. We'll get at
it later with lookup_attribute. */
}
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "used" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_used_attribute (tree *pnode, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree node = *pnode;
if (TREE_CODE (node) == FUNCTION_DECL
|| (TREE_CODE (node) == VAR_DECL && TREE_STATIC (node)))
{
TREE_USED (node) = 1;
}
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "unused" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_unused_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (DECL_P (*node))
{
tree decl = *node;
if (TREE_CODE (decl) == PARM_DECL
|| TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == FUNCTION_DECL
|| TREE_CODE (decl) == LABEL_DECL
|| TREE_CODE (decl) == TYPE_DECL)
TREE_USED (decl) = 1;
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
}
else
{
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
*node = build_type_copy (*node);
TREE_USED (*node) = 1;
}
return NULL_TREE;
}
/* Handle a "const" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_const_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree type = TREE_TYPE (*node);
/* See FIXME comment on noreturn in c_common_attribute_table. */
if (TREE_CODE (*node) == FUNCTION_DECL)
TREE_READONLY (*node) = 1;
else if (TREE_CODE (type) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
TREE_TYPE (*node)
= build_pointer_type
(build_type_variant (TREE_TYPE (type), 1,
TREE_THIS_VOLATILE (TREE_TYPE (type))));
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "transparent_union" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_transparent_union_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED, int flags,
bool *no_add_attrs)
{
tree decl = NULL_TREE;
tree *type = NULL;
int is_type = 0;
if (DECL_P (*node))
{
decl = *node;
type = &TREE_TYPE (decl);
is_type = TREE_CODE (*node) == TYPE_DECL;
}
else if (TYPE_P (*node))
type = node, is_type = 1;
if (is_type
&& TREE_CODE (*type) == UNION_TYPE
&& (decl == 0
|| (TYPE_FIELDS (*type) != 0
&& TYPE_MODE (*type) == DECL_MODE (TYPE_FIELDS (*type)))))
{
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
*type = build_type_copy (*type);
TYPE_TRANSPARENT_UNION (*type) = 1;
}
else if (decl != 0 && TREE_CODE (decl) == PARM_DECL
&& TREE_CODE (*type) == UNION_TYPE
&& TYPE_MODE (*type) == DECL_MODE (TYPE_FIELDS (*type)))
DECL_TRANSPARENT_UNION (decl) = 1;
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "constructor" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_constructor_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree decl = *node;
tree type = TREE_TYPE (decl);
if (TREE_CODE (decl) == FUNCTION_DECL
&& TREE_CODE (type) == FUNCTION_TYPE
&& decl_function_context (decl) == 0)
{
DECL_STATIC_CONSTRUCTOR (decl) = 1;
TREE_USED (decl) = 1;
}
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "destructor" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_destructor_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree decl = *node;
tree type = TREE_TYPE (decl);
if (TREE_CODE (decl) == FUNCTION_DECL
&& TREE_CODE (type) == FUNCTION_TYPE
&& decl_function_context (decl) == 0)
{
DECL_STATIC_DESTRUCTOR (decl) = 1;
TREE_USED (decl) = 1;
}
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "mode" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_mode_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree type = *node;
*no_add_attrs = true;
if (TREE_CODE (TREE_VALUE (args)) != IDENTIFIER_NODE)
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
else
{
int j;
const char *p = IDENTIFIER_POINTER (TREE_VALUE (args));
int len = strlen (p);
enum machine_mode mode = VOIDmode;
tree typefm;
tree ptr_type;
if (len > 4 && p[0] == '_' && p[1] == '_'
&& p[len - 1] == '_' && p[len - 2] == '_')
{
char *newp = alloca (len - 1);
strcpy (newp, &p[2]);
newp[len - 4] = '\0';
p = newp;
}
/* Change this type to have a type with the specified mode.
First check for the special modes. */
if (! strcmp (p, "byte"))
mode = byte_mode;
else if (!strcmp (p, "word"))
mode = word_mode;
else if (! strcmp (p, "pointer"))
mode = ptr_mode;
else
for (j = 0; j < NUM_MACHINE_MODES; j++)
if (!strcmp (p, GET_MODE_NAME (j)))
{
mode = (enum machine_mode) j;
break;
}
if (mode == VOIDmode)
error ("unknown machine mode `%s'", p);
else if (0 == (typefm = (*lang_hooks.types.type_for_mode)
(mode, TREE_UNSIGNED (type))))
error ("no data type for mode `%s'", p);
else if ((TREE_CODE (type) == POINTER_TYPE
|| TREE_CODE (type) == REFERENCE_TYPE)
&& !(*targetm.valid_pointer_mode) (mode))
error ("invalid pointer mode `%s'", p);
else
{
/* If this is a vector, make sure we either have hardware
support, or we can emulate it. */
if (VECTOR_MODE_P (mode) && !vector_mode_valid_p (mode))
{
error ("unable to emulate '%s'", GET_MODE_NAME (mode));
return NULL_TREE;
}
if (TREE_CODE (type) == POINTER_TYPE)
{
ptr_type = build_pointer_type_for_mode (TREE_TYPE (type),
mode);
*node = ptr_type;
}
else if (TREE_CODE (type) == REFERENCE_TYPE)
{
ptr_type = build_reference_type_for_mode (TREE_TYPE (type),
mode);
*node = ptr_type;
}
else if (TREE_CODE (type) == ENUMERAL_TYPE)
{
/* For enumeral types, copy the precision from the integer
type returned above. If not an INTEGER_TYPE, we can't use
this mode for this type. */
if (TREE_CODE (typefm) != INTEGER_TYPE)
{
error ("cannot use mode %qs for enumeral types", p);
return NULL_TREE;
}
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
type = build_type_copy (type);
/* We cannot use layout_type here, because that will attempt
to re-layout all variants, corrupting our original. */
TYPE_PRECISION (type) = TYPE_PRECISION (typefm);
TYPE_MIN_VALUE (type) = TYPE_MIN_VALUE (typefm);
TYPE_MAX_VALUE (type) = TYPE_MAX_VALUE (typefm);
TYPE_SIZE (type) = TYPE_SIZE (typefm);
TYPE_SIZE_UNIT (type) = TYPE_SIZE_UNIT (typefm);
TYPE_MODE (type) = TYPE_MODE (typefm);
if (!TYPE_USER_ALIGN (type))
TYPE_ALIGN (type) = TYPE_ALIGN (typefm);
*node = type;
}
else if (VECTOR_MODE_P (mode)
? TREE_CODE (type) != TREE_CODE (TREE_TYPE (typefm))
: TREE_CODE (type) != TREE_CODE (typefm))
{
error ("mode `%s' applied to inappropriate type", p);
return NULL_TREE;
}
else
*node = typefm;
/* No need to layout the type here. The caller should do this. */
}
}
return NULL_TREE;
}
/* Handle a "section" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_section_attribute (tree *node, tree name ATTRIBUTE_UNUSED, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree decl = *node;
if (targetm.have_named_sections)
{
if ((TREE_CODE (decl) == FUNCTION_DECL
|| TREE_CODE (decl) == VAR_DECL)
&& TREE_CODE (TREE_VALUE (args)) == STRING_CST)
{
if (TREE_CODE (decl) == VAR_DECL
&& current_function_decl != NULL_TREE
&& ! TREE_STATIC (decl))
{
error ("%Jsection attribute cannot be specified for "
"local variables", decl);
*no_add_attrs = true;
}
/* The decl may have already been given a section attribute
from a previous declaration. Ensure they match. */
else if (DECL_SECTION_NAME (decl) != NULL_TREE
&& strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
TREE_STRING_POINTER (TREE_VALUE (args))) != 0)
{
error ("%Jsection of '%D' conflicts with previous declaration",
*node, *node);
*no_add_attrs = true;
}
else
DECL_SECTION_NAME (decl) = TREE_VALUE (args);
}
else
{
error ("%Jsection attribute not allowed for '%D'", *node, *node);
*no_add_attrs = true;
}
}
else
{
error ("%Jsection attributes are not supported for this target", *node);
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "aligned" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_aligned_attribute (tree *node, tree name ATTRIBUTE_UNUSED, tree args,
int flags, bool *no_add_attrs)
{
tree decl = NULL_TREE;
tree *type = NULL;
int is_type = 0;
tree align_expr = (args ? TREE_VALUE (args)
: size_int (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
int i;
if (DECL_P (*node))
{
decl = *node;
type = &TREE_TYPE (decl);
is_type = TREE_CODE (*node) == TYPE_DECL;
}
else if (TYPE_P (*node))
type = node, is_type = 1;
/* Strip any NOPs of any kind. */
while (TREE_CODE (align_expr) == NOP_EXPR
|| TREE_CODE (align_expr) == CONVERT_EXPR
|| TREE_CODE (align_expr) == NON_LVALUE_EXPR)
align_expr = TREE_OPERAND (align_expr, 0);
if (TREE_CODE (align_expr) != INTEGER_CST)
{
error ("requested alignment is not a constant");
*no_add_attrs = true;
}
else if ((i = tree_log2 (align_expr)) == -1)
{
error ("requested alignment is not a power of 2");
*no_add_attrs = true;
}
else if (i > HOST_BITS_PER_INT - 2)
{
error ("requested alignment is too large");
*no_add_attrs = true;
}
else if (is_type)
{
/* If we have a TYPE_DECL, then copy the type, so that we
don't accidentally modify a builtin type. See pushdecl. */
if (decl && TREE_TYPE (decl) != error_mark_node
&& DECL_ORIGINAL_TYPE (decl) == NULL_TREE)
{
tree tt = TREE_TYPE (decl);
*type = build_type_copy (*type);
DECL_ORIGINAL_TYPE (decl) = tt;
TYPE_NAME (*type) = decl;
TREE_USED (*type) = TREE_USED (decl);
TREE_TYPE (decl) = *type;
}
else if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
*type = build_type_copy (*type);
TYPE_ALIGN (*type) = (1 << i) * BITS_PER_UNIT;
TYPE_USER_ALIGN (*type) = 1;
}
else if (TREE_CODE (decl) != VAR_DECL
&& TREE_CODE (decl) != FIELD_DECL)
{
error ("%Jalignment may not be specified for '%D'", decl, decl);
*no_add_attrs = true;
}
else
{
DECL_ALIGN (decl) = (1 << i) * BITS_PER_UNIT;
DECL_USER_ALIGN (decl) = 1;
}
return NULL_TREE;
}
/* Handle a "weak" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_weak_attribute (tree *node, tree name ATTRIBUTE_UNUSED,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs ATTRIBUTE_UNUSED)
{
declare_weak (*node);
return NULL_TREE;
}
/* Handle an "alias" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_alias_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree decl = *node;
if ((TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
|| (TREE_CODE (decl) != FUNCTION_DECL && ! DECL_EXTERNAL (decl)))
{
error ("%J'%D' defined both normally and as an alias", decl, decl);
*no_add_attrs = true;
}
else if (decl_function_context (decl) == 0)
{
tree id;
id = TREE_VALUE (args);
if (TREE_CODE (id) != STRING_CST)
{
error ("alias arg not a string");
*no_add_attrs = true;
return NULL_TREE;
}
id = get_identifier (TREE_STRING_POINTER (id));
/* This counts as a use of the object pointed to. */
TREE_USED (id) = 1;
if (TREE_CODE (decl) == FUNCTION_DECL)
DECL_INITIAL (decl) = error_mark_node;
else
DECL_EXTERNAL (decl) = 0;
}
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle an "visibility" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_visibility_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree decl = *node;
tree id = TREE_VALUE (args);
*no_add_attrs = true;
if (decl_function_context (decl) != 0 || ! TREE_PUBLIC (decl))
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
return NULL_TREE;
}
if (TREE_CODE (id) != STRING_CST)
{
error ("visibility arg not a string");
return NULL_TREE;
}
if (strcmp (TREE_STRING_POINTER (id), "default") == 0)
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
else if (strcmp (TREE_STRING_POINTER (id), "internal") == 0)
DECL_VISIBILITY (decl) = VISIBILITY_INTERNAL;
else if (strcmp (TREE_STRING_POINTER (id), "hidden") == 0)
DECL_VISIBILITY (decl) = VISIBILITY_HIDDEN;
else if (strcmp (TREE_STRING_POINTER (id), "protected") == 0)
DECL_VISIBILITY (decl) = VISIBILITY_PROTECTED;
else
error ("visibility arg must be one of \"default\", \"hidden\", \"protected\" or \"internal\"");
return NULL_TREE;
}
/* Handle an "tls_model" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_tls_model_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree decl = *node;
if (! DECL_THREAD_LOCAL (decl))
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else
{
tree id;
id = TREE_VALUE (args);
if (TREE_CODE (id) != STRING_CST)
{
error ("tls_model arg not a string");
*no_add_attrs = true;
return NULL_TREE;
}
if (strcmp (TREE_STRING_POINTER (id), "local-exec")
&& strcmp (TREE_STRING_POINTER (id), "initial-exec")
&& strcmp (TREE_STRING_POINTER (id), "local-dynamic")
&& strcmp (TREE_STRING_POINTER (id), "global-dynamic"))
{
error ("tls_model arg must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"");
*no_add_attrs = true;
return NULL_TREE;
}
}
return NULL_TREE;
}
/* Handle a "no_instrument_function" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_no_instrument_function_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree decl = *node;
if (TREE_CODE (decl) != FUNCTION_DECL)
{
error ("%J'%E' attribute applies only to functions", decl, name);
*no_add_attrs = true;
}
else if (DECL_INITIAL (decl))
{
error ("%Jcan't set '%E' attribute after definition", decl, name);
*no_add_attrs = true;
}
else
DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1;
return NULL_TREE;
}
/* Handle a "malloc" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_malloc_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
DECL_IS_MALLOC (*node) = 1;
/* ??? TODO: Support types. */
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "no_limit_stack" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_no_limit_stack_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree decl = *node;
if (TREE_CODE (decl) != FUNCTION_DECL)
{
error ("%J'%E' attribute applies only to functions", decl, name);
*no_add_attrs = true;
}
else if (DECL_INITIAL (decl))
{
error ("%Jcan't set '%E' attribute after definition", decl, name);
*no_add_attrs = true;
}
else
DECL_NO_LIMIT_STACK (decl) = 1;
return NULL_TREE;
}
/* Handle a "pure" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_pure_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
DECL_IS_PURE (*node) = 1;
/* ??? TODO: Support types. */
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "deprecated" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_deprecated_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED, int flags,
bool *no_add_attrs)
{
tree type = NULL_TREE;
int warn = 0;
const char *what = NULL;
if (DECL_P (*node))
{
tree decl = *node;
type = TREE_TYPE (decl);
if (TREE_CODE (decl) == TYPE_DECL
|| TREE_CODE (decl) == PARM_DECL
|| TREE_CODE (decl) == VAR_DECL
|| TREE_CODE (decl) == FUNCTION_DECL
|| TREE_CODE (decl) == FIELD_DECL)
TREE_DEPRECATED (decl) = 1;
else
warn = 1;
}
else if (TYPE_P (*node))
{
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
*node = build_type_copy (*node);
TREE_DEPRECATED (*node) = 1;
type = *node;
}
else
warn = 1;
if (warn)
{
*no_add_attrs = true;
if (type && TYPE_NAME (type))
{
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
what = IDENTIFIER_POINTER (TYPE_NAME (*node));
else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
&& DECL_NAME (TYPE_NAME (type)))
what = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
}
if (what)
warning ("`%s' attribute ignored for `%s'",
IDENTIFIER_POINTER (name), what);
else
warning ("`%s' attribute ignored",
IDENTIFIER_POINTER (name));
}
return NULL_TREE;
}
/* Keep a list of vector type nodes we created in handle_vector_size_attribute,
to prevent us from duplicating type nodes unnecessarily.
The normal mechanism to prevent duplicates is to use type_hash_canon, but
since we want to distinguish types that are essentially identical (except
for their debug representation), we use a local list here. */
static GTY(()) tree vector_type_node_list = 0;
/* Handle a "vector_size" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_vector_size_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
unsigned HOST_WIDE_INT vecsize, nunits;
enum machine_mode mode, orig_mode, new_mode;
tree type = *node, new_type = NULL_TREE;
tree type_list_node;
*no_add_attrs = true;
if (! host_integerp (TREE_VALUE (args), 1))
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
return NULL_TREE;
}
/* Get the vector size (in bytes). */
vecsize = tree_low_cst (TREE_VALUE (args), 1);
/* We need to provide for vector pointers, vector arrays, and
functions returning vectors. For example:
__attribute__((vector_size(16))) short *foo;
In this case, the mode is SI, but the type being modified is
HI, so we need to look further. */
while (POINTER_TYPE_P (type)
|| TREE_CODE (type) == FUNCTION_TYPE
|| TREE_CODE (type) == METHOD_TYPE
|| TREE_CODE (type) == ARRAY_TYPE)
type = TREE_TYPE (type);
/* Get the mode of the type being modified. */
orig_mode = TYPE_MODE (type);
if (TREE_CODE (type) == RECORD_TYPE
|| (GET_MODE_CLASS (orig_mode) != MODE_FLOAT
&& GET_MODE_CLASS (orig_mode) != MODE_INT)
|| ! host_integerp (TYPE_SIZE_UNIT (type), 1))
{
error ("invalid vector type for attribute `%s'",
IDENTIFIER_POINTER (name));
return NULL_TREE;
}
/* Calculate how many units fit in the vector. */
nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
/* Find a suitably sized vector. */
new_mode = VOIDmode;
for (mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_mode) == MODE_INT
? MODE_VECTOR_INT
: MODE_VECTOR_FLOAT);
mode != VOIDmode;
mode = GET_MODE_WIDER_MODE (mode))
if (vecsize == GET_MODE_SIZE (mode)
&& nunits == (unsigned HOST_WIDE_INT) GET_MODE_NUNITS (mode))
{
new_mode = mode;
break;
}
if (new_mode == VOIDmode)
{
error ("no vector mode with the size and type specified could be found");
return NULL_TREE;
}
for (type_list_node = vector_type_node_list; type_list_node;
type_list_node = TREE_CHAIN (type_list_node))
{
tree other_type = TREE_VALUE (type_list_node);
tree record = TYPE_DEBUG_REPRESENTATION_TYPE (other_type);
tree fields = TYPE_FIELDS (record);
tree field_type = TREE_TYPE (fields);
tree array_type = TREE_TYPE (field_type);
if (TREE_CODE (fields) != FIELD_DECL
|| TREE_CODE (field_type) != ARRAY_TYPE)
abort ();
if (TYPE_MODE (other_type) == mode && type == array_type)
{
new_type = other_type;
break;
}
}
if (new_type == NULL_TREE)
{
tree index, array, rt, list_node;
new_type = (*lang_hooks.types.type_for_mode) (new_mode,
TREE_UNSIGNED (type));
if (!new_type)
{
error ("no vector mode with the size and type specified could be found");
return NULL_TREE;
}
new_type = build_type_copy (new_type);
/* If this is a vector, make sure we either have hardware
support, or we can emulate it. */
if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
&& !vector_mode_valid_p (mode))
{
error ("unable to emulate '%s'", GET_MODE_NAME (mode));
return NULL_TREE;
}
/* Set the debug information here, because this is the only
place where we know the underlying type for a vector made
with vector_size. For debugging purposes we pretend a vector
is an array within a structure. */
index = build_int_2 (TYPE_VECTOR_SUBPARTS (new_type) - 1, 0);
array = build_array_type (type, build_index_type (index));
rt = make_node (RECORD_TYPE);
TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
layout_type (rt);
TYPE_DEBUG_REPRESENTATION_TYPE (new_type) = rt;
list_node = build_tree_list (NULL, new_type);
TREE_CHAIN (list_node) = vector_type_node_list;
vector_type_node_list = list_node;
}
/* Build back pointers if needed. */
*node = reconstruct_complex_type (*node, new_type);
return NULL_TREE;
}
/* Handle the "nonnull" attribute. */
static tree
handle_nonnull_attribute (tree *node, tree name ATTRIBUTE_UNUSED,
tree args, int flags ATTRIBUTE_UNUSED,
bool *no_add_attrs)
{
tree type = *node;
unsigned HOST_WIDE_INT attr_arg_num;
/* If no arguments are specified, all pointer arguments should be
non-null. Verify a full prototype is given so that the arguments
will have the correct types when we actually check them later. */
if (! args)
{
if (! TYPE_ARG_TYPES (type))
{
error ("nonnull attribute without arguments on a non-prototype");
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Argument list specified. Verify that each argument number references
a pointer argument. */
for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
{
tree argument;
unsigned HOST_WIDE_INT arg_num, ck_num;
if (! get_nonnull_operand (TREE_VALUE (args), &arg_num))
{
error ("nonnull argument has invalid operand number (arg %lu)",
(unsigned long) attr_arg_num);
*no_add_attrs = true;
return NULL_TREE;
}
argument = TYPE_ARG_TYPES (type);
if (argument)
{
for (ck_num = 1; ; ck_num++)
{
if (! argument || ck_num == arg_num)
break;
argument = TREE_CHAIN (argument);
}
if (! argument
|| TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
{
error ("nonnull argument with out-of-range operand number (arg %lu, operand %lu)",
(unsigned long) attr_arg_num, (unsigned long) arg_num);
*no_add_attrs = true;
return NULL_TREE;
}
if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
{
error ("nonnull argument references non-pointer operand (arg %lu, operand %lu)",
(unsigned long) attr_arg_num, (unsigned long) arg_num);
*no_add_attrs = true;
return NULL_TREE;
}
}
}
return NULL_TREE;
}
/* Check the argument list of a function call for null in argument slots
that are marked as requiring a non-null pointer argument. */
static void
check_function_nonnull (tree attrs, tree params)
{
tree a, args, param;
int param_num;
for (a = attrs; a; a = TREE_CHAIN (a))
{
if (is_attribute_p ("nonnull", TREE_PURPOSE (a)))
{
args = TREE_VALUE (a);
/* Walk the argument list. If we encounter an argument number we
should check for non-null, do it. If the attribute has no args,
then every pointer argument is checked (in which case the check
for pointer type is done in check_nonnull_arg). */
for (param = params, param_num = 1; ;
param_num++, param = TREE_CHAIN (param))
{
if (! param)
break;
if (! args || nonnull_check_p (args, param_num))
check_function_arguments_recurse (check_nonnull_arg, NULL,
TREE_VALUE (param),
param_num);
}
}
}
}
/* Helper for check_function_nonnull; given a list of operands which
must be non-null in ARGS, determine if operand PARAM_NUM should be
checked. */
static bool
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
{
unsigned HOST_WIDE_INT arg_num;
for (; args; args = TREE_CHAIN (args))
{
if (! get_nonnull_operand (TREE_VALUE (args), &arg_num))
abort ();
if (arg_num == param_num)
return true;
}
return false;
}
/* Check that the function argument PARAM (which is operand number
PARAM_NUM) is non-null. This is called by check_function_nonnull
via check_function_arguments_recurse. */
static void
check_nonnull_arg (void *ctx ATTRIBUTE_UNUSED, tree param,
unsigned HOST_WIDE_INT param_num)
{
/* Just skip checking the argument if it's not a pointer. This can
happen if the "nonnull" attribute was given without an operand
list (which means to check every pointer argument). */
if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
return;
if (integer_zerop (param))
warning ("null argument where non-null required (arg %lu)",
(unsigned long) param_num);
}
/* Helper for nonnull attribute handling; fetch the operand number
from the attribute argument list. */
static bool
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
{
/* Strip any conversions from the arg number and verify they
are constants. */
while (TREE_CODE (arg_num_expr) == NOP_EXPR
|| TREE_CODE (arg_num_expr) == CONVERT_EXPR
|| TREE_CODE (arg_num_expr) == NON_LVALUE_EXPR)
arg_num_expr = TREE_OPERAND (arg_num_expr, 0);
if (TREE_CODE (arg_num_expr) != INTEGER_CST
|| TREE_INT_CST_HIGH (arg_num_expr) != 0)
return false;
*valp = TREE_INT_CST_LOW (arg_num_expr);
return true;
}
/* Handle a "nothrow" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_nothrow_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
if (TREE_CODE (*node) == FUNCTION_DECL)
TREE_NOTHROW (*node) = 1;
/* ??? TODO: Support types. */
else
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "cleanup" attribute; arguments as in
struct attribute_spec.handler. */
static tree
handle_cleanup_attribute (tree *node, tree name, tree args,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
tree decl = *node;
tree cleanup_id, cleanup_decl;
/* ??? Could perhaps support cleanups on TREE_STATIC, much like we do
for global destructors in C++. This requires infrastructure that
we don't have generically at the moment. It's also not a feature
we'd be missing too much, since we do have attribute constructor. */
if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
return NULL_TREE;
}
/* Verify that the argument is a function in scope. */
/* ??? We could support pointers to functions here as well, if
that was considered desirable. */
cleanup_id = TREE_VALUE (args);
if (TREE_CODE (cleanup_id) != IDENTIFIER_NODE)
{
error ("cleanup arg not an identifier");
*no_add_attrs = true;
return NULL_TREE;
}
cleanup_decl = lookup_name (cleanup_id);
if (!cleanup_decl || TREE_CODE (cleanup_decl) != FUNCTION_DECL)
{
error ("cleanup arg not a function");
*no_add_attrs = true;
return NULL_TREE;
}
/* That the function has proper type is checked with the
eventual call to build_function_call. */
return NULL_TREE;
}
/* Handle a "warn_unused_result" attribute. No special handling. */
static tree
handle_warn_unused_result_attribute (tree *node, tree name,
tree args ATTRIBUTE_UNUSED,
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
/* Ignore the attribute for functions not returning any value. */
if (VOID_TYPE_P (TREE_TYPE (*node)))
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Check for valid arguments being passed to a function. */
void
check_function_arguments (tree attrs, tree params)
{
/* Check for null being passed in a pointer argument that must be
non-null. We also need to do this if format checking is enabled. */
if (warn_nonnull)
check_function_nonnull (attrs, params);
/* Check for errors in format strings. */
if (warn_format)
check_function_format (NULL, attrs, params);
}
/* Generic argument checking recursion routine. PARAM is the argument to
be checked. PARAM_NUM is the number of the argument. CALLBACK is invoked
once the argument is resolved. CTX is context for the callback. */
void
check_function_arguments_recurse (void (*callback)
(void *, tree, unsigned HOST_WIDE_INT),
void *ctx, tree param,
unsigned HOST_WIDE_INT param_num)
{
if (TREE_CODE (param) == NOP_EXPR)
{
/* Strip coercion. */
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 0), param_num);
return;
}
if (TREE_CODE (param) == CALL_EXPR)
{
tree type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (param, 0)));
tree attrs;
bool found_format_arg = false;
/* See if this is a call to a known internationalization function
that modifies a format arg. Such a function may have multiple
format_arg attributes (for example, ngettext). */
for (attrs = TYPE_ATTRIBUTES (type);
attrs;
attrs = TREE_CHAIN (attrs))
if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
{
tree inner_args;
tree format_num_expr;
int format_num;
int i;
/* Extract the argument number, which was previously checked
to be valid. */
format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
while (TREE_CODE (format_num_expr) == NOP_EXPR
|| TREE_CODE (format_num_expr) == CONVERT_EXPR
|| TREE_CODE (format_num_expr) == NON_LVALUE_EXPR)
format_num_expr = TREE_OPERAND (format_num_expr, 0);
if (TREE_CODE (format_num_expr) != INTEGER_CST
|| TREE_INT_CST_HIGH (format_num_expr) != 0)
abort ();
format_num = TREE_INT_CST_LOW (format_num_expr);
for (inner_args = TREE_OPERAND (param, 1), i = 1;
inner_args != 0;
inner_args = TREE_CHAIN (inner_args), i++)
if (i == format_num)
{
check_function_arguments_recurse (callback, ctx,
TREE_VALUE (inner_args),
param_num);
found_format_arg = true;
break;
}
}
/* If we found a format_arg attribute and did a recursive check,
we are done with checking this argument. Otherwise, we continue
and this will be considered a non-literal. */
if (found_format_arg)
return;
}
if (TREE_CODE (param) == COND_EXPR)
{
/* Check both halves of the conditional expression. */
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 1), param_num);
check_function_arguments_recurse (callback, ctx,
TREE_OPERAND (param, 2), param_num);
return;
}
(*callback) (ctx, param, param_num);
}
/* Function to help qsort sort FIELD_DECLs by name order. */
int
field_decl_cmp (const void *x_p, const void *y_p)
{
const tree *const x = x_p;
const tree *const y = y_p;
if (DECL_NAME (*x) == DECL_NAME (*y))
/* A nontype is "greater" than a type. */
return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
if (DECL_NAME (*x) == NULL_TREE)
return -1;
if (DECL_NAME (*y) == NULL_TREE)
return 1;
if (DECL_NAME (*x) < DECL_NAME (*y))
return -1;
return 1;
}
static struct {
gt_pointer_operator new_value;
void *cookie;
} resort_data;
/* This routine compares two fields like field_decl_cmp but using the
pointer operator in resort_data. */
static int
resort_field_decl_cmp (const void *x_p, const void *y_p)
{
const tree *const x = x_p;
const tree *const y = y_p;
if (DECL_NAME (*x) == DECL_NAME (*y))
/* A nontype is "greater" than a type. */
return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
if (DECL_NAME (*x) == NULL_TREE)
return -1;
if (DECL_NAME (*y) == NULL_TREE)
return 1;
{
tree d1 = DECL_NAME (*x);
tree d2 = DECL_NAME (*y);
resort_data.new_value (&d1, resort_data.cookie);
resort_data.new_value (&d2, resort_data.cookie);
if (d1 < d2)
return -1;
}
return 1;
}
/* Resort DECL_SORTED_FIELDS because pointers have been reordered. */
void
resort_sorted_fields (void *obj,
void *orig_obj ATTRIBUTE_UNUSED ,
gt_pointer_operator new_value,
void *cookie)
{
struct sorted_fields_type *sf = obj;
resort_data.new_value = new_value;
resort_data.cookie = cookie;
qsort (&sf->elts[0], sf->len, sizeof (tree),
resort_field_decl_cmp);
}
/* Used by estimate_num_insns. Estimate number of instructions seen
by given statement. */
static tree
c_estimate_num_insns_1 (tree *tp, int *walk_subtrees, void *data)
{
int *count = data;
tree x = *tp;
if (TYPE_P (x) || DECL_P (x))
{
*walk_subtrees = 0;
return NULL;
}
/* Assume that constants and references counts nothing. These should
be majorized by amount of operations among them we count later
and are common target of CSE and similar optimizations. */
if (TREE_CODE_CLASS (TREE_CODE (x)) == 'c'
|| TREE_CODE_CLASS (TREE_CODE (x)) == 'r')
return NULL;
switch (TREE_CODE (x))
{
/* Recognize assignments of large structures and constructors of
big arrays. */
case MODIFY_EXPR:
case CONSTRUCTOR:
{
HOST_WIDE_INT size;
size = int_size_in_bytes (TREE_TYPE (x));
if (size < 0 || size > MOVE_MAX_PIECES * MOVE_RATIO)
*count += 10;
else
*count += ((size + MOVE_MAX_PIECES - 1) / MOVE_MAX_PIECES);
}
break;
case CALL_EXPR:
{
tree decl = get_callee_fndecl (x);
if (decl && DECL_BUILT_IN (decl))
switch (DECL_FUNCTION_CODE (decl))
{
case BUILT_IN_CONSTANT_P:
*walk_subtrees = 0;
return NULL_TREE;
case BUILT_IN_EXPECT:
return NULL_TREE;
default:
break;
}
*count += 10;
break;
}
/* Few special cases of expensive operations. This is usefull
to avoid inlining on functions having too many of these. */
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case RDIV_EXPR:
*count += 10;
break;
/* Various containers that will produce no code themselves. */
case INIT_EXPR:
case TARGET_EXPR:
case BIND_EXPR:
case BLOCK:
case TREE_LIST:
case TREE_VEC:
case IDENTIFIER_NODE:
case PLACEHOLDER_EXPR:
case WITH_CLEANUP_EXPR:
case CLEANUP_POINT_EXPR:
case NOP_EXPR:
case VIEW_CONVERT_EXPR:
case SAVE_EXPR:
case UNSAVE_EXPR:
case COMPLEX_EXPR:
case REALPART_EXPR:
case IMAGPART_EXPR:
case TRY_CATCH_EXPR:
case TRY_FINALLY_EXPR:
case LABEL_EXPR:
case EXIT_EXPR:
case LABELED_BLOCK_EXPR:
case EXIT_BLOCK_EXPR:
case EXPR_WITH_FILE_LOCATION:
case EXPR_STMT:
case COMPOUND_STMT:
case RETURN_STMT:
case LABEL_STMT:
case SCOPE_STMT:
case FILE_STMT:
case CASE_LABEL:
case STMT_EXPR:
case CLEANUP_STMT:
case SIZEOF_EXPR:
case ARROW_EXPR:
case ALIGNOF_EXPR:
break;
case DECL_STMT:
/* Do not account static initializers. */
if (TREE_STATIC (TREE_OPERAND (x, 0)))
*walk_subtrees = 0;
break;
default:
(*count)++;
}
return NULL;
}
/* Estimate number of instructions that will be created by expanding the body. */
int
c_estimate_num_insns (tree decl)
{
int num = 0;
walk_tree_without_duplicates (&DECL_SAVED_TREE (decl), c_estimate_num_insns_1, &num);
return num;
}
/* Used by c_decl_uninit to find where expressions like x = x + 1; */
static tree
c_decl_uninit_1 (tree *t, int *walk_sub_trees, void *x)
{
/* If x = EXP(&x)EXP, then do not warn about the use of x. */
if (TREE_CODE (*t) == ADDR_EXPR && TREE_OPERAND (*t, 0) == x)
{
*walk_sub_trees = 0;
return NULL_TREE;
}
if (*t == x)
return *t;
return NULL_TREE;
}
/* Find out if a variable is uninitialized based on DECL_INITIAL. */
bool
c_decl_uninit (tree t)
{
/* int x = x; is GCC extension to turn off this warning, only if warn_init_self is zero. */
if (DECL_INITIAL (t) == t)
return warn_init_self ? true : false;
/* Walk the trees looking for the variable itself. */
if (walk_tree_without_duplicates (&DECL_INITIAL (t), c_decl_uninit_1, t))
return true;
return false;
}
/* Issue the error given by MSGID, indicating that it occurred before
TOKEN, which had the associated VALUE. */
void
c_parse_error (const char *msgid, enum cpp_ttype token, tree value)
{
const char *string = _(msgid);
if (token == CPP_EOF)
error ("%s at end of input", string);
else if (token == CPP_CHAR || token == CPP_WCHAR)
{
unsigned int val = TREE_INT_CST_LOW (value);
const char *const ell = (token == CPP_CHAR) ? "" : "L";
if (val <= UCHAR_MAX && ISGRAPH (val))
error ("%s before %s'%c'", string, ell, val);
else
error ("%s before %s'\\x%x'", string, ell, val);
}
else if (token == CPP_STRING
|| token == CPP_WSTRING)
error ("%s before string constant", string);
else if (token == CPP_NUMBER)
error ("%s before numeric constant", string);
else if (token == CPP_NAME)
error ("%s before \"%s\"", string, IDENTIFIER_POINTER (value));
else if (token < N_TTYPES)
error ("%s before '%s' token", string, cpp_type2name (token));
else
error ("%s", string);
}
#include "gt-c-common.h"