mirror of
https://git.FreeBSD.org/src.git
synced 2024-12-30 12:04:07 +00:00
894 lines
24 KiB
C
894 lines
24 KiB
C
/*
|
|
* Low level routines for Second Generation
|
|
* Advanced Systems Inc. SCSI controllers chips
|
|
*
|
|
* Copyright (c) 1998, 1999, 2000 Justin Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
/*
|
|
* Ported from:
|
|
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
|
|
*
|
|
* Copyright (c) 1995-1998 Advanced System Products, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that redistributions of source
|
|
* code retain the above copyright notice and this comment without
|
|
* modification.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
|
|
#include <machine/bus_pio.h>
|
|
#include <machine/bus_memio.h>
|
|
#include <machine/bus.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/cam_sim.h>
|
|
#include <cam/cam_xpt_sim.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <dev/advansys/adwlib.h>
|
|
|
|
const struct adw_eeprom adw_asc3550_default_eeprom =
|
|
{
|
|
ADW_EEPROM_BIOS_ENABLE, /* cfg_lsw */
|
|
0x0000, /* cfg_msw */
|
|
0xFFFF, /* disc_enable */
|
|
0xFFFF, /* wdtr_able */
|
|
{ 0xFFFF }, /* sdtr_able */
|
|
0xFFFF, /* start_motor */
|
|
0xFFFF, /* tagqng_able */
|
|
0xFFFF, /* bios_scan */
|
|
0, /* scam_tolerant */
|
|
7, /* adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* termination */
|
|
0, /* reserved1 */
|
|
0xFFE7, /* bios_ctrl */
|
|
{ 0xFFFF }, /* ultra_able */
|
|
{ 0 }, /* reserved2 */
|
|
ADW_DEF_MAX_HOST_QNG, /* max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* dvc_cntl */
|
|
{ 0 }, /* bug_fix */
|
|
{ 0, 0, 0 }, /* serial_number */
|
|
0, /* check_sum */
|
|
{ /* oem_name[16] */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
0, /* dvc_err_code */
|
|
0, /* adv_err_code */
|
|
0, /* adv_err_addr */
|
|
0, /* saved_dvc_err_code */
|
|
0, /* saved_adv_err_code */
|
|
0 /* saved_adv_err_addr */
|
|
};
|
|
|
|
const struct adw_eeprom adw_asc38C0800_default_eeprom =
|
|
{
|
|
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
|
|
0x0000, /* 01 cfg_msw */
|
|
0xFFFF, /* 02 disc_enable */
|
|
0xFFFF, /* 03 wdtr_able */
|
|
{ 0x4444 }, /* 04 sdtr_speed1 */
|
|
0xFFFF, /* 05 start_motor */
|
|
0xFFFF, /* 06 tagqng_able */
|
|
0xFFFF, /* 07 bios_scan */
|
|
0, /* 08 scam_tolerant */
|
|
7, /* 09 adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* 10 scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* 11 termination_se */
|
|
0, /* termination_lvd */
|
|
0xFFE7, /* 12 bios_ctrl */
|
|
{ 0x4444 }, /* 13 sdtr_speed2 */
|
|
{ 0x4444 }, /* 14 sdtr_speed3 */
|
|
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* 16 dvc_cntl */
|
|
{ 0x4444 } , /* 17 sdtr_speed4 */
|
|
{ 0, 0, 0 }, /* 18-20 serial_number */
|
|
0, /* 21 check_sum */
|
|
{ /* 22-29 oem_name[16] */
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
},
|
|
0, /* 30 dvc_err_code */
|
|
0, /* 31 adv_err_code */
|
|
0, /* 32 adv_err_addr */
|
|
0, /* 33 saved_dvc_err_code */
|
|
0, /* 34 saved_adv_err_code */
|
|
0, /* 35 saved_adv_err_addr */
|
|
{ /* 36 - 55 reserved */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
},
|
|
0, /* 56 cisptr_lsw */
|
|
0, /* 57 cisprt_msw */
|
|
/* 58-59 sub-id */
|
|
(PCI_ID_ADVANSYS_38C0800_REV1 & PCI_ID_DEV_VENDOR_MASK) >> 32,
|
|
};
|
|
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA2_DT 0
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA2 1
|
|
#define ADW_MC_SDTR_OFFSET_ULTRA 2
|
|
const struct adw_syncrate adw_syncrates[] =
|
|
{
|
|
/* mc_sdtr period rate */
|
|
{ ADW_MC_SDTR_80, 9, "80.0" },
|
|
{ ADW_MC_SDTR_40, 10, "40.0" },
|
|
{ ADW_MC_SDTR_20, 12, "20.0" },
|
|
{ ADW_MC_SDTR_10, 25, "10.0" },
|
|
{ ADW_MC_SDTR_5, 50, "5.0" },
|
|
{ ADW_MC_SDTR_ASYNC, 0, "async" }
|
|
};
|
|
|
|
const int adw_num_syncrates = sizeof(adw_syncrates) / sizeof(adw_syncrates[0]);
|
|
|
|
static u_int16_t adw_eeprom_read_16(struct adw_softc *adw, int addr);
|
|
static void adw_eeprom_write_16(struct adw_softc *adw, int addr,
|
|
u_int data);
|
|
static void adw_eeprom_wait(struct adw_softc *adw);
|
|
|
|
int
|
|
adw_find_signature(struct adw_softc *adw)
|
|
{
|
|
if (adw_inb(adw, ADW_SIGNATURE_BYTE) == ADW_CHIP_ID_BYTE
|
|
&& adw_inw(adw, ADW_SIGNATURE_WORD) == ADW_CHIP_ID_WORD)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reset Chip.
|
|
*/
|
|
void
|
|
adw_reset_chip(struct adw_softc *adw)
|
|
{
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_RESET);
|
|
DELAY(1000 * 100);
|
|
adw_outw(adw, ADW_CTRL_REG, ADW_CTRL_REG_CMD_WR_IO_REG);
|
|
|
|
/*
|
|
* Initialize Chip registers.
|
|
*/
|
|
adw_outw(adw, ADW_SCSI_CFG1,
|
|
adw_inw(adw, ADW_SCSI_CFG1) & ~ADW_SCSI_CFG1_BIG_ENDIAN);
|
|
}
|
|
|
|
/*
|
|
* Reset the SCSI bus.
|
|
*/
|
|
int
|
|
adw_reset_bus(struct adw_softc *adw)
|
|
{
|
|
adw_idle_cmd_status_t status;
|
|
|
|
status =
|
|
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_START, /*param*/0);
|
|
if (status != ADW_IDLE_CMD_SUCCESS) {
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset start attempt failed\n");
|
|
return (1);
|
|
}
|
|
DELAY(ADW_BUS_RESET_HOLD_DELAY_US);
|
|
status =
|
|
adw_idle_cmd_send(adw, ADW_IDLE_CMD_SCSI_RESET_END, /*param*/0);
|
|
if (status != ADW_IDLE_CMD_SUCCESS) {
|
|
xpt_print_path(adw->path);
|
|
printf("Bus Reset end attempt failed\n");
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read the specified EEPROM location
|
|
*/
|
|
static u_int16_t
|
|
adw_eeprom_read_16(struct adw_softc *adw, int addr)
|
|
{
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_READ | addr);
|
|
adw_eeprom_wait(adw);
|
|
return (adw_inw(adw, ADW_EEP_DATA));
|
|
}
|
|
|
|
static void
|
|
adw_eeprom_write_16(struct adw_softc *adw, int addr, u_int data)
|
|
{
|
|
adw_outw(adw, ADW_EEP_DATA, data);
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE | addr);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
/*
|
|
* Wait for and EEPROM command to complete
|
|
*/
|
|
static void
|
|
adw_eeprom_wait(struct adw_softc *adw)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ADW_EEP_DELAY_MS; i++) {
|
|
if ((adw_inw(adw, ADW_EEP_CMD) & ADW_EEP_CMD_DONE) != 0)
|
|
break;
|
|
DELAY(1000);
|
|
}
|
|
if (i == ADW_EEP_DELAY_MS)
|
|
panic("%s: Timedout Reading EEPROM", adw_name(adw));
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM configuration into the specified buffer.
|
|
*
|
|
* Return a checksum based on the EEPROM configuration read.
|
|
*/
|
|
u_int16_t
|
|
adw_eeprom_read(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t wval;
|
|
u_int16_t chksum;
|
|
int eep_addr;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
for (eep_addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
eep_addr < ADW_EEP_DVC_CFG_END;
|
|
eep_addr++, wbuf++) {
|
|
wval = adw_eeprom_read_16(adw, eep_addr);
|
|
chksum += wval;
|
|
*wbuf = wval;
|
|
}
|
|
|
|
/* checksum field is not counted in the checksum */
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
wbuf++;
|
|
|
|
/* Driver seeprom variables are not included in the checksum */
|
|
for (eep_addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
eep_addr < ADW_EEP_MAX_WORD_ADDR;
|
|
eep_addr++, wbuf++)
|
|
*wbuf = adw_eeprom_read_16(adw, eep_addr);
|
|
|
|
return (chksum);
|
|
}
|
|
|
|
void
|
|
adw_eeprom_write(struct adw_softc *adw, struct adw_eeprom *eep_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t addr;
|
|
u_int16_t chksum;
|
|
|
|
wbuf = (u_int16_t *)eep_buf;
|
|
chksum = 0;
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_ABLE);
|
|
adw_eeprom_wait(adw);
|
|
|
|
/*
|
|
* Write EEPROM until checksum.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CFG_BEGIN;
|
|
addr < ADW_EEP_DVC_CFG_END; addr++, wbuf++) {
|
|
chksum += *wbuf;
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
}
|
|
|
|
/*
|
|
* Write calculated EEPROM checksum
|
|
*/
|
|
adw_eeprom_write_16(adw, addr, chksum);
|
|
|
|
/* skip over buffer's checksum */
|
|
wbuf++;
|
|
|
|
/*
|
|
* Write the rest.
|
|
*/
|
|
for (addr = ADW_EEP_DVC_CTL_BEGIN;
|
|
addr < ADW_EEP_MAX_WORD_ADDR; addr++, wbuf++)
|
|
adw_eeprom_write_16(adw, addr, *wbuf);
|
|
|
|
adw_outw(adw, ADW_EEP_CMD, ADW_EEP_CMD_WRITE_DISABLE);
|
|
adw_eeprom_wait(adw);
|
|
}
|
|
|
|
int
|
|
adw_init_chip(struct adw_softc *adw, u_int term_scsicfg1)
|
|
{
|
|
u_int8_t biosmem[ADW_MC_BIOSLEN];
|
|
const u_int16_t *word_table;
|
|
const u_int8_t *byte_codes;
|
|
const u_int8_t *byte_codes_end;
|
|
u_int bios_sig;
|
|
u_int bytes_downloaded;
|
|
u_int addr;
|
|
u_int end_addr;
|
|
u_int checksum;
|
|
u_int scsicfg1;
|
|
u_int tid;
|
|
|
|
/*
|
|
* Save the RISC memory BIOS region before writing the microcode.
|
|
* The BIOS may already be loaded and using its RISC LRAM region
|
|
* so its region must be saved and restored.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
biosmem[addr] = adw_lram_read_8(adw, ADW_MC_BIOSMEM + addr);
|
|
|
|
/*
|
|
* Save current per TID negotiated values if the BIOS has been
|
|
* loaded (BIOS signature is present). These will be used if
|
|
* we cannot get information from the EEPROM.
|
|
*/
|
|
addr = ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM;
|
|
bios_sig = biosmem[addr]
|
|
| (biosmem[addr + 1] << 8);
|
|
if (bios_sig == 0x55AA
|
|
&& (adw->flags & ADW_EEPROM_FAILED) != 0) {
|
|
u_int major_ver;
|
|
u_int minor_ver;
|
|
u_int sdtr_able;
|
|
|
|
addr = ADW_MC_BIOS_VERSION - ADW_MC_BIOSMEM;
|
|
minor_ver = biosmem[addr + 1] & 0xF;
|
|
major_ver = (biosmem[addr + 1] >> 4) & 0xF;
|
|
if ((adw->chip == ADW_CHIP_ASC3550)
|
|
&& (major_ver <= 3
|
|
|| (major_ver == 3 && minor_ver == 1))) {
|
|
/*
|
|
* BIOS 3.1 and earlier location of
|
|
* 'wdtr_able' variable.
|
|
*/
|
|
adw->user_wdtr =
|
|
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE_BIOS_31);
|
|
} else {
|
|
adw->user_wdtr =
|
|
adw_lram_read_16(adw, ADW_MC_WDTR_ABLE);
|
|
}
|
|
sdtr_able = adw_lram_read_16(adw, ADW_MC_SDTR_ABLE);
|
|
for (tid = 0; tid < ADW_MAX_TID; tid++) {
|
|
u_int tid_mask;
|
|
u_int mc_sdtr;
|
|
|
|
tid_mask = 0x1 << tid;
|
|
if ((sdtr_able & tid_mask) == 0)
|
|
mc_sdtr = ADW_MC_SDTR_ASYNC;
|
|
else if ((adw->features & ADW_DT) != 0)
|
|
mc_sdtr = ADW_MC_SDTR_80;
|
|
else if ((adw->features & ADW_ULTRA2) != 0)
|
|
mc_sdtr = ADW_MC_SDTR_40;
|
|
else
|
|
mc_sdtr = ADW_MC_SDTR_20;
|
|
adw_set_user_sdtr(adw, tid, mc_sdtr);
|
|
}
|
|
adw->user_tagenb = adw_lram_read_16(adw, ADW_MC_TAGQNG_ABLE);
|
|
}
|
|
|
|
/*
|
|
* Load the Microcode.
|
|
*
|
|
* Assume the following compressed format of the microcode buffer:
|
|
*
|
|
* 253 word (506 byte) table indexed by byte code followed
|
|
* by the following byte codes:
|
|
*
|
|
* 1-Byte Code:
|
|
* 00: Emit word 0 in table.
|
|
* 01: Emit word 1 in table.
|
|
* .
|
|
* FD: Emit word 253 in table.
|
|
*
|
|
* Multi-Byte Code:
|
|
* FD RESEVED
|
|
*
|
|
* FE WW WW: (3 byte code)
|
|
* Word to emit is the next word WW WW.
|
|
* FF BB WW WW: (4 byte code)
|
|
* Emit BB count times next word WW WW.
|
|
*
|
|
*/
|
|
bytes_downloaded = 0;
|
|
word_table = (const u_int16_t *)adw->mcode_data->mcode_buf;
|
|
byte_codes = (const u_int8_t *)&word_table[253];
|
|
byte_codes_end = adw->mcode_data->mcode_buf
|
|
+ adw->mcode_data->mcode_size;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
while (byte_codes < byte_codes_end) {
|
|
if (*byte_codes == 0xFF) {
|
|
u_int16_t value;
|
|
|
|
value = byte_codes[2]
|
|
| byte_codes[3] << 8;
|
|
adw_set_multi_2(adw, ADW_RAM_DATA,
|
|
value, byte_codes[1]);
|
|
bytes_downloaded += byte_codes[1];
|
|
byte_codes += 4;
|
|
} else if (*byte_codes == 0xFE) {
|
|
u_int16_t value;
|
|
|
|
value = byte_codes[1]
|
|
| byte_codes[2] << 8;
|
|
adw_outw(adw, ADW_RAM_DATA, value);
|
|
bytes_downloaded++;
|
|
byte_codes += 3;
|
|
} else {
|
|
adw_outw(adw, ADW_RAM_DATA, word_table[*byte_codes]);
|
|
bytes_downloaded++;
|
|
byte_codes++;
|
|
}
|
|
}
|
|
/* Convert from words to bytes */
|
|
bytes_downloaded *= 2;
|
|
|
|
/*
|
|
* Clear the rest of LRAM.
|
|
*/
|
|
for (addr = bytes_downloaded; addr < adw->memsize; addr += 2)
|
|
adw_outw(adw, ADW_RAM_DATA, 0);
|
|
|
|
/*
|
|
* Verify the microcode checksum.
|
|
*/
|
|
checksum = 0;
|
|
adw_outw(adw, ADW_RAM_ADDR, 0);
|
|
for (addr = 0; addr < bytes_downloaded; addr += 2)
|
|
checksum += adw_inw(adw, ADW_RAM_DATA);
|
|
|
|
if (checksum != adw->mcode_data->mcode_chksum) {
|
|
printf("%s: Firmware load failed!\n", adw_name(adw));
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* Restore the RISC memory BIOS region.
|
|
*/
|
|
for (addr = 0; addr < ADW_MC_BIOSLEN; addr++)
|
|
adw_lram_write_8(adw, addr + ADW_MC_BIOSLEN, biosmem[addr]);
|
|
|
|
/*
|
|
* Calculate and write the microcode code checksum to
|
|
* the microcode code checksum location.
|
|
*/
|
|
addr = adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR);
|
|
end_addr = adw_lram_read_16(adw, ADW_MC_CODE_END_ADDR);
|
|
checksum = 0;
|
|
adw_outw(adw, ADW_RAM_ADDR, addr);
|
|
for (; addr < end_addr; addr += 2)
|
|
checksum += adw_inw(adw, ADW_RAM_DATA);
|
|
adw_lram_write_16(adw, ADW_MC_CODE_CHK_SUM, checksum);
|
|
|
|
/*
|
|
* Tell the microcode what kind of chip it's running on.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_CHIP_TYPE, adw->chip);
|
|
|
|
/*
|
|
* Leave WDTR and SDTR negotiation disabled until the XPT has
|
|
* informed us of device capabilities, but do set the desired
|
|
* user rates in case we receive an SDTR request from the target
|
|
* before we negotiate. We turn on tagged queuing at the microcode
|
|
* level for all devices, and modulate this on a per command basis.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED1, adw->user_sdtr[0]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED2, adw->user_sdtr[1]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED3, adw->user_sdtr[2]);
|
|
adw_lram_write_16(adw, ADW_MC_SDTR_SPEED4, adw->user_sdtr[3]);
|
|
adw_lram_write_16(adw, ADW_MC_DISC_ENABLE, adw->user_discenb);
|
|
for (tid = 0; tid < ADW_MAX_TID; tid++) {
|
|
/* Cam limits the maximum number of commands for us */
|
|
adw_lram_write_8(adw, ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
adw->max_acbs);
|
|
}
|
|
adw_lram_write_16(adw, ADW_MC_TAGQNG_ABLE, ~0);
|
|
|
|
/*
|
|
* Set SCSI_CFG0 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG0 register using this value
|
|
* after it is started.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG0,
|
|
ADW_SCSI_CFG0_PARITY_EN|ADW_SCSI_CFG0_SEL_TMO_LONG|
|
|
ADW_SCSI_CFG0_OUR_ID_EN|adw->initiator_id);
|
|
|
|
/*
|
|
* Tell the MC about the memory size that
|
|
* was setup by the probe code.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_MEM_CFG,
|
|
adw_inb(adw, ADW_MEM_CFG) & ADW_MEM_CFG_RAM_SZ_MASK);
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
scsicfg1 = adw_inw(adw, ADW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If the internal narrow cable is reversed all of the SCSI_CTRL
|
|
* register signals will be set. Check for and return an error if
|
|
* this condition is found.
|
|
*/
|
|
if ((adw_inw(adw, ADW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
|
|
printf("%s: Illegal Cable Config!\n", adw_name(adw));
|
|
printf("%s: Internal cable is reversed!\n", adw_name(adw));
|
|
return (EIO);
|
|
}
|
|
|
|
/*
|
|
* If this is a differential board and a single-ended device
|
|
* is attached to one of the connectors, return an error.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA) != 0) {
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_DIFF_MODE) != 0
|
|
&& (scsicfg1 & ADW_SCSI_CFG1_DIFF_SENSE) == 0) {
|
|
printf("%s: A Single Ended Device is attached to our "
|
|
"differential bus!\n", adw_name(adw));
|
|
return (EIO);
|
|
}
|
|
} else {
|
|
if ((scsicfg1 & ADW2_SCSI_CFG1_DEV_DETECT_HVD) != 0) {
|
|
printf("%s: A High Voltage Differential Device "
|
|
"is attached to this controller.\n",
|
|
adw_name(adw));
|
|
printf("%s: HVD devices are not supported.\n",
|
|
adw_name(adw));
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform automatic termination control if desired.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA2) != 0) {
|
|
u_int cable_det;
|
|
|
|
/*
|
|
* Ultra2 Chips require termination disabled to
|
|
* detect cable presence.
|
|
*/
|
|
adw_outw(adw, ADW_SCSI_CFG1,
|
|
scsicfg1 | ADW2_SCSI_CFG1_DIS_TERM_DRV);
|
|
cable_det = adw_inw(adw, ADW_SCSI_CFG1);
|
|
adw_outw(adw, ADW_SCSI_CFG1, scsicfg1);
|
|
|
|
/* SE Termination first if auto-term has been specified */
|
|
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
|
|
|
|
/*
|
|
* For all SE cable configurations, high byte
|
|
* termination is enabled.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
if ((cable_det & ADW_SCSI_CFG1_INT8_MASK) != 0
|
|
|| (cable_det & ADW_SCSI_CFG1_INT16_MASK) != 0) {
|
|
/*
|
|
* If either cable is not present, the
|
|
* low byte must be terminated as well.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_L;
|
|
}
|
|
}
|
|
|
|
/* LVD auto-term */
|
|
if ((term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) == 0
|
|
&& (term_scsicfg1 & ADW2_SCSI_CFG1_DIS_TERM_DRV) == 0) {
|
|
/*
|
|
* If both cables are installed, termination
|
|
* is disabled. Otherwise it is enabled.
|
|
*/
|
|
if ((cable_det & ADW2_SCSI_CFG1_EXTLVD_MASK) != 0
|
|
|| (cable_det & ADW2_SCSI_CFG1_INTLVD_MASK) != 0) {
|
|
|
|
term_scsicfg1 |= ADW2_SCSI_CFG1_TERM_CTL_LVD;
|
|
}
|
|
}
|
|
term_scsicfg1 &= ~ADW2_SCSI_CFG1_DIS_TERM_DRV;
|
|
} else {
|
|
/* Ultra Controller Termination */
|
|
if ((term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) == 0) {
|
|
int cable_count;
|
|
int wide_cable_count;
|
|
|
|
cable_count = 0;
|
|
wide_cable_count = 0;
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_INT16_MASK) == 0) {
|
|
cable_count++;
|
|
wide_cable_count++;
|
|
}
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_INT8_MASK) == 0)
|
|
cable_count++;
|
|
|
|
/* There is only one external port */
|
|
if ((scsicfg1 & ADW_SCSI_CFG1_EXT16_MASK) == 0) {
|
|
cable_count++;
|
|
wide_cable_count++;
|
|
} else if ((scsicfg1 & ADW_SCSI_CFG1_EXT8_MASK) == 0)
|
|
cable_count++;
|
|
|
|
if (cable_count == 3) {
|
|
printf("%s: Illegal Cable Config!\n",
|
|
adw_name(adw));
|
|
printf("%s: Only Two Ports may be used at "
|
|
"a time!\n", adw_name(adw));
|
|
} else if (cable_count <= 1) {
|
|
/*
|
|
* At least two out of three cables missing.
|
|
* Terminate both bytes.
|
|
*/
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H
|
|
| ADW_SCSI_CFG1_TERM_CTL_L;
|
|
} else if (wide_cable_count <= 1) {
|
|
/* No two 16bit cables present. High on. */
|
|
term_scsicfg1 |= ADW_SCSI_CFG1_TERM_CTL_H;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Tell the user about our decission */
|
|
switch (term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK) {
|
|
case ADW_SCSI_CFG1_TERM_CTL_MASK:
|
|
printf("High & Low SE Term Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_H:
|
|
printf("High SE Termination Enabled, ");
|
|
break;
|
|
case ADW_SCSI_CFG1_TERM_CTL_L:
|
|
printf("Low SE Term Enabled, ");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((adw->features & ADW_ULTRA2) != 0
|
|
&& (term_scsicfg1 & ADW2_SCSI_CFG1_TERM_CTL_LVD) != 0)
|
|
printf("LVD Term Enabled, ");
|
|
|
|
/*
|
|
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
|
|
* set 'scsicfg1'. The TERM_POL bit does not need to be
|
|
* referenced, because the hardware internally inverts
|
|
* the Termination High and Low bits if TERM_POL is set.
|
|
*/
|
|
if ((adw->features & ADW_ULTRA2) != 0) {
|
|
term_scsicfg1 = ~term_scsicfg1;
|
|
term_scsicfg1 &= ADW_SCSI_CFG1_TERM_CTL_MASK
|
|
| ADW2_SCSI_CFG1_TERM_CTL_LVD;
|
|
scsicfg1 &= ~(ADW_SCSI_CFG1_TERM_CTL_MASK
|
|
|ADW2_SCSI_CFG1_TERM_CTL_LVD
|
|
|ADW_SCSI_CFG1_BIG_ENDIAN
|
|
|ADW_SCSI_CFG1_TERM_POL
|
|
|ADW2_SCSI_CFG1_DEV_DETECT);
|
|
scsicfg1 |= term_scsicfg1;
|
|
} else {
|
|
term_scsicfg1 = ~term_scsicfg1 & ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 &= ~ADW_SCSI_CFG1_TERM_CTL_MASK;
|
|
scsicfg1 |= term_scsicfg1 | ADW_SCSI_CFG1_TERM_CTL_MANUAL;
|
|
scsicfg1 |= ADW_SCSI_CFG1_FLTR_DISABLE;
|
|
}
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SCSI_CFG1, scsicfg1);
|
|
|
|
/*
|
|
* Only accept selections on our initiator target id.
|
|
* This may change in target mode scenarios...
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_DEFAULT_SEL_MASK,
|
|
(0x01 << adw->initiator_id));
|
|
|
|
/*
|
|
* Tell the microcode where it can find our
|
|
* Initiator Command Queue (ICQ). It is
|
|
* currently empty hence the "stopper" address.
|
|
*/
|
|
adw->commandq = adw->free_carriers;
|
|
adw->free_carriers = carrierbotov(adw, adw->commandq->next_ba);
|
|
adw->commandq->next_ba = ADW_CQ_STOPPER;
|
|
adw_lram_write_32(adw, ADW_MC_ICQ, adw->commandq->carr_ba);
|
|
|
|
/*
|
|
* Tell the microcode where it can find our
|
|
* Initiator Response Queue (IRQ). It too
|
|
* is currently empty.
|
|
*/
|
|
adw->responseq = adw->free_carriers;
|
|
adw->free_carriers = carrierbotov(adw, adw->responseq->next_ba);
|
|
adw->responseq->next_ba = ADW_CQ_STOPPER;
|
|
adw_lram_write_32(adw, ADW_MC_IRQ, adw->responseq->carr_ba);
|
|
|
|
adw_outb(adw, ADW_INTR_ENABLES,
|
|
ADW_INTR_ENABLE_HOST_INTR|ADW_INTR_ENABLE_GLOBAL_INTR);
|
|
|
|
adw_outw(adw, ADW_PC, adw_lram_read_16(adw, ADW_MC_CODE_BEGIN_ADDR));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
adw_set_user_sdtr(struct adw_softc *adw, u_int tid, u_int mc_sdtr)
|
|
{
|
|
adw->user_sdtr[ADW_TARGET_GROUP(tid)] &= ~ADW_TARGET_GROUP_MASK(tid);
|
|
adw->user_sdtr[ADW_TARGET_GROUP(tid)] |=
|
|
mc_sdtr << ADW_TARGET_GROUP_SHIFT(tid);
|
|
}
|
|
|
|
u_int
|
|
adw_get_user_sdtr(struct adw_softc *adw, u_int tid)
|
|
{
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr = adw->user_sdtr[ADW_TARGET_GROUP(tid)];
|
|
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
|
|
return (mc_sdtr);
|
|
}
|
|
|
|
void
|
|
adw_set_chip_sdtr(struct adw_softc *adw, u_int tid, u_int sdtr)
|
|
{
|
|
u_int mc_sdtr_offset;
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
|
|
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
|
|
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
|
|
mc_sdtr &= ~ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr |= sdtr << ADW_TARGET_GROUP_SHIFT(tid);
|
|
adw_lram_write_16(adw, mc_sdtr_offset, mc_sdtr);
|
|
}
|
|
|
|
u_int
|
|
adw_get_chip_sdtr(struct adw_softc *adw, u_int tid)
|
|
{
|
|
u_int mc_sdtr_offset;
|
|
u_int mc_sdtr;
|
|
|
|
mc_sdtr_offset = ADW_MC_SDTR_SPEED1;
|
|
mc_sdtr_offset += ADW_TARGET_GROUP(tid) * 2;
|
|
mc_sdtr = adw_lram_read_16(adw, mc_sdtr_offset);
|
|
mc_sdtr &= ADW_TARGET_GROUP_MASK(tid);
|
|
mc_sdtr >>= ADW_TARGET_GROUP_SHIFT(tid);
|
|
return (mc_sdtr);
|
|
}
|
|
|
|
u_int
|
|
adw_find_sdtr(struct adw_softc *adw, u_int period)
|
|
{
|
|
int i;
|
|
|
|
i = 0;
|
|
if ((adw->features & ADW_DT) == 0)
|
|
i = ADW_MC_SDTR_OFFSET_ULTRA2;
|
|
if ((adw->features & ADW_ULTRA2) == 0)
|
|
i = ADW_MC_SDTR_OFFSET_ULTRA;
|
|
if (period == 0)
|
|
return ADW_MC_SDTR_ASYNC;
|
|
|
|
for (; i < adw_num_syncrates; i++) {
|
|
if (period <= adw_syncrates[i].period)
|
|
return (adw_syncrates[i].mc_sdtr);
|
|
}
|
|
return ADW_MC_SDTR_ASYNC;
|
|
}
|
|
|
|
u_int
|
|
adw_find_period(struct adw_softc *adw, u_int mc_sdtr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < adw_num_syncrates; i++) {
|
|
if (mc_sdtr == adw_syncrates[i].mc_sdtr)
|
|
break;
|
|
}
|
|
return (adw_syncrates[i].period);
|
|
}
|
|
|
|
u_int
|
|
adw_hshk_cfg_period_factor(u_int tinfo)
|
|
{
|
|
tinfo &= ADW_HSHK_CFG_RATE_MASK;
|
|
tinfo >>= ADW_HSHK_CFG_RATE_SHIFT;
|
|
if (tinfo == 0x11)
|
|
/* 80MHz/DT */
|
|
return (9);
|
|
else if (tinfo == 0x10)
|
|
/* 40MHz */
|
|
return (10);
|
|
else
|
|
return (((tinfo * 25) + 50) / 4);
|
|
}
|
|
|
|
/*
|
|
* Send an idle command to the chip and wait for completion.
|
|
*/
|
|
adw_idle_cmd_status_t
|
|
adw_idle_cmd_send(struct adw_softc *adw, adw_idle_cmd_t cmd, u_int parameter)
|
|
{
|
|
u_int timeout;
|
|
adw_idle_cmd_status_t status;
|
|
int s;
|
|
|
|
s = splcam();
|
|
|
|
/*
|
|
* Clear the idle command status which is set by the microcode
|
|
* to a non-zero value to indicate when the command is completed.
|
|
*/
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_CMD_STATUS, 0);
|
|
|
|
/*
|
|
* Write the idle command value after the idle command parameter
|
|
* has been written to avoid a race condition. If the order is not
|
|
* followed, the microcode may process the idle command before the
|
|
* parameters have been written to LRAM.
|
|
*/
|
|
adw_lram_write_32(adw, ADW_MC_IDLE_CMD_PARAMETER, parameter);
|
|
adw_lram_write_16(adw, ADW_MC_IDLE_CMD, cmd);
|
|
|
|
/*
|
|
* Tickle the RISC to tell it to process the idle command.
|
|
*/
|
|
adw_tickle_risc(adw, ADW_TICKLE_B);
|
|
|
|
/* Wait for up to 10 seconds for the command to complete */
|
|
timeout = 5000000;
|
|
while (--timeout) {
|
|
status = adw_lram_read_16(adw, ADW_MC_IDLE_CMD_STATUS);
|
|
if (status != 0)
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
|
|
if (timeout == 0)
|
|
panic("%s: Idle Command Timed Out!\n", adw_name(adw));
|
|
splx(s);
|
|
return (status);
|
|
}
|