//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides a generalized class for OpenMP runtime code generation // specialized by GPU targets NVPTX and AMDGCN. // //===----------------------------------------------------------------------===// #include "CGOpenMPRuntimeGPU.h" #include "CodeGenFunction.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/OpenMPClause.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Cuda.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Frontend/OpenMP/OMPGridValues.h" #include "llvm/Support/MathExtras.h" using namespace clang; using namespace CodeGen; using namespace llvm::omp; namespace { /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. class NVPTXActionTy final : public PrePostActionTy { llvm::FunctionCallee EnterCallee = nullptr; ArrayRef EnterArgs; llvm::FunctionCallee ExitCallee = nullptr; ArrayRef ExitArgs; bool Conditional = false; llvm::BasicBlock *ContBlock = nullptr; public: NVPTXActionTy(llvm::FunctionCallee EnterCallee, ArrayRef EnterArgs, llvm::FunctionCallee ExitCallee, ArrayRef ExitArgs, bool Conditional = false) : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), ExitArgs(ExitArgs), Conditional(Conditional) {} void Enter(CodeGenFunction &CGF) override { llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); if (Conditional) { llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); ContBlock = CGF.createBasicBlock("omp_if.end"); // Generate the branch (If-stmt) CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); CGF.EmitBlock(ThenBlock); } } void Done(CodeGenFunction &CGF) { // Emit the rest of blocks/branches CGF.EmitBranch(ContBlock); CGF.EmitBlock(ContBlock, true); } void Exit(CodeGenFunction &CGF) override { CGF.EmitRuntimeCall(ExitCallee, ExitArgs); } }; /// A class to track the execution mode when codegening directives within /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry /// to the target region and used by containing directives such as 'parallel' /// to emit optimized code. class ExecutionRuntimeModesRAII { private: CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = CGOpenMPRuntimeGPU::EM_Unknown; CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; public: ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, CGOpenMPRuntimeGPU::ExecutionMode EntryMode) : ExecMode(ExecMode) { SavedExecMode = ExecMode; ExecMode = EntryMode; } ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; } }; static const ValueDecl *getPrivateItem(const Expr *RefExpr) { RefExpr = RefExpr->IgnoreParens(); if (const auto *ASE = dyn_cast(RefExpr)) { const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempASE = dyn_cast(Base)) Base = TempASE->getBase()->IgnoreParenImpCasts(); RefExpr = Base; } else if (auto *OASE = dyn_cast(RefExpr)) { const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempOASE = dyn_cast(Base)) Base = TempOASE->getBase()->IgnoreParenImpCasts(); while (const auto *TempASE = dyn_cast(Base)) Base = TempASE->getBase()->IgnoreParenImpCasts(); RefExpr = Base; } RefExpr = RefExpr->IgnoreParenImpCasts(); if (const auto *DE = dyn_cast(RefExpr)) return cast(DE->getDecl()->getCanonicalDecl()); const auto *ME = cast(RefExpr); return cast(ME->getMemberDecl()->getCanonicalDecl()); } static RecordDecl *buildRecordForGlobalizedVars( ASTContext &C, ArrayRef EscapedDecls, ArrayRef EscapedDeclsForTeams, llvm::SmallDenseMap &MappedDeclsFields, int BufSize) { using VarsDataTy = std::pair; if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) return nullptr; SmallVector GlobalizedVars; for (const ValueDecl *D : EscapedDecls) GlobalizedVars.emplace_back(C.getDeclAlign(D), D); for (const ValueDecl *D : EscapedDeclsForTeams) GlobalizedVars.emplace_back(C.getDeclAlign(D), D); // Build struct _globalized_locals_ty { // /* globalized vars */[WarSize] align (decl_align) // /* globalized vars */ for EscapedDeclsForTeams // }; RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); GlobalizedRD->startDefinition(); llvm::SmallPtrSet SingleEscaped( EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); for (const auto &Pair : GlobalizedVars) { const ValueDecl *VD = Pair.second; QualType Type = VD->getType(); if (Type->isLValueReferenceType()) Type = C.getPointerType(Type.getNonReferenceType()); else Type = Type.getNonReferenceType(); SourceLocation Loc = VD->getLocation(); FieldDecl *Field; if (SingleEscaped.count(VD)) { Field = FieldDecl::Create( C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, C.getTrivialTypeSourceInfo(Type, SourceLocation()), /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); Field->setAccess(AS_public); if (VD->hasAttrs()) { for (specific_attr_iterator I(VD->getAttrs().begin()), E(VD->getAttrs().end()); I != E; ++I) Field->addAttr(*I); } } else { if (BufSize > 1) { llvm::APInt ArraySize(32, BufSize); Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArraySizeModifier::Normal, 0); } Field = FieldDecl::Create( C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, C.getTrivialTypeSourceInfo(Type, SourceLocation()), /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); Field->setAccess(AS_public); llvm::APInt Align(32, Pair.first.getQuantity()); Field->addAttr(AlignedAttr::CreateImplicit( C, /*IsAlignmentExpr=*/true, IntegerLiteral::Create(C, Align, C.getIntTypeForBitwidth(32, /*Signed=*/0), SourceLocation()), {}, AlignedAttr::GNU_aligned)); } GlobalizedRD->addDecl(Field); MappedDeclsFields.try_emplace(VD, Field); } GlobalizedRD->completeDefinition(); return GlobalizedRD; } /// Get the list of variables that can escape their declaration context. class CheckVarsEscapingDeclContext final : public ConstStmtVisitor { CodeGenFunction &CGF; llvm::SetVector EscapedDecls; llvm::SetVector EscapedVariableLengthDecls; llvm::SetVector DelayedVariableLengthDecls; llvm::SmallPtrSet EscapedParameters; RecordDecl *GlobalizedRD = nullptr; llvm::SmallDenseMap MappedDeclsFields; bool AllEscaped = false; bool IsForCombinedParallelRegion = false; void markAsEscaped(const ValueDecl *VD) { // Do not globalize declare target variables. if (!isa(VD) || OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) return; VD = cast(VD->getCanonicalDecl()); // Use user-specified allocation. if (VD->hasAttrs() && VD->hasAttr()) return; // Variables captured by value must be globalized. bool IsCaptured = false; if (auto *CSI = CGF.CapturedStmtInfo) { if (const FieldDecl *FD = CSI->lookup(cast(VD))) { // Check if need to capture the variable that was already captured by // value in the outer region. IsCaptured = true; if (!IsForCombinedParallelRegion) { if (!FD->hasAttrs()) return; const auto *Attr = FD->getAttr(); if (!Attr) return; if (((Attr->getCaptureKind() != OMPC_map) && !isOpenMPPrivate(Attr->getCaptureKind())) || ((Attr->getCaptureKind() == OMPC_map) && !FD->getType()->isAnyPointerType())) return; } if (!FD->getType()->isReferenceType()) { assert(!VD->getType()->isVariablyModifiedType() && "Parameter captured by value with variably modified type"); EscapedParameters.insert(VD); } else if (!IsForCombinedParallelRegion) { return; } } } if ((!CGF.CapturedStmtInfo || (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && VD->getType()->isReferenceType()) // Do not globalize variables with reference type. return; if (VD->getType()->isVariablyModifiedType()) { // If not captured at the target region level then mark the escaped // variable as delayed. if (IsCaptured) EscapedVariableLengthDecls.insert(VD); else DelayedVariableLengthDecls.insert(VD); } else EscapedDecls.insert(VD); } void VisitValueDecl(const ValueDecl *VD) { if (VD->getType()->isLValueReferenceType()) markAsEscaped(VD); if (const auto *VarD = dyn_cast(VD)) { if (!isa(VarD) && VarD->hasInit()) { const bool SavedAllEscaped = AllEscaped; AllEscaped = VD->getType()->isLValueReferenceType(); Visit(VarD->getInit()); AllEscaped = SavedAllEscaped; } } } void VisitOpenMPCapturedStmt(const CapturedStmt *S, ArrayRef Clauses, bool IsCombinedParallelRegion) { if (!S) return; for (const CapturedStmt::Capture &C : S->captures()) { if (C.capturesVariable() && !C.capturesVariableByCopy()) { const ValueDecl *VD = C.getCapturedVar(); bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; if (IsCombinedParallelRegion) { // Check if the variable is privatized in the combined construct and // those private copies must be shared in the inner parallel // directive. IsForCombinedParallelRegion = false; for (const OMPClause *C : Clauses) { if (!isOpenMPPrivate(C->getClauseKind()) || C->getClauseKind() == OMPC_reduction || C->getClauseKind() == OMPC_linear || C->getClauseKind() == OMPC_private) continue; ArrayRef Vars; if (const auto *PC = dyn_cast(C)) Vars = PC->getVarRefs(); else if (const auto *PC = dyn_cast(C)) Vars = PC->getVarRefs(); else llvm_unreachable("Unexpected clause."); for (const auto *E : Vars) { const Decl *D = cast(E)->getDecl()->getCanonicalDecl(); if (D == VD->getCanonicalDecl()) { IsForCombinedParallelRegion = true; break; } } if (IsForCombinedParallelRegion) break; } } markAsEscaped(VD); if (isa(VD)) VisitValueDecl(VD); IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; } } } void buildRecordForGlobalizedVars(bool IsInTTDRegion) { assert(!GlobalizedRD && "Record for globalized variables is built already."); ArrayRef EscapedDeclsForParallel, EscapedDeclsForTeams; unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; if (IsInTTDRegion) EscapedDeclsForTeams = EscapedDecls.getArrayRef(); else EscapedDeclsForParallel = EscapedDecls.getArrayRef(); GlobalizedRD = ::buildRecordForGlobalizedVars( CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, MappedDeclsFields, WarpSize); } public: CheckVarsEscapingDeclContext(CodeGenFunction &CGF, ArrayRef TeamsReductions) : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { } virtual ~CheckVarsEscapingDeclContext() = default; void VisitDeclStmt(const DeclStmt *S) { if (!S) return; for (const Decl *D : S->decls()) if (const auto *VD = dyn_cast_or_null(D)) VisitValueDecl(VD); } void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { if (!D) return; if (!D->hasAssociatedStmt()) return; if (const auto *S = dyn_cast_or_null(D->getAssociatedStmt())) { // Do not analyze directives that do not actually require capturing, // like `omp for` or `omp simd` directives. llvm::SmallVector CaptureRegions; getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { VisitStmt(S->getCapturedStmt()); return; } VisitOpenMPCapturedStmt( S, D->clauses(), CaptureRegions.back() == OMPD_parallel && isOpenMPDistributeDirective(D->getDirectiveKind())); } } void VisitCapturedStmt(const CapturedStmt *S) { if (!S) return; for (const CapturedStmt::Capture &C : S->captures()) { if (C.capturesVariable() && !C.capturesVariableByCopy()) { const ValueDecl *VD = C.getCapturedVar(); markAsEscaped(VD); if (isa(VD)) VisitValueDecl(VD); } } } void VisitLambdaExpr(const LambdaExpr *E) { if (!E) return; for (const LambdaCapture &C : E->captures()) { if (C.capturesVariable()) { if (C.getCaptureKind() == LCK_ByRef) { const ValueDecl *VD = C.getCapturedVar(); markAsEscaped(VD); if (E->isInitCapture(&C) || isa(VD)) VisitValueDecl(VD); } } } } void VisitBlockExpr(const BlockExpr *E) { if (!E) return; for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { if (C.isByRef()) { const VarDecl *VD = C.getVariable(); markAsEscaped(VD); if (isa(VD) || VD->isInitCapture()) VisitValueDecl(VD); } } } void VisitCallExpr(const CallExpr *E) { if (!E) return; for (const Expr *Arg : E->arguments()) { if (!Arg) continue; if (Arg->isLValue()) { const bool SavedAllEscaped = AllEscaped; AllEscaped = true; Visit(Arg); AllEscaped = SavedAllEscaped; } else { Visit(Arg); } } Visit(E->getCallee()); } void VisitDeclRefExpr(const DeclRefExpr *E) { if (!E) return; const ValueDecl *VD = E->getDecl(); if (AllEscaped) markAsEscaped(VD); if (isa(VD)) VisitValueDecl(VD); else if (VD->isInitCapture()) VisitValueDecl(VD); } void VisitUnaryOperator(const UnaryOperator *E) { if (!E) return; if (E->getOpcode() == UO_AddrOf) { const bool SavedAllEscaped = AllEscaped; AllEscaped = true; Visit(E->getSubExpr()); AllEscaped = SavedAllEscaped; } else { Visit(E->getSubExpr()); } } void VisitImplicitCastExpr(const ImplicitCastExpr *E) { if (!E) return; if (E->getCastKind() == CK_ArrayToPointerDecay) { const bool SavedAllEscaped = AllEscaped; AllEscaped = true; Visit(E->getSubExpr()); AllEscaped = SavedAllEscaped; } else { Visit(E->getSubExpr()); } } void VisitExpr(const Expr *E) { if (!E) return; bool SavedAllEscaped = AllEscaped; if (!E->isLValue()) AllEscaped = false; for (const Stmt *Child : E->children()) if (Child) Visit(Child); AllEscaped = SavedAllEscaped; } void VisitStmt(const Stmt *S) { if (!S) return; for (const Stmt *Child : S->children()) if (Child) Visit(Child); } /// Returns the record that handles all the escaped local variables and used /// instead of their original storage. const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { if (!GlobalizedRD) buildRecordForGlobalizedVars(IsInTTDRegion); return GlobalizedRD; } /// Returns the field in the globalized record for the escaped variable. const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { assert(GlobalizedRD && "Record for globalized variables must be generated already."); return MappedDeclsFields.lookup(VD); } /// Returns the list of the escaped local variables/parameters. ArrayRef getEscapedDecls() const { return EscapedDecls.getArrayRef(); } /// Checks if the escaped local variable is actually a parameter passed by /// value. const llvm::SmallPtrSetImpl &getEscapedParameters() const { return EscapedParameters; } /// Returns the list of the escaped variables with the variably modified /// types. ArrayRef getEscapedVariableLengthDecls() const { return EscapedVariableLengthDecls.getArrayRef(); } /// Returns the list of the delayed variables with the variably modified /// types. ArrayRef getDelayedVariableLengthDecls() const { return DelayedVariableLengthDecls.getArrayRef(); } }; } // anonymous namespace /// Get the id of the warp in the block. /// We assume that the warp size is 32, which is always the case /// on the NVPTX device, to generate more efficient code. static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; unsigned LaneIDBits = llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); } /// Get the id of the current lane in the Warp. /// We assume that the warp size is 32, which is always the case /// on the NVPTX device, to generate more efficient code. static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; unsigned LaneIDBits = llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device."); unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), "nvptx_lane_id"); } CGOpenMPRuntimeGPU::ExecutionMode CGOpenMPRuntimeGPU::getExecutionMode() const { return CurrentExecutionMode; } CGOpenMPRuntimeGPU::DataSharingMode CGOpenMPRuntimeGPU::getDataSharingMode() const { return CurrentDataSharingMode; } /// Check for inner (nested) SPMD construct, if any static bool hasNestedSPMDDirective(ASTContext &Ctx, const OMPExecutableDirective &D) { const auto *CS = D.getInnermostCapturedStmt(); const auto *Body = CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); if (const auto *NestedDir = dyn_cast_or_null(ChildStmt)) { OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); switch (D.getDirectiveKind()) { case OMPD_target: if (isOpenMPParallelDirective(DKind)) return true; if (DKind == OMPD_teams) { Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( /*IgnoreCaptured=*/true); if (!Body) return false; ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); if (const auto *NND = dyn_cast_or_null(ChildStmt)) { DKind = NND->getDirectiveKind(); if (isOpenMPParallelDirective(DKind)) return true; } } return false; case OMPD_target_teams: return isOpenMPParallelDirective(DKind); case OMPD_target_simd: case OMPD_target_parallel: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: case OMPD_target_teams_distribute: case OMPD_target_teams_distribute_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: default: llvm_unreachable("Unexpected directive."); } } return false; } static bool supportsSPMDExecutionMode(ASTContext &Ctx, const OMPExecutableDirective &D) { OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); switch (DirectiveKind) { case OMPD_target: case OMPD_target_teams: return hasNestedSPMDDirective(Ctx, D); case OMPD_target_teams_loop: case OMPD_target_parallel_loop: case OMPD_target_parallel: case OMPD_target_parallel_for: case OMPD_target_parallel_for_simd: case OMPD_target_teams_distribute_parallel_for: case OMPD_target_teams_distribute_parallel_for_simd: case OMPD_target_simd: case OMPD_target_teams_distribute_simd: return true; case OMPD_target_teams_distribute: return false; case OMPD_parallel: case OMPD_for: case OMPD_parallel_for: case OMPD_parallel_master: case OMPD_parallel_sections: case OMPD_for_simd: case OMPD_parallel_for_simd: case OMPD_cancel: case OMPD_cancellation_point: case OMPD_ordered: case OMPD_threadprivate: case OMPD_allocate: case OMPD_task: case OMPD_simd: case OMPD_sections: case OMPD_section: case OMPD_single: case OMPD_master: case OMPD_critical: case OMPD_taskyield: case OMPD_barrier: case OMPD_taskwait: case OMPD_taskgroup: case OMPD_atomic: case OMPD_flush: case OMPD_depobj: case OMPD_scan: case OMPD_teams: case OMPD_target_data: case OMPD_target_exit_data: case OMPD_target_enter_data: case OMPD_distribute: case OMPD_distribute_simd: case OMPD_distribute_parallel_for: case OMPD_distribute_parallel_for_simd: case OMPD_teams_distribute: case OMPD_teams_distribute_simd: case OMPD_teams_distribute_parallel_for: case OMPD_teams_distribute_parallel_for_simd: case OMPD_target_update: case OMPD_declare_simd: case OMPD_declare_variant: case OMPD_begin_declare_variant: case OMPD_end_declare_variant: case OMPD_declare_target: case OMPD_end_declare_target: case OMPD_declare_reduction: case OMPD_declare_mapper: case OMPD_taskloop: case OMPD_taskloop_simd: case OMPD_master_taskloop: case OMPD_master_taskloop_simd: case OMPD_parallel_master_taskloop: case OMPD_parallel_master_taskloop_simd: case OMPD_requires: case OMPD_unknown: default: break; } llvm_unreachable( "Unknown programming model for OpenMP directive on NVPTX target."); } void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD); EntryFunctionState EST; WrapperFunctionsMap.clear(); [[maybe_unused]] bool IsBareKernel = D.getSingleClause(); assert(!IsBareKernel && "bare kernel should not be at generic mode"); // Emit target region as a standalone region. class NVPTXPrePostActionTy : public PrePostActionTy { CGOpenMPRuntimeGPU::EntryFunctionState &EST; const OMPExecutableDirective &D; public: NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, const OMPExecutableDirective &D) : EST(EST), D(D) {} void Enter(CodeGenFunction &CGF) override { auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false); // Skip target region initialization. RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); } void Exit(CodeGenFunction &CGF) override { auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); RT.clearLocThreadIdInsertPt(CGF); RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); } } Action(EST, D); CodeGen.setAction(Action); IsInTTDRegion = true; emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); IsInTTDRegion = false; } void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D, CodeGenFunction &CGF, EntryFunctionState &EST, bool IsSPMD) { int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1, MaxTeamsVal = -1; computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal); CGBuilderTy &Bld = CGF.Builder; Bld.restoreIP(OMPBuilder.createTargetInit( Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal)); if (!IsSPMD) emitGenericVarsProlog(CGF, EST.Loc); } void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, EntryFunctionState &EST, bool IsSPMD) { if (!IsSPMD) emitGenericVarsEpilog(CGF); // This is temporary until we remove the fixed sized buffer. ASTContext &C = CGM.getContext(); RecordDecl *StaticRD = C.buildImplicitRecord( "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::Union); StaticRD->startDefinition(); for (const RecordDecl *TeamReductionRec : TeamsReductions) { QualType RecTy = C.getRecordType(TeamReductionRec); auto *Field = FieldDecl::Create( C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); Field->setAccess(AS_public); StaticRD->addDecl(Field); } StaticRD->completeDefinition(); QualType StaticTy = C.getRecordType(StaticRD); llvm::Type *LLVMReductionsBufferTy = CGM.getTypes().ConvertTypeForMem(StaticTy); const auto &DL = CGM.getModule().getDataLayout(); uint64_t ReductionDataSize = TeamsReductions.empty() ? 0 : DL.getTypeAllocSize(LLVMReductionsBufferTy).getFixedValue(); CGBuilderTy &Bld = CGF.Builder; OMPBuilder.createTargetDeinit(Bld, ReductionDataSize, C.getLangOpts().OpenMPCUDAReductionBufNum); TeamsReductions.clear(); } void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD); EntryFunctionState EST; bool IsBareKernel = D.getSingleClause(); // Emit target region as a standalone region. class NVPTXPrePostActionTy : public PrePostActionTy { CGOpenMPRuntimeGPU &RT; CGOpenMPRuntimeGPU::EntryFunctionState &EST; bool IsBareKernel; DataSharingMode Mode; const OMPExecutableDirective &D; public: NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, CGOpenMPRuntimeGPU::EntryFunctionState &EST, bool IsBareKernel, const OMPExecutableDirective &D) : RT(RT), EST(EST), IsBareKernel(IsBareKernel), Mode(RT.CurrentDataSharingMode), D(D) {} void Enter(CodeGenFunction &CGF) override { if (IsBareKernel) { RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA; return; } RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true); // Skip target region initialization. RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); } void Exit(CodeGenFunction &CGF) override { if (IsBareKernel) { RT.CurrentDataSharingMode = Mode; return; } RT.clearLocThreadIdInsertPt(CGF); RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); } } Action(*this, EST, IsBareKernel, D); CodeGen.setAction(Action); IsInTTDRegion = true; emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); IsInTTDRegion = false; } void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( const OMPExecutableDirective &D, StringRef ParentName, llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { if (!IsOffloadEntry) // Nothing to do. return; assert(!ParentName.empty() && "Invalid target region parent name!"); bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); bool IsBareKernel = D.getSingleClause(); if (Mode || IsBareKernel) emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); else emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, CodeGen); } CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) : CGOpenMPRuntime(CGM) { llvm::OpenMPIRBuilderConfig Config( CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(), CGM.getLangOpts().OpenMPOffloadMandatory, /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false, hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false); OMPBuilder.setConfig(Config); if (!CGM.getLangOpts().OpenMPIsTargetDevice) llvm_unreachable("OpenMP can only handle device code."); if (CGM.getLangOpts().OpenMPCUDAMode) CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA; llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty()) return; OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, "__omp_rtl_debug_kind"); OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, "__omp_rtl_assume_teams_oversubscription"); OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, "__omp_rtl_assume_threads_oversubscription"); OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState, "__omp_rtl_assume_no_thread_state"); OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism, "__omp_rtl_assume_no_nested_parallelism"); } void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, ProcBindKind ProcBind, SourceLocation Loc) { // Nothing to do. } void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, llvm::Value *NumThreads, SourceLocation Loc) { // Nothing to do. } void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, const Expr *NumTeams, const Expr *ThreadLimit, SourceLocation Loc) {} llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { // Emit target region as a standalone region. bool PrevIsInTTDRegion = IsInTTDRegion; IsInTTDRegion = false; auto *OutlinedFun = cast(CGOpenMPRuntime::emitParallelOutlinedFunction( CGF, D, ThreadIDVar, InnermostKind, CodeGen)); IsInTTDRegion = PrevIsInTTDRegion; if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) { llvm::Function *WrapperFun = createParallelDataSharingWrapper(OutlinedFun, D); WrapperFunctionsMap[OutlinedFun] = WrapperFun; } return OutlinedFun; } /// Get list of lastprivate variables from the teams distribute ... or /// teams {distribute ...} directives. static void getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, llvm::SmallVectorImpl &Vars) { assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && "expected teams directive."); const OMPExecutableDirective *Dir = &D; if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( Ctx, D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( /*IgnoreCaptured=*/true))) { Dir = dyn_cast_or_null(S); if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) Dir = nullptr; } } if (!Dir) return; for (const auto *C : Dir->getClausesOfKind()) { for (const Expr *E : C->getVarRefs()) Vars.push_back(getPrivateItem(E)); } } /// Get list of reduction variables from the teams ... directives. static void getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, llvm::SmallVectorImpl &Vars) { assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && "expected teams directive."); for (const auto *C : D.getClausesOfKind()) { for (const Expr *E : C->privates()) Vars.push_back(getPrivateItem(E)); } } llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( CodeGenFunction &CGF, const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { SourceLocation Loc = D.getBeginLoc(); const RecordDecl *GlobalizedRD = nullptr; llvm::SmallVector LastPrivatesReductions; llvm::SmallDenseMap MappedDeclsFields; unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; // Globalize team reductions variable unconditionally in all modes. if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); if (!LastPrivatesReductions.empty()) { GlobalizedRD = ::buildRecordForGlobalizedVars( CGM.getContext(), std::nullopt, LastPrivatesReductions, MappedDeclsFields, WarpSize); } } else if (!LastPrivatesReductions.empty()) { assert(!TeamAndReductions.first && "Previous team declaration is not expected."); TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); std::swap(TeamAndReductions.second, LastPrivatesReductions); } // Emit target region as a standalone region. class NVPTXPrePostActionTy : public PrePostActionTy { SourceLocation &Loc; const RecordDecl *GlobalizedRD; llvm::SmallDenseMap &MappedDeclsFields; public: NVPTXPrePostActionTy( SourceLocation &Loc, const RecordDecl *GlobalizedRD, llvm::SmallDenseMap &MappedDeclsFields) : Loc(Loc), GlobalizedRD(GlobalizedRD), MappedDeclsFields(MappedDeclsFields) {} void Enter(CodeGenFunction &CGF) override { auto &Rt = static_cast(CGF.CGM.getOpenMPRuntime()); if (GlobalizedRD) { auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; I->getSecond().MappedParams = std::make_unique(); DeclToAddrMapTy &Data = I->getSecond().LocalVarData; for (const auto &Pair : MappedDeclsFields) { assert(Pair.getFirst()->isCanonicalDecl() && "Expected canonical declaration"); Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); } } Rt.emitGenericVarsProlog(CGF, Loc); } void Exit(CodeGenFunction &CGF) override { static_cast(CGF.CGM.getOpenMPRuntime()) .emitGenericVarsEpilog(CGF); } } Action(Loc, GlobalizedRD, MappedDeclsFields); CodeGen.setAction(Action); llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( CGF, D, ThreadIDVar, InnermostKind, CodeGen); return OutlinedFun; } void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, SourceLocation Loc) { if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) return; CGBuilderTy &Bld = CGF.Builder; const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); if (I == FunctionGlobalizedDecls.end()) return; for (auto &Rec : I->getSecond().LocalVarData) { const auto *VD = cast(Rec.first); bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); QualType VarTy = VD->getType(); // Get the local allocation of a firstprivate variable before sharing llvm::Value *ParValue; if (EscapedParam) { LValue ParLVal = CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); } // Allocate space for the variable to be globalized llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; llvm::CallBase *VoidPtr = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_alloc_shared), AllocArgs, VD->getName()); // FIXME: We should use the variables actual alignment as an argument. VoidPtr->addRetAttr(llvm::Attribute::get( CGM.getLLVMContext(), llvm::Attribute::Alignment, CGM.getContext().getTargetInfo().getNewAlign() / 8)); // Cast the void pointer and get the address of the globalized variable. llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); Rec.second.PrivateAddr = VarAddr.getAddress(CGF); Rec.second.GlobalizedVal = VoidPtr; // Assign the local allocation to the newly globalized location. if (EscapedParam) { CGF.EmitStoreOfScalar(ParValue, VarAddr); I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); } if (auto *DI = CGF.getDebugInfo()) VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); } for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) { const auto *VD = cast(ValueD); std::pair AddrSizePair = getKmpcAllocShared(CGF, VD); I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(AddrSizePair); LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(), CGM.getContext().getDeclAlign(VD), AlignmentSource::Decl); I->getSecond().MappedParams->setVarAddr(CGF, VD, Base.getAddress(CGF)); } I->getSecond().MappedParams->apply(CGF); } bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF, const VarDecl *VD) const { const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); if (I == FunctionGlobalizedDecls.end()) return false; // Check variable declaration is delayed: return llvm::is_contained(I->getSecond().DelayedVariableLengthDecls, VD); } std::pair CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF, const VarDecl *VD) { CGBuilderTy &Bld = CGF.Builder; // Compute size and alignment. llvm::Value *Size = CGF.getTypeSize(VD->getType()); CharUnits Align = CGM.getContext().getDeclAlign(VD); Size = Bld.CreateNUWAdd( Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); llvm::Value *AlignVal = llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); Size = Bld.CreateUDiv(Size, AlignVal); Size = Bld.CreateNUWMul(Size, AlignVal); // Allocate space for this VLA object to be globalized. llvm::Value *AllocArgs[] = {Size}; llvm::CallBase *VoidPtr = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_alloc_shared), AllocArgs, VD->getName()); VoidPtr->addRetAttr(llvm::Attribute::get( CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity())); return std::make_pair(VoidPtr, Size); } void CGOpenMPRuntimeGPU::getKmpcFreeShared( CodeGenFunction &CGF, const std::pair &AddrSizePair) { // Deallocate the memory for each globalized VLA object CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_free_shared), {AddrSizePair.first, AddrSizePair.second}); } void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) { if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) return; const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); if (I != FunctionGlobalizedDecls.end()) { // Deallocate the memory for each globalized VLA object that was // globalized in the prolog (i.e. emitGenericVarsProlog). for (const auto &AddrSizePair : llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_free_shared), {AddrSizePair.first, AddrSizePair.second}); } // Deallocate the memory for each globalized value for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { const auto *VD = cast(Rec.first); I->getSecond().MappedParams->restore(CGF); llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, CGF.getTypeSize(VD->getType())}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_free_shared), FreeArgs); } } } void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, const OMPExecutableDirective &D, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars) { if (!CGF.HaveInsertPoint()) return; bool IsBareKernel = D.getSingleClause(); Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".zero.addr"); CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); llvm::SmallVector OutlinedFnArgs; // We don't emit any thread id function call in bare kernel, but because the // outlined function has a pointer argument, we emit a nullptr here. if (IsBareKernel) OutlinedFnArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy)); else OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); OutlinedFnArgs.push_back(ZeroAddr.getPointer()); OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); } void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, ArrayRef CapturedVars, const Expr *IfCond, llvm::Value *NumThreads) { if (!CGF.HaveInsertPoint()) return; auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, NumThreads](CodeGenFunction &CGF, PrePostActionTy &Action) { CGBuilderTy &Bld = CGF.Builder; llvm::Value *NumThreadsVal = NumThreads; llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); if (WFn) ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); // Create a private scope that will globalize the arguments // passed from the outside of the target region. // TODO: Is that needed? CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), "captured_vars_addrs"); // There's something to share. if (!CapturedVars.empty()) { // Prepare for parallel region. Indicate the outlined function. ASTContext &Ctx = CGF.getContext(); unsigned Idx = 0; for (llvm::Value *V : CapturedVars) { Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); llvm::Value *PtrV; if (V->getType()->isIntegerTy()) PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); else PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, Ctx.getPointerType(Ctx.VoidPtrTy)); ++Idx; } } llvm::Value *IfCondVal = nullptr; if (IfCond) IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, /* isSigned */ false); else IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); if (!NumThreadsVal) NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); else NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), assert(IfCondVal && "Expected a value"); llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *Args[] = { RTLoc, getThreadID(CGF, Loc), IfCondVal, NumThreadsVal, llvm::ConstantInt::get(CGF.Int32Ty, -1), FnPtr, ID, Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), CGF.VoidPtrPtrTy), llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_parallel_51), Args); }; RegionCodeGenTy RCG(ParallelGen); RCG(CGF); } void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { // Always emit simple barriers! if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_barrier_simple_spmd(nullptr, 0); // This function does not use parameters, so we can emit just default values. llvm::Value *Args[] = { llvm::ConstantPointerNull::get( cast(getIdentTyPointerTy())), llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), Args); } void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind Kind, bool, bool) { // Always emit simple barriers! if (!CGF.HaveInsertPoint()) return; // Build call __kmpc_cancel_barrier(loc, thread_id); unsigned Flags = getDefaultFlagsForBarriers(Kind); llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), getThreadID(CGF, Loc)}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_barrier), Args); } void CGOpenMPRuntimeGPU::emitCriticalRegion( CodeGenFunction &CGF, StringRef CriticalName, const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, const Expr *Hint) { llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); // Get the mask of active threads in the warp. llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); // Fetch team-local id of the thread. llvm::Value *ThreadID = RT.getGPUThreadID(CGF); // Get the width of the team. llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); // Initialize the counter variable for the loop. QualType Int32Ty = CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, /*isInit=*/true); // Block checks if loop counter exceeds upper bound. CGF.EmitBlock(LoopBB); llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); // Block tests which single thread should execute region, and which threads // should go straight to synchronisation point. CGF.EmitBlock(TestBB); CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); llvm::Value *CmpThreadToCounter = CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); // Block emits the body of the critical region. CGF.EmitBlock(BodyBB); // Output the critical statement. CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, Hint); // After the body surrounded by the critical region, the single executing // thread will jump to the synchronisation point. // Block waits for all threads in current team to finish then increments the // counter variable and returns to the loop. CGF.EmitBlock(SyncBB); // Reconverge active threads in the warp. (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_syncwarp), Mask); llvm::Value *IncCounterVal = CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); CGF.EmitBranch(LoopBB); // Block that is reached when all threads in the team complete the region. CGF.EmitBlock(ExitBB, /*IsFinished=*/true); } /// Cast value to the specified type. static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, QualType ValTy, QualType CastTy, SourceLocation Loc) { assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && "Cast type must sized."); assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && "Val type must sized."); llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); if (ValTy == CastTy) return Val; if (CGF.getContext().getTypeSizeInChars(ValTy) == CGF.getContext().getTypeSizeInChars(CastTy)) return CGF.Builder.CreateBitCast(Val, LLVMCastTy); if (CastTy->isIntegerType() && ValTy->isIntegerType()) return CGF.Builder.CreateIntCast(Val, LLVMCastTy, CastTy->hasSignedIntegerRepresentation()); Address CastItem = CGF.CreateMemTemp(CastTy); Address ValCastItem = CastItem.withElementType(Val->getType()); CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); } /// This function creates calls to one of two shuffle functions to copy /// variables between lanes in a warp. static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, llvm::Value *Elem, QualType ElemType, llvm::Value *Offset, SourceLocation Loc) { CodeGenModule &CGM = CGF.CGM; CGBuilderTy &Bld = CGF.Builder; CGOpenMPRuntimeGPU &RT = *(static_cast(&CGM.getOpenMPRuntime())); llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); assert(Size.getQuantity() <= 8 && "Unsupported bitwidth in shuffle instruction."); RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 ? OMPRTL___kmpc_shuffle_int32 : OMPRTL___kmpc_shuffle_int64; // Cast all types to 32- or 64-bit values before calling shuffle routines. QualType CastTy = CGF.getContext().getIntTypeForBitwidth( Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); llvm::Value *WarpSize = Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), {ElemCast, Offset, WarpSize}); return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); } static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, Address DestAddr, QualType ElemType, llvm::Value *Offset, SourceLocation Loc) { CGBuilderTy &Bld = CGF.Builder; CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); // Create the loop over the big sized data. // ptr = (void*)Elem; // ptrEnd = (void*) Elem + 1; // Step = 8; // while (ptr + Step < ptrEnd) // shuffle((int64_t)*ptr); // Step = 4; // while (ptr + Step < ptrEnd) // shuffle((int32_t)*ptr); // ... Address ElemPtr = DestAddr; Address Ptr = SrcAddr; Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty); for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { if (Size < CharUnits::fromQuantity(IntSize)) continue; QualType IntType = CGF.getContext().getIntTypeForBitwidth( CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), /*Signed=*/1); llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(), IntTy); ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( ElemPtr, IntTy->getPointerTo(), IntTy); if (Size.getQuantity() / IntSize > 1) { llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); CGF.EmitBlock(PreCondBB); llvm::PHINode *PhiSrc = Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); llvm::PHINode *PhiDest = Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); ElemPtr = Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); llvm::Value *PtrDiff = Bld.CreatePtrDiff( CGF.Int8Ty, PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), CGF.VoidPtrTy)); Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), ThenBB, ExitBB); CGF.EmitBlock(ThenBB); llvm::Value *Res = createRuntimeShuffleFunction( CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), IntType, Offset, Loc); CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); CGF.EmitBranch(PreCondBB); CGF.EmitBlock(ExitBB); } else { llvm::Value *Res = createRuntimeShuffleFunction( CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), IntType, Offset, Loc); CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); Ptr = Bld.CreateConstGEP(Ptr, 1); ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); } Size = Size % IntSize; } } namespace { enum CopyAction : unsigned { // RemoteLaneToThread: Copy over a Reduce list from a remote lane in // the warp using shuffle instructions. RemoteLaneToThread, // ThreadCopy: Make a copy of a Reduce list on the thread's stack. ThreadCopy, }; } // namespace struct CopyOptionsTy { llvm::Value *RemoteLaneOffset; llvm::Value *ScratchpadIndex; llvm::Value *ScratchpadWidth; }; /// Emit instructions to copy a Reduce list, which contains partially /// aggregated values, in the specified direction. static void emitReductionListCopy( CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, ArrayRef Privates, Address SrcBase, Address DestBase, CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { CodeGenModule &CGM = CGF.CGM; ASTContext &C = CGM.getContext(); CGBuilderTy &Bld = CGF.Builder; llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; // Iterates, element-by-element, through the source Reduce list and // make a copy. unsigned Idx = 0; for (const Expr *Private : Privates) { Address SrcElementAddr = Address::invalid(); Address DestElementAddr = Address::invalid(); Address DestElementPtrAddr = Address::invalid(); // Should we shuffle in an element from a remote lane? bool ShuffleInElement = false; // Set to true to update the pointer in the dest Reduce list to a // newly created element. bool UpdateDestListPtr = false; QualType PrivatePtrType = C.getPointerType(Private->getType()); llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType); switch (Action) { case RemoteLaneToThread: { // Step 1.1: Get the address for the src element in the Reduce list. Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); SrcElementAddr = CGF.EmitLoadOfPointer( SrcElementPtrAddr.withElementType(PrivateLlvmPtrType), PrivatePtrType->castAs()); // Step 1.2: Create a temporary to store the element in the destination // Reduce list. DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); DestElementAddr = CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); ShuffleInElement = true; UpdateDestListPtr = true; break; } case ThreadCopy: { // Step 1.1: Get the address for the src element in the Reduce list. Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); SrcElementAddr = CGF.EmitLoadOfPointer( SrcElementPtrAddr.withElementType(PrivateLlvmPtrType), PrivatePtrType->castAs()); // Step 1.2: Get the address for dest element. The destination // element has already been created on the thread's stack. DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); DestElementAddr = CGF.EmitLoadOfPointer( DestElementPtrAddr.withElementType(PrivateLlvmPtrType), PrivatePtrType->castAs()); break; } } // Regardless of src and dest of copy, we emit the load of src // element as this is required in all directions SrcElementAddr = SrcElementAddr.withElementType( CGF.ConvertTypeForMem(Private->getType())); DestElementAddr = DestElementAddr.withElementType(SrcElementAddr.getElementType()); // Now that all active lanes have read the element in the // Reduce list, shuffle over the value from the remote lane. if (ShuffleInElement) { shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), RemoteLaneOffset, Private->getExprLoc()); } else { switch (CGF.getEvaluationKind(Private->getType())) { case TEK_Scalar: { llvm::Value *Elem = CGF.EmitLoadOfScalar( SrcElementAddr, /*Volatile=*/false, Private->getType(), Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); // Store the source element value to the dest element address. CGF.EmitStoreOfScalar( Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); break; } case TEK_Complex: { CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), Private->getExprLoc()); CGF.EmitStoreOfComplex( Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), /*isInit=*/false); break; } case TEK_Aggregate: CGF.EmitAggregateCopy( CGF.MakeAddrLValue(DestElementAddr, Private->getType()), CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), Private->getType(), AggValueSlot::DoesNotOverlap); break; } } // Step 3.1: Modify reference in dest Reduce list as needed. // Modifying the reference in Reduce list to point to the newly // created element. The element is live in the current function // scope and that of functions it invokes (i.e., reduce_function). // RemoteReduceData[i] = (void*)&RemoteElem if (UpdateDestListPtr) { CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( DestElementAddr.getPointer(), CGF.VoidPtrTy), DestElementPtrAddr, /*Volatile=*/false, C.VoidPtrTy); } ++Idx; } } /// This function emits a helper that gathers Reduce lists from the first /// lane of every active warp to lanes in the first warp. /// /// void inter_warp_copy_func(void* reduce_data, num_warps) /// shared smem[warp_size]; /// For all data entries D in reduce_data: /// sync /// If (I am the first lane in each warp) /// Copy my local D to smem[warp_id] /// sync /// if (I am the first warp) /// Copy smem[thread_id] to my local D static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, SourceLocation Loc) { ASTContext &C = CGM.getContext(); llvm::Module &M = CGM.getModule(); // ReduceList: thread local Reduce list. // At the stage of the computation when this function is called, partially // aggregated values reside in the first lane of every active warp. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // NumWarps: number of warps active in the parallel region. This could // be smaller than 32 (max warps in a CTA) for partial block reduction. ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.getIntTypeForBitwidth(32, /* Signed */ true), ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&NumWarpsArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_inter_warp_copy_func", &M); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; // This array is used as a medium to transfer, one reduce element at a time, // the data from the first lane of every warp to lanes in the first warp // in order to perform the final step of a reduction in a parallel region // (reduction across warps). The array is placed in NVPTX __shared__ memory // for reduced latency, as well as to have a distinct copy for concurrently // executing target regions. The array is declared with common linkage so // as to be shared across compilation units. StringRef TransferMediumName = "__openmp_nvptx_data_transfer_temporary_storage"; llvm::GlobalVariable *TransferMedium = M.getGlobalVariable(TransferMediumName); unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; if (!TransferMedium) { auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); TransferMedium = new llvm::GlobalVariable( M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, llvm::UndefValue::get(Ty), TransferMediumName, /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, SharedAddressSpace); CGM.addCompilerUsedGlobal(TransferMedium); } auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); // Get the CUDA thread id of the current OpenMP thread on the GPU. llvm::Value *ThreadID = RT.getGPUThreadID(CGF); // nvptx_lane_id = nvptx_id % warpsize llvm::Value *LaneID = getNVPTXLaneID(CGF); // nvptx_warp_id = nvptx_id / warpsize llvm::Value *WarpID = getNVPTXWarpID(CGF); Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar( AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), ElemTy->getPointerTo()), ElemTy, CGF.getPointerAlign()); unsigned Idx = 0; for (const Expr *Private : Privates) { // // Warp master copies reduce element to transfer medium in __shared__ // memory. // unsigned RealTySize = C.getTypeSizeInChars(Private->getType()) .alignTo(C.getTypeAlignInChars(Private->getType())) .getQuantity(); for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { unsigned NumIters = RealTySize / TySize; if (NumIters == 0) continue; QualType CType = C.getIntTypeForBitwidth( C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); CharUnits Align = CharUnits::fromQuantity(TySize); llvm::Value *Cnt = nullptr; Address CntAddr = Address::invalid(); llvm::BasicBlock *PrecondBB = nullptr; llvm::BasicBlock *ExitBB = nullptr; if (NumIters > 1) { CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, /*Volatile=*/false, C.IntTy); PrecondBB = CGF.createBasicBlock("precond"); ExitBB = CGF.createBasicBlock("exit"); llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(PrecondBB); Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); llvm::Value *Cmp = Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); Bld.CreateCondBr(Cmp, BodyBB, ExitBB); CGF.EmitBlock(BodyBB); } // kmpc_barrier. CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false, /*ForceSimpleCall=*/true); llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); // if (lane_id == 0) llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); CGF.EmitBlock(ThenBB); // Reduce element = LocalReduceList[i] Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); // elemptr = ((CopyType*)(elemptrptr)) + I Address ElemPtr(ElemPtrPtr, CopyType, Align); if (NumIters > 1) ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); // Get pointer to location in transfer medium. // MediumPtr = &medium[warp_id] llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( TransferMedium->getValueType(), TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); // Casting to actual data type. // MediumPtr = (CopyType*)MediumPtrAddr; Address MediumPtr(MediumPtrVal, CopyType, Align); // elem = *elemptr //*MediumPtr = elem llvm::Value *Elem = CGF.EmitLoadOfScalar( ElemPtr, /*Volatile=*/false, CType, Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); // Store the source element value to the dest element address. CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); Bld.CreateBr(MergeBB); CGF.EmitBlock(ElseBB); Bld.CreateBr(MergeBB); CGF.EmitBlock(MergeBB); // kmpc_barrier. CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false, /*ForceSimpleCall=*/true); // // Warp 0 copies reduce element from transfer medium. // llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); // Up to 32 threads in warp 0 are active. llvm::Value *IsActiveThread = Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); CGF.EmitBlock(W0ThenBB); // SrcMediumPtr = &medium[tid] llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( TransferMedium->getValueType(), TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); // SrcMediumVal = *SrcMediumPtr; Address SrcMediumPtr(SrcMediumPtrVal, CopyType, Align); // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); Address TargetElemPtr(TargetElemPtrVal, CopyType, Align); if (NumIters > 1) TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); // *TargetElemPtr = SrcMediumVal; llvm::Value *SrcMediumValue = CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, CType); Bld.CreateBr(W0MergeBB); CGF.EmitBlock(W0ElseBB); Bld.CreateBr(W0MergeBB); CGF.EmitBlock(W0MergeBB); if (NumIters > 1) { Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); CGF.EmitBranch(PrecondBB); (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(ExitBB); } RealTySize %= TySize; } ++Idx; } CGF.FinishFunction(); return Fn; } /// Emit a helper that reduces data across two OpenMP threads (lanes) /// in the same warp. It uses shuffle instructions to copy over data from /// a remote lane's stack. The reduction algorithm performed is specified /// by the fourth parameter. /// /// Algorithm Versions. /// Full Warp Reduce (argument value 0): /// This algorithm assumes that all 32 lanes are active and gathers /// data from these 32 lanes, producing a single resultant value. /// Contiguous Partial Warp Reduce (argument value 1): /// This algorithm assumes that only a *contiguous* subset of lanes /// are active. This happens for the last warp in a parallel region /// when the user specified num_threads is not an integer multiple of /// 32. This contiguous subset always starts with the zeroth lane. /// Partial Warp Reduce (argument value 2): /// This algorithm gathers data from any number of lanes at any position. /// All reduced values are stored in the lowest possible lane. The set /// of problems every algorithm addresses is a super set of those /// addressable by algorithms with a lower version number. Overhead /// increases as algorithm version increases. /// /// Terminology /// Reduce element: /// Reduce element refers to the individual data field with primitive /// data types to be combined and reduced across threads. /// Reduce list: /// Reduce list refers to a collection of local, thread-private /// reduce elements. /// Remote Reduce list: /// Remote Reduce list refers to a collection of remote (relative to /// the current thread) reduce elements. /// /// We distinguish between three states of threads that are important to /// the implementation of this function. /// Alive threads: /// Threads in a warp executing the SIMT instruction, as distinguished from /// threads that are inactive due to divergent control flow. /// Active threads: /// The minimal set of threads that has to be alive upon entry to this /// function. The computation is correct iff active threads are alive. /// Some threads are alive but they are not active because they do not /// contribute to the computation in any useful manner. Turning them off /// may introduce control flow overheads without any tangible benefits. /// Effective threads: /// In order to comply with the argument requirements of the shuffle /// function, we must keep all lanes holding data alive. But at most /// half of them perform value aggregation; we refer to this half of /// threads as effective. The other half is simply handing off their /// data. /// /// Procedure /// Value shuffle: /// In this step active threads transfer data from higher lane positions /// in the warp to lower lane positions, creating Remote Reduce list. /// Value aggregation: /// In this step, effective threads combine their thread local Reduce list /// with Remote Reduce list and store the result in the thread local /// Reduce list. /// Value copy: /// In this step, we deal with the assumption made by algorithm 2 /// (i.e. contiguity assumption). When we have an odd number of lanes /// active, say 2k+1, only k threads will be effective and therefore k /// new values will be produced. However, the Reduce list owned by the /// (2k+1)th thread is ignored in the value aggregation. Therefore /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so /// that the contiguity assumption still holds. static llvm::Function *emitShuffleAndReduceFunction( CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { ASTContext &C = CGM.getContext(); // Thread local Reduce list used to host the values of data to be reduced. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // Current lane id; could be logical. ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, ImplicitParamKind::Other); // Offset of the remote source lane relative to the current lane. ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, ImplicitParamKind::Other); // Algorithm version. This is expected to be known at compile time. ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&ReduceListArg); Args.push_back(&LaneIDArg); Args.push_back(&RemoteLaneOffsetArg); Args.push_back(&AlgoVerArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()), ElemTy->getPointerTo()), ElemTy, CGF.getPointerAlign()); Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); // Create a local thread-private variable to host the Reduce list // from a remote lane. Address RemoteReduceList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); // This loop iterates through the list of reduce elements and copies, // element by element, from a remote lane in the warp to RemoteReduceList, // hosted on the thread's stack. emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, LocalReduceList, RemoteReduceList, {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, /*ScratchpadIndex=*/nullptr, /*ScratchpadWidth=*/nullptr}); // The actions to be performed on the Remote Reduce list is dependent // on the algorithm version. // // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && // LaneId % 2 == 0 && Offset > 0): // do the reduction value aggregation // // The thread local variable Reduce list is mutated in place to host the // reduced data, which is the aggregated value produced from local and // remote lanes. // // Note that AlgoVer is expected to be a constant integer known at compile // time. // When AlgoVer==0, the first conjunction evaluates to true, making // the entire predicate true during compile time. // When AlgoVer==1, the second conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. // When AlgoVer==2, the third conjunction has only the second part to be // evaluated during runtime. Other conjunctions evaluates to false // during compile time. llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); llvm::Value *CondAlgo1 = Bld.CreateAnd( Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); llvm::Value *CondAlgo2 = Bld.CreateAnd( Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); CondAlgo2 = Bld.CreateAnd( CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); CGF.EmitBlock(ThenBB); // reduce_function(LocalReduceList, RemoteReduceList) llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( LocalReduceList.getPointer(), CGF.VoidPtrTy); llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( RemoteReduceList.getPointer(), CGF.VoidPtrTy); CGM.getOpenMPRuntime().emitOutlinedFunctionCall( CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); Bld.CreateBr(MergeBB); CGF.EmitBlock(ElseBB); Bld.CreateBr(MergeBB); CGF.EmitBlock(MergeBB); // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local // Reduce list. Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); llvm::Value *CondCopy = Bld.CreateAnd( Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); CGF.EmitBlock(CpyThenBB); emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, RemoteReduceList, LocalReduceList); Bld.CreateBr(CpyMergeBB); CGF.EmitBlock(CpyElseBB); Bld.CreateBr(CpyMergeBB); CGF.EmitBlock(CpyMergeBB); CGF.FinishFunction(); return Fn; } /// This function emits a helper that copies all the reduction variables from /// the team into the provided global buffer for the reduction variables. /// /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) /// For all data entries D in reduce_data: /// Copy local D to buffer.D[Idx] static llvm::Value *emitListToGlobalCopyFunction( CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, SourceLocation Loc, const RecordDecl *TeamReductionRec, const llvm::SmallDenseMap &VarFieldMap) { ASTContext &C = CGM.getContext(); // Buffer: global reduction buffer. ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // Idx: index of the buffer. ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, ImplicitParamKind::Other); // ReduceList: thread local Reduce list. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&BufferArg); Args.push_back(&IdxArg); Args.push_back(&ReduceListArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc), ElemTy->getPointerTo()), ElemTy, CGF.getPointerAlign()); QualType StaticTy = C.getRecordType(TeamReductionRec); llvm::Type *LLVMReductionsBufferTy = CGM.getTypes().ConvertTypeForMem(StaticTy); llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), LLVMReductionsBufferTy->getPointerTo()); llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), /*Volatile=*/false, C.IntTy, Loc)}; unsigned Idx = 0; for (const Expr *Private : Privates) { // Reduce element = LocalReduceList[i] Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); // elemptr = ((CopyType*)(elemptrptr)) + I ElemTy = CGF.ConvertTypeForMem(Private->getType()); ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( ElemPtrPtr, ElemTy->getPointerTo()); Address ElemPtr = Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); const ValueDecl *VD = cast(Private)->getDecl(); // Global = Buffer.VD[Idx]; const FieldDecl *FD = VarFieldMap.lookup(VD); llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); LValue GlobLVal = CGF.EmitLValueForField( CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD); Address GlobAddr = GlobLVal.getAddress(CGF); GlobLVal.setAddress(Address(GlobAddr.getPointer(), CGF.ConvertTypeForMem(Private->getType()), GlobAddr.getAlignment())); switch (CGF.getEvaluationKind(Private->getType())) { case TEK_Scalar: { llvm::Value *V = CGF.EmitLoadOfScalar( ElemPtr, /*Volatile=*/false, Private->getType(), Loc, LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); CGF.EmitStoreOfScalar(V, GlobLVal); break; } case TEK_Complex: { CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); break; } case TEK_Aggregate: CGF.EmitAggregateCopy(GlobLVal, CGF.MakeAddrLValue(ElemPtr, Private->getType()), Private->getType(), AggValueSlot::DoesNotOverlap); break; } ++Idx; } CGF.FinishFunction(); return Fn; } /// This function emits a helper that reduces all the reduction variables from /// the team into the provided global buffer for the reduction variables. /// /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) /// void *GlobPtrs[]; /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; /// ... /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; /// reduce_function(GlobPtrs, reduce_data); static llvm::Value *emitListToGlobalReduceFunction( CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, SourceLocation Loc, const RecordDecl *TeamReductionRec, const llvm::SmallDenseMap &VarFieldMap, llvm::Function *ReduceFn) { ASTContext &C = CGM.getContext(); // Buffer: global reduction buffer. ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // Idx: index of the buffer. ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, ImplicitParamKind::Other); // ReduceList: thread local Reduce list. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&BufferArg); Args.push_back(&IdxArg); Args.push_back(&ReduceListArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); QualType StaticTy = C.getRecordType(TeamReductionRec); llvm::Type *LLVMReductionsBufferTy = CGM.getTypes().ConvertTypeForMem(StaticTy); llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), LLVMReductionsBufferTy->getPointerTo()); // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), /*Volatile=*/false, C.IntTy, Loc)}; unsigned Idx = 0; for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); // Global = Buffer.VD[Idx]; const ValueDecl *VD = cast(*IPriv)->getDecl(); const FieldDecl *FD = VarFieldMap.lookup(VD); llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); LValue GlobLVal = CGF.EmitLValueForField( CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD); Address GlobAddr = GlobLVal.getAddress(CGF); CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false, C.VoidPtrTy); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .NumElts, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } // Call reduce_function(GlobalReduceList, ReduceList) llvm::Value *GlobalReduceList = ReductionList.getPointer(); Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); CGM.getOpenMPRuntime().emitOutlinedFunctionCall( CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); CGF.FinishFunction(); return Fn; } /// This function emits a helper that copies all the reduction variables from /// the team into the provided global buffer for the reduction variables. /// /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) /// For all data entries D in reduce_data: /// Copy buffer.D[Idx] to local D; static llvm::Value *emitGlobalToListCopyFunction( CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, SourceLocation Loc, const RecordDecl *TeamReductionRec, const llvm::SmallDenseMap &VarFieldMap) { ASTContext &C = CGM.getContext(); // Buffer: global reduction buffer. ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // Idx: index of the buffer. ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, ImplicitParamKind::Other); // ReduceList: thread local Reduce list. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&BufferArg); Args.push_back(&IdxArg); Args.push_back(&ReduceListArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); Address LocalReduceList( Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc), ElemTy->getPointerTo()), ElemTy, CGF.getPointerAlign()); QualType StaticTy = C.getRecordType(TeamReductionRec); llvm::Type *LLVMReductionsBufferTy = CGM.getTypes().ConvertTypeForMem(StaticTy); llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), LLVMReductionsBufferTy->getPointerTo()); llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), /*Volatile=*/false, C.IntTy, Loc)}; unsigned Idx = 0; for (const Expr *Private : Privates) { // Reduce element = LocalReduceList[i] Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); // elemptr = ((CopyType*)(elemptrptr)) + I ElemTy = CGF.ConvertTypeForMem(Private->getType()); ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( ElemPtrPtr, ElemTy->getPointerTo()); Address ElemPtr = Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); const ValueDecl *VD = cast(Private)->getDecl(); // Global = Buffer.VD[Idx]; const FieldDecl *FD = VarFieldMap.lookup(VD); llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); LValue GlobLVal = CGF.EmitLValueForField( CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD); Address GlobAddr = GlobLVal.getAddress(CGF); GlobLVal.setAddress(Address(GlobAddr.getPointer(), CGF.ConvertTypeForMem(Private->getType()), GlobAddr.getAlignment())); switch (CGF.getEvaluationKind(Private->getType())) { case TEK_Scalar: { llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); break; } case TEK_Complex: { CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), /*isInit=*/false); break; } case TEK_Aggregate: CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), GlobLVal, Private->getType(), AggValueSlot::DoesNotOverlap); break; } ++Idx; } CGF.FinishFunction(); return Fn; } /// This function emits a helper that reduces all the reduction variables from /// the team into the provided global buffer for the reduction variables. /// /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) /// void *GlobPtrs[]; /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; /// ... /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; /// reduce_function(reduce_data, GlobPtrs); static llvm::Value *emitGlobalToListReduceFunction( CodeGenModule &CGM, ArrayRef Privates, QualType ReductionArrayTy, SourceLocation Loc, const RecordDecl *TeamReductionRec, const llvm::SmallDenseMap &VarFieldMap, llvm::Function *ReduceFn) { ASTContext &C = CGM.getContext(); // Buffer: global reduction buffer. ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); // Idx: index of the buffer. ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, ImplicitParamKind::Other); // ReduceList: thread local Reduce list. ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, ImplicitParamKind::Other); FunctionArgList Args; Args.push_back(&BufferArg); Args.push_back(&IdxArg); Args.push_back(&ReduceListArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); CGBuilderTy &Bld = CGF.Builder; Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); QualType StaticTy = C.getRecordType(TeamReductionRec); llvm::Type *LLVMReductionsBufferTy = CGM.getTypes().ConvertTypeForMem(StaticTy); llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), LLVMReductionsBufferTy->getPointerTo()); // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), /*Volatile=*/false, C.IntTy, Loc)}; unsigned Idx = 0; for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); // Global = Buffer.VD[Idx]; const ValueDecl *VD = cast(*IPriv)->getDecl(); const FieldDecl *FD = VarFieldMap.lookup(VD); llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs); LValue GlobLVal = CGF.EmitLValueForField( CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD); Address GlobAddr = GlobLVal.getAddress(CGF); CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false, C.VoidPtrTy); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .NumElts, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } // Call reduce_function(ReduceList, GlobalReduceList) llvm::Value *GlobalReduceList = ReductionList.getPointer(); Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); CGM.getOpenMPRuntime().emitOutlinedFunctionCall( CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); CGF.FinishFunction(); return Fn; } /// /// Design of OpenMP reductions on the GPU /// /// Consider a typical OpenMP program with one or more reduction /// clauses: /// /// float foo; /// double bar; /// #pragma omp target teams distribute parallel for \ /// reduction(+:foo) reduction(*:bar) /// for (int i = 0; i < N; i++) { /// foo += A[i]; bar *= B[i]; /// } /// /// where 'foo' and 'bar' are reduced across all OpenMP threads in /// all teams. In our OpenMP implementation on the NVPTX device an /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads /// within a team are mapped to CUDA threads within a threadblock. /// Our goal is to efficiently aggregate values across all OpenMP /// threads such that: /// /// - the compiler and runtime are logically concise, and /// - the reduction is performed efficiently in a hierarchical /// manner as follows: within OpenMP threads in the same warp, /// across warps in a threadblock, and finally across teams on /// the NVPTX device. /// /// Introduction to Decoupling /// /// We would like to decouple the compiler and the runtime so that the /// latter is ignorant of the reduction variables (number, data types) /// and the reduction operators. This allows a simpler interface /// and implementation while still attaining good performance. /// /// Pseudocode for the aforementioned OpenMP program generated by the /// compiler is as follows: /// /// 1. Create private copies of reduction variables on each OpenMP /// thread: 'foo_private', 'bar_private' /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned /// to it and writes the result in 'foo_private' and 'bar_private' /// respectively. /// 3. Call the OpenMP runtime on the GPU to reduce within a team /// and store the result on the team master: /// /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., /// reduceData, shuffleReduceFn, interWarpCpyFn) /// /// where: /// struct ReduceData { /// double *foo; /// double *bar; /// } reduceData /// reduceData.foo = &foo_private /// reduceData.bar = &bar_private /// /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two /// auxiliary functions generated by the compiler that operate on /// variables of type 'ReduceData'. They aid the runtime perform /// algorithmic steps in a data agnostic manner. /// /// 'shuffleReduceFn' is a pointer to a function that reduces data /// of type 'ReduceData' across two OpenMP threads (lanes) in the /// same warp. It takes the following arguments as input: /// /// a. variable of type 'ReduceData' on the calling lane, /// b. its lane_id, /// c. an offset relative to the current lane_id to generate a /// remote_lane_id. The remote lane contains the second /// variable of type 'ReduceData' that is to be reduced. /// d. an algorithm version parameter determining which reduction /// algorithm to use. /// /// 'shuffleReduceFn' retrieves data from the remote lane using /// efficient GPU shuffle intrinsics and reduces, using the /// algorithm specified by the 4th parameter, the two operands /// element-wise. The result is written to the first operand. /// /// Different reduction algorithms are implemented in different /// runtime functions, all calling 'shuffleReduceFn' to perform /// the essential reduction step. Therefore, based on the 4th /// parameter, this function behaves slightly differently to /// cooperate with the runtime to ensure correctness under /// different circumstances. /// /// 'InterWarpCpyFn' is a pointer to a function that transfers /// reduced variables across warps. It tunnels, through CUDA /// shared memory, the thread-private data of type 'ReduceData' /// from lane 0 of each warp to a lane in the first warp. /// 4. Call the OpenMP runtime on the GPU to reduce across teams. /// The last team writes the global reduced value to memory. /// /// ret = __kmpc_nvptx_teams_reduce_nowait(..., /// reduceData, shuffleReduceFn, interWarpCpyFn, /// scratchpadCopyFn, loadAndReduceFn) /// /// 'scratchpadCopyFn' is a helper that stores reduced /// data from the team master to a scratchpad array in /// global memory. /// /// 'loadAndReduceFn' is a helper that loads data from /// the scratchpad array and reduces it with the input /// operand. /// /// These compiler generated functions hide address /// calculation and alignment information from the runtime. /// 5. if ret == 1: /// The team master of the last team stores the reduced /// result to the globals in memory. /// foo += reduceData.foo; bar *= reduceData.bar /// /// /// Warp Reduction Algorithms /// /// On the warp level, we have three algorithms implemented in the /// OpenMP runtime depending on the number of active lanes: /// /// Full Warp Reduction /// /// The reduce algorithm within a warp where all lanes are active /// is implemented in the runtime as follows: /// /// full_warp_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) /// ShuffleReduceFn(reduce_data, 0, offset, 0); /// } /// /// The algorithm completes in log(2, WARPSIZE) steps. /// /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is /// not used therefore we save instructions by not retrieving lane_id /// from the corresponding special registers. The 4th parameter, which /// represents the version of the algorithm being used, is set to 0 to /// signify full warp reduction. /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// #reduce_elem refers to an element in the local lane's data structure /// #remote_elem is retrieved from a remote lane /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// reduce_elem = reduce_elem REDUCE_OP remote_elem; /// /// Contiguous Partial Warp Reduction /// /// This reduce algorithm is used within a warp where only the first /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the /// number of OpenMP threads in a parallel region is not a multiple of /// WARPSIZE. The algorithm is implemented in the runtime as follows: /// /// void /// contiguous_partial_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn, /// int size, int lane_id) { /// int curr_size; /// int offset; /// curr_size = size; /// mask = curr_size/2; /// while (offset>0) { /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); /// curr_size = (curr_size+1)/2; /// offset = curr_size/2; /// } /// } /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// if (lane_id < offset) /// reduce_elem = reduce_elem REDUCE_OP remote_elem /// else /// reduce_elem = remote_elem /// /// This algorithm assumes that the data to be reduced are located in a /// contiguous subset of lanes starting from the first. When there is /// an odd number of active lanes, the data in the last lane is not /// aggregated with any other lane's dat but is instead copied over. /// /// Dispersed Partial Warp Reduction /// /// This algorithm is used within a warp when any discontiguous subset of /// lanes are active. It is used to implement the reduction operation /// across lanes in an OpenMP simd region or in a nested parallel region. /// /// void /// dispersed_partial_reduce(void *reduce_data, /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { /// int size, remote_id; /// int logical_lane_id = number_of_active_lanes_before_me() * 2; /// do { /// remote_id = next_active_lane_id_right_after_me(); /// # the above function returns 0 of no active lane /// # is present right after the current lane. /// size = number_of_active_lanes_in_this_warp(); /// logical_lane_id /= 2; /// ShuffleReduceFn(reduce_data, logical_lane_id, /// remote_id-1-threadIdx.x, 2); /// } while (logical_lane_id % 2 == 0 && size > 1); /// } /// /// There is no assumption made about the initial state of the reduction. /// Any number of lanes (>=1) could be active at any position. The reduction /// result is returned in the first active lane. /// /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: /// /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); /// if (lane_id % 2 == 0 && offset > 0) /// reduce_elem = reduce_elem REDUCE_OP remote_elem /// else /// reduce_elem = remote_elem /// /// /// Intra-Team Reduction /// /// This function, as implemented in the runtime call /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP /// threads in a team. It first reduces within a warp using the /// aforementioned algorithms. We then proceed to gather all such /// reduced values at the first warp. /// /// The runtime makes use of the function 'InterWarpCpyFn', which copies /// data from each of the "warp master" (zeroth lane of each warp, where /// warp-reduced data is held) to the zeroth warp. This step reduces (in /// a mathematical sense) the problem of reduction across warp masters in /// a block to the problem of warp reduction. /// /// /// Inter-Team Reduction /// /// Once a team has reduced its data to a single value, it is stored in /// a global scratchpad array. Since each team has a distinct slot, this /// can be done without locking. /// /// The last team to write to the scratchpad array proceeds to reduce the /// scratchpad array. One or more workers in the last team use the helper /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., /// the k'th worker reduces every k'th element. /// /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to /// reduce across workers and compute a globally reduced value. /// void CGOpenMPRuntimeGPU::emitReduction( CodeGenFunction &CGF, SourceLocation Loc, ArrayRef Privates, ArrayRef LHSExprs, ArrayRef RHSExprs, ArrayRef ReductionOps, ReductionOptionsTy Options) { if (!CGF.HaveInsertPoint()) return; bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); #ifndef NDEBUG bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); #endif if (Options.SimpleReduction) { assert(!TeamsReduction && !ParallelReduction && "Invalid reduction selection in emitReduction."); CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, ReductionOps, Options); return; } assert((TeamsReduction || ParallelReduction) && "Invalid reduction selection in emitReduction."); llvm::SmallDenseMap VarFieldMap; llvm::SmallVector PrivatesReductions(Privates.size()); int Cnt = 0; for (const Expr *DRE : Privates) { PrivatesReductions[Cnt] = cast(DRE)->getDecl(); ++Cnt; } ASTContext &C = CGM.getContext(); const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars( CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap, 1); // Build res = __kmpc_reduce{_nowait}(, , sizeof(RedList), // RedList, shuffle_reduce_func, interwarp_copy_func); // or // Build res = __kmpc_reduce_teams_nowait_simple(, , ); llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); llvm::Value *Res; // 1. Build a list of reduction variables. // void *RedList[] = {[0], ..., [-1]}; auto Size = RHSExprs.size(); for (const Expr *E : Privates) { if (E->getType()->isVariablyModifiedType()) // Reserve place for array size. ++Size; } llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); QualType ReductionArrayTy = C.getConstantArrayType( C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal, /*IndexTypeQuals=*/0); Address ReductionList = CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); auto IPriv = Privates.begin(); unsigned Idx = 0; for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); CGF.Builder.CreateStore( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), Elem); if ((*IPriv)->getType()->isVariablyModifiedType()) { // Store array size. ++Idx; Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); llvm::Value *Size = CGF.Builder.CreateIntCast( CGF.getVLASize( CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) .NumElts, CGF.SizeTy, /*isSigned=*/false); CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), Elem); } } llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( ReductionList.getPointer(), CGF.VoidPtrTy); llvm::Function *ReductionFn = emitReductionFunction( CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(ReductionArrayTy), Privates, LHSExprs, RHSExprs, ReductionOps); llvm::Value *ReductionDataSize = CGF.getTypeSize(C.getRecordType(ReductionRec)); ReductionDataSize = CGF.Builder.CreateSExtOrTrunc(ReductionDataSize, CGF.Int64Ty); llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( CGM, Privates, ReductionArrayTy, ReductionFn, Loc); llvm::Value *InterWarpCopyFn = emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); if (ParallelReduction) { llvm::Value *Args[] = {RTLoc, ReductionDataSize, RL, ShuffleAndReduceFn, InterWarpCopyFn}; Res = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), Args); } else { assert(TeamsReduction && "expected teams reduction."); TeamsReductions.push_back(ReductionRec); auto *KernelTeamsReductionPtr = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_reduction_get_fixed_buffer), {}, "_openmp_teams_reductions_buffer_$_$ptr"); llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap); llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap, ReductionFn); llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap); llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap, ReductionFn); llvm::Value *Args[] = { RTLoc, KernelTeamsReductionPtr, CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), ReductionDataSize, RL, ShuffleAndReduceFn, InterWarpCopyFn, GlobalToBufferCpyFn, GlobalToBufferRedFn, BufferToGlobalCpyFn, BufferToGlobalRedFn}; Res = CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), Args); } // 5. Build if (res == 1) llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); llvm::Value *Cond = CGF.Builder.CreateICmpEQ( Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); // 6. Build then branch: where we have reduced values in the master // thread in each team. // __kmpc_end_reduce{_nowait}(); // break; CGF.EmitBlock(ThenBB); // Add emission of __kmpc_end_reduce{_nowait}(); auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, this](CodeGenFunction &CGF, PrePostActionTy &Action) { auto IPriv = Privates.begin(); auto ILHS = LHSExprs.begin(); auto IRHS = RHSExprs.begin(); for (const Expr *E : ReductionOps) { emitSingleReductionCombiner(CGF, E, *IPriv, cast(*ILHS), cast(*IRHS)); ++IPriv; ++ILHS; ++IRHS; } }; RegionCodeGenTy RCG(CodeGen); RCG(CGF); // There is no need to emit line number for unconditional branch. (void)ApplyDebugLocation::CreateEmpty(CGF); CGF.EmitBlock(ExitBB, /*IsFinished=*/true); } const VarDecl * CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, const VarDecl *NativeParam) const { if (!NativeParam->getType()->isReferenceType()) return NativeParam; QualType ArgType = NativeParam->getType(); QualifierCollector QC; const Type *NonQualTy = QC.strip(ArgType); QualType PointeeTy = cast(NonQualTy)->getPointeeType(); if (const auto *Attr = FD->getAttr()) { if (Attr->getCaptureKind() == OMPC_map) { PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, LangAS::opencl_global); } } ArgType = CGM.getContext().getPointerType(PointeeTy); QC.addRestrict(); enum { NVPTX_local_addr = 5 }; QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); ArgType = QC.apply(CGM.getContext(), ArgType); if (isa(NativeParam)) return ImplicitParamDecl::Create( CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), NativeParam->getIdentifier(), ArgType, ImplicitParamKind::Other); return ParmVarDecl::Create( CGM.getContext(), const_cast(NativeParam->getDeclContext()), NativeParam->getBeginLoc(), NativeParam->getLocation(), NativeParam->getIdentifier(), ArgType, /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); } Address CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, const VarDecl *NativeParam, const VarDecl *TargetParam) const { assert(NativeParam != TargetParam && NativeParam->getType()->isReferenceType() && "Native arg must not be the same as target arg."); Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); QualType NativeParamType = NativeParam->getType(); QualifierCollector QC; const Type *NonQualTy = QC.strip(NativeParamType); QualType NativePointeeTy = cast(NonQualTy)->getPointeeType(); unsigned NativePointeeAddrSpace = CGF.getTypes().getTargetAddressSpace(NativePointeeTy); QualType TargetTy = TargetParam->getType(); llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); // Cast to native address space. TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( TargetAddr, llvm::PointerType::get(CGF.getLLVMContext(), NativePointeeAddrSpace)); Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, NativeParamType); return NativeParamAddr; } void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, ArrayRef Args) const { SmallVector TargetArgs; TargetArgs.reserve(Args.size()); auto *FnType = OutlinedFn.getFunctionType(); for (unsigned I = 0, E = Args.size(); I < E; ++I) { if (FnType->isVarArg() && FnType->getNumParams() <= I) { TargetArgs.append(std::next(Args.begin(), I), Args.end()); break; } llvm::Type *TargetType = FnType->getParamType(I); llvm::Value *NativeArg = Args[I]; if (!TargetType->isPointerTy()) { TargetArgs.emplace_back(NativeArg); continue; } TargetArgs.emplace_back( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(NativeArg, TargetType)); } CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); } /// Emit function which wraps the outline parallel region /// and controls the arguments which are passed to this function. /// The wrapper ensures that the outlined function is called /// with the correct arguments when data is shared. llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { ASTContext &Ctx = CGM.getContext(); const auto &CS = *D.getCapturedStmt(OMPD_parallel); // Create a function that takes as argument the source thread. FunctionArgList WrapperArgs; QualType Int16QTy = Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); QualType Int32QTy = Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), /*Id=*/nullptr, Int16QTy, ImplicitParamKind::Other); ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), /*Id=*/nullptr, Int32QTy, ImplicitParamKind::Other); WrapperArgs.emplace_back(&ParallelLevelArg); WrapperArgs.emplace_back(&WrapperArg); const CGFunctionInfo &CGFI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); auto *Fn = llvm::Function::Create( CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); // Ensure we do not inline the function. This is trivially true for the ones // passed to __kmpc_fork_call but the ones calles in serialized regions // could be inlined. This is not a perfect but it is closer to the invariant // we want, namely, every data environment starts with a new function. // TODO: We should pass the if condition to the runtime function and do the // handling there. Much cleaner code. Fn->addFnAttr(llvm::Attribute::NoInline); CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); Fn->setLinkage(llvm::GlobalValue::InternalLinkage); Fn->setDoesNotRecurse(); CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, D.getBeginLoc(), D.getBeginLoc()); const auto *RD = CS.getCapturedRecordDecl(); auto CurField = RD->field_begin(); Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, /*Name=*/".zero.addr"); CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); // Get the array of arguments. SmallVector Args; Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); Args.emplace_back(ZeroAddr.getPointer()); CGBuilderTy &Bld = CGF.Builder; auto CI = CS.capture_begin(); // Use global memory for data sharing. // Handle passing of global args to workers. Address GlobalArgs = CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_get_shared_variables), DataSharingArgs); // Retrieve the shared variables from the list of references returned // by the runtime. Pass the variables to the outlined function. Address SharedArgListAddress = Address::invalid(); if (CS.capture_size() > 0 || isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { SharedArgListAddress = CGF.EmitLoadOfPointer( GlobalArgs, CGF.getContext() .getPointerType(CGF.getContext().VoidPtrTy) .castAs()); } unsigned Idx = 0; if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); llvm::Value *LB = CGF.EmitLoadOfScalar( TypedAddress, /*Volatile=*/false, CGF.getContext().getPointerType(CGF.getContext().getSizeType()), cast(D).getLowerBoundVariable()->getExprLoc()); Args.emplace_back(LB); ++Idx; Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); llvm::Value *UB = CGF.EmitLoadOfScalar( TypedAddress, /*Volatile=*/false, CGF.getContext().getPointerType(CGF.getContext().getSizeType()), cast(D).getUpperBoundVariable()->getExprLoc()); Args.emplace_back(UB); ++Idx; } if (CS.capture_size() > 0) { ASTContext &CGFContext = CGF.getContext(); for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { QualType ElemTy = CurField->getType(); Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)), CGF.ConvertTypeForMem(ElemTy)); llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, /*Volatile=*/false, CGFContext.getPointerType(ElemTy), CI->getLocation()); if (CI->capturesVariableByCopy() && !CI->getCapturedVar()->getType()->isAnyPointerType()) { Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), CI->getLocation()); } Args.emplace_back(Arg); } } emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); CGF.FinishFunction(); return Fn; } void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) { if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) return; assert(D && "Expected function or captured|block decl."); assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && "Function is registered already."); assert((!TeamAndReductions.first || TeamAndReductions.first == D) && "Team is set but not processed."); const Stmt *Body = nullptr; bool NeedToDelayGlobalization = false; if (const auto *FD = dyn_cast(D)) { Body = FD->getBody(); } else if (const auto *BD = dyn_cast(D)) { Body = BD->getBody(); } else if (const auto *CD = dyn_cast(D)) { Body = CD->getBody(); NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; if (NeedToDelayGlobalization && getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) return; } if (!Body) return; CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); VarChecker.Visit(Body); const RecordDecl *GlobalizedVarsRecord = VarChecker.getGlobalizedRecord(IsInTTDRegion); TeamAndReductions.first = nullptr; TeamAndReductions.second.clear(); ArrayRef EscapedVariableLengthDecls = VarChecker.getEscapedVariableLengthDecls(); ArrayRef DelayedVariableLengthDecls = VarChecker.getDelayedVariableLengthDecls(); if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() && DelayedVariableLengthDecls.empty()) return; auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; I->getSecond().MappedParams = std::make_unique(); I->getSecond().EscapedParameters.insert( VarChecker.getEscapedParameters().begin(), VarChecker.getEscapedParameters().end()); I->getSecond().EscapedVariableLengthDecls.append( EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); I->getSecond().DelayedVariableLengthDecls.append( DelayedVariableLengthDecls.begin(), DelayedVariableLengthDecls.end()); DeclToAddrMapTy &Data = I->getSecond().LocalVarData; for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { assert(VD->isCanonicalDecl() && "Expected canonical declaration"); Data.insert(std::make_pair(VD, MappedVarData())); } if (!NeedToDelayGlobalization) { emitGenericVarsProlog(CGF, D->getBeginLoc()); struct GlobalizationScope final : EHScopeStack::Cleanup { GlobalizationScope() = default; void Emit(CodeGenFunction &CGF, Flags flags) override { static_cast(CGF.CGM.getOpenMPRuntime()) .emitGenericVarsEpilog(CGF); } }; CGF.EHStack.pushCleanup(NormalAndEHCleanup); } } Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, const VarDecl *VD) { if (VD && VD->hasAttr()) { const auto *A = VD->getAttr(); auto AS = LangAS::Default; switch (A->getAllocatorType()) { // Use the default allocator here as by default local vars are // threadlocal. case OMPAllocateDeclAttr::OMPNullMemAlloc: case OMPAllocateDeclAttr::OMPDefaultMemAlloc: case OMPAllocateDeclAttr::OMPThreadMemAlloc: case OMPAllocateDeclAttr::OMPHighBWMemAlloc: case OMPAllocateDeclAttr::OMPLowLatMemAlloc: // Follow the user decision - use default allocation. return Address::invalid(); case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: // TODO: implement aupport for user-defined allocators. return Address::invalid(); case OMPAllocateDeclAttr::OMPConstMemAlloc: AS = LangAS::cuda_constant; break; case OMPAllocateDeclAttr::OMPPTeamMemAlloc: AS = LangAS::cuda_shared; break; case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: case OMPAllocateDeclAttr::OMPCGroupMemAlloc: break; } llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); auto *GV = new llvm::GlobalVariable( CGM.getModule(), VarTy, /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(VarTy), VD->getName(), /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, CGM.getContext().getTargetAddressSpace(AS)); CharUnits Align = CGM.getContext().getDeclAlign(VD); GV->setAlignment(Align.getAsAlign()); return Address( CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( VD->getType().getAddressSpace()))), VarTy, Align); } if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic) return Address::invalid(); VD = VD->getCanonicalDecl(); auto I = FunctionGlobalizedDecls.find(CGF.CurFn); if (I == FunctionGlobalizedDecls.end()) return Address::invalid(); auto VDI = I->getSecond().LocalVarData.find(VD); if (VDI != I->getSecond().LocalVarData.end()) return VDI->second.PrivateAddr; if (VD->hasAttrs()) { for (specific_attr_iterator IT(VD->attr_begin()), E(VD->attr_end()); IT != E; ++IT) { auto VDI = I->getSecond().LocalVarData.find( cast(cast(IT->getRef())->getDecl()) ->getCanonicalDecl()); if (VDI != I->getSecond().LocalVarData.end()) return VDI->second.PrivateAddr; } } return Address::invalid(); } void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { FunctionGlobalizedDecls.erase(CGF.CurFn); CGOpenMPRuntime::functionFinished(CGF); } void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPDistScheduleClauseKind &ScheduleKind, llvm::Value *&Chunk) const { auto &RT = static_cast(CGF.CGM.getOpenMPRuntime()); if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { ScheduleKind = OMPC_DIST_SCHEDULE_static; Chunk = CGF.EmitScalarConversion( RT.getGPUNumThreads(CGF), CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), S.getIterationVariable()->getType(), S.getBeginLoc()); return; } CGOpenMPRuntime::getDefaultDistScheduleAndChunk( CGF, S, ScheduleKind, Chunk); } void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( CodeGenFunction &CGF, const OMPLoopDirective &S, OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const { ScheduleKind = OMPC_SCHEDULE_static; // Chunk size is 1 in this case. llvm::APInt ChunkSize(32, 1); ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), SourceLocation()); } void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( CodeGenFunction &CGF, const OMPExecutableDirective &D) const { assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && " Expected target-based directive."); const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); for (const CapturedStmt::Capture &C : CS->captures()) { // Capture variables captured by reference in lambdas for target-based // directives. if (!C.capturesVariable()) continue; const VarDecl *VD = C.getCapturedVar(); const auto *RD = VD->getType() .getCanonicalType() .getNonReferenceType() ->getAsCXXRecordDecl(); if (!RD || !RD->isLambda()) continue; Address VDAddr = CGF.GetAddrOfLocalVar(VD); LValue VDLVal; if (VD->getType().getCanonicalType()->isReferenceType()) VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); else VDLVal = CGF.MakeAddrLValue( VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); llvm::DenseMap Captures; FieldDecl *ThisCapture = nullptr; RD->getCaptureFields(Captures, ThisCapture); if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { LValue ThisLVal = CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); llvm::Value *CXXThis = CGF.LoadCXXThis(); CGF.EmitStoreOfScalar(CXXThis, ThisLVal); } for (const LambdaCapture &LC : RD->captures()) { if (LC.getCaptureKind() != LCK_ByRef) continue; const ValueDecl *VD = LC.getCapturedVar(); // FIXME: For now VD is always a VarDecl because OpenMP does not support // capturing structured bindings in lambdas yet. if (!CS->capturesVariable(cast(VD))) continue; auto It = Captures.find(VD); assert(It != Captures.end() && "Found lambda capture without field."); LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); Address VDAddr = CGF.GetAddrOfLocalVar(cast(VD)); if (VD->getType().getCanonicalType()->isReferenceType()) VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType().getCanonicalType()) .getAddress(CGF); CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); } } } bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, LangAS &AS) { if (!VD || !VD->hasAttr()) return false; const auto *A = VD->getAttr(); switch(A->getAllocatorType()) { case OMPAllocateDeclAttr::OMPNullMemAlloc: case OMPAllocateDeclAttr::OMPDefaultMemAlloc: // Not supported, fallback to the default mem space. case OMPAllocateDeclAttr::OMPThreadMemAlloc: case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: case OMPAllocateDeclAttr::OMPCGroupMemAlloc: case OMPAllocateDeclAttr::OMPHighBWMemAlloc: case OMPAllocateDeclAttr::OMPLowLatMemAlloc: AS = LangAS::Default; return true; case OMPAllocateDeclAttr::OMPConstMemAlloc: AS = LangAS::cuda_constant; return true; case OMPAllocateDeclAttr::OMPPTeamMemAlloc: AS = LangAS::cuda_shared; return true; case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: llvm_unreachable("Expected predefined allocator for the variables with the " "static storage."); } return false; } // Get current CudaArch and ignore any unknown values static CudaArch getCudaArch(CodeGenModule &CGM) { if (!CGM.getTarget().hasFeature("ptx")) return CudaArch::UNKNOWN; for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { if (Feature.getValue()) { CudaArch Arch = StringToCudaArch(Feature.getKey()); if (Arch != CudaArch::UNKNOWN) return Arch; } } return CudaArch::UNKNOWN; } /// Check to see if target architecture supports unified addressing which is /// a restriction for OpenMP requires clause "unified_shared_memory". void CGOpenMPRuntimeGPU::processRequiresDirective( const OMPRequiresDecl *D) { for (const OMPClause *Clause : D->clauselists()) { if (Clause->getClauseKind() == OMPC_unified_shared_memory) { CudaArch Arch = getCudaArch(CGM); switch (Arch) { case CudaArch::SM_20: case CudaArch::SM_21: case CudaArch::SM_30: case CudaArch::SM_32: case CudaArch::SM_35: case CudaArch::SM_37: case CudaArch::SM_50: case CudaArch::SM_52: case CudaArch::SM_53: { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Out << "Target architecture " << CudaArchToString(Arch) << " does not support unified addressing"; CGM.Error(Clause->getBeginLoc(), Out.str()); return; } case CudaArch::SM_60: case CudaArch::SM_61: case CudaArch::SM_62: case CudaArch::SM_70: case CudaArch::SM_72: case CudaArch::SM_75: case CudaArch::SM_80: case CudaArch::SM_86: case CudaArch::SM_87: case CudaArch::SM_89: case CudaArch::SM_90: case CudaArch::SM_90a: case CudaArch::GFX600: case CudaArch::GFX601: case CudaArch::GFX602: case CudaArch::GFX700: case CudaArch::GFX701: case CudaArch::GFX702: case CudaArch::GFX703: case CudaArch::GFX704: case CudaArch::GFX705: case CudaArch::GFX801: case CudaArch::GFX802: case CudaArch::GFX803: case CudaArch::GFX805: case CudaArch::GFX810: case CudaArch::GFX900: case CudaArch::GFX902: case CudaArch::GFX904: case CudaArch::GFX906: case CudaArch::GFX908: case CudaArch::GFX909: case CudaArch::GFX90a: case CudaArch::GFX90c: case CudaArch::GFX940: case CudaArch::GFX941: case CudaArch::GFX942: case CudaArch::GFX1010: case CudaArch::GFX1011: case CudaArch::GFX1012: case CudaArch::GFX1013: case CudaArch::GFX1030: case CudaArch::GFX1031: case CudaArch::GFX1032: case CudaArch::GFX1033: case CudaArch::GFX1034: case CudaArch::GFX1035: case CudaArch::GFX1036: case CudaArch::GFX1100: case CudaArch::GFX1101: case CudaArch::GFX1102: case CudaArch::GFX1103: case CudaArch::GFX1150: case CudaArch::GFX1151: case CudaArch::GFX1200: case CudaArch::GFX1201: case CudaArch::Generic: case CudaArch::UNUSED: case CudaArch::UNKNOWN: break; case CudaArch::LAST: llvm_unreachable("Unexpected Cuda arch."); } } } CGOpenMPRuntime::processRequiresDirective(D); } llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { CGBuilderTy &Bld = CGF.Builder; llvm::Module *M = &CGF.CGM.getModule(); const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; llvm::Function *F = M->getFunction(LocSize); if (!F) { F = llvm::Function::Create( llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false), llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); } return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads"); } llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { ArrayRef Args{}; return CGF.EmitRuntimeCall( OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), Args); } llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { ArrayRef Args{}; return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( CGM.getModule(), OMPRTL___kmpc_get_warp_size), Args); }