/* * Generic driver for the aic7xxx based adaptec SCSI controllers * Copyright (c) 1994, 1995, 1996 Justin T. Gibbs. * All rights reserved. * * Product specific probe and attach routines can be found in: * i386/eisa/aic7770.c 27/284X and aic7770 motherboard controllers * pci/aic7870.c 3940, 2940, aic7870 and aic7850 controllers * * Portions of this driver are based on the FreeBSD 1742 Driver: * * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * commenced: Sun Sep 27 18:14:01 PDT 1992 * * $Id: aic7xxx.c,v 1.57 1996/03/11 02:48:41 gibbs Exp $ */ /* * TODO: * Implement Target Mode * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define PAGESIZ 4096 #define MAX_TAGS 4; #include #define KVTOPHYS(x) vtophys(x) #define MIN(a,b) ((a < b) ? a : b) #define ALL_TARGETS -1 u_long ahc_unit = 0; static int ahc_debug = AHC_SHOWABORTS|AHC_SHOWMISC; /**** bit definitions for SCSIDEF ****/ #define HSCSIID 0x07 /* our SCSI ID */ #define HWSCSIID 0x0f /* our SCSI ID if Wide Bus */ static u_int32_t ahc_adapter_info __P((int unit)); static void ahcminphys __P((struct buf *bp)); static int32_t ahc_scsi_cmd __P((struct scsi_xfer *xs)); static struct scsi_adapter ahc_switch = { ahc_scsi_cmd, ahcminphys, 0, 0, ahc_adapter_info, "ahc", { 0, 0 } }; /* the below structure is so we have a default dev struct for our link struct */ static struct scsi_device ahc_dev = { NULL, /* Use default error handler */ NULL, /* have a queue, served by this */ NULL, /* have no async handler */ NULL, /* Use default 'done' routine */ "ahc", 0, { 0, 0 } }; /* * Since the sequencer can disable pausing in a critical section, we * must loop until it actually stops. * XXX Should add a timeout in here?? */ #define PAUSE_SEQUENCER(ahc) \ outb(HCNTRL + ahc->baseport, ahc->pause); \ \ while ((inb(HCNTRL + ahc->baseport) & PAUSE) == 0) \ ; #define UNPAUSE_SEQUENCER(ahc) \ outb( HCNTRL + ahc->baseport, ahc->unpause ) /* * Restart the sequencer program from address zero */ #define RESTART_SEQUENCER(ahc) \ do { \ outb( SEQCTL + ahc->baseport, SEQRESET|FASTMODE ); \ } while (inb(SEQADDR0 + ahc->baseport) != 0 && \ inb(SEQADDR1 + ahc->baseport != 0)); \ \ UNPAUSE_SEQUENCER(ahc); static u_char ahc_abort_wscb __P((struct ahc_data *ahc, struct scb *scbp, u_char prev, u_long iobase, u_char timedout_scb, u_int32_t xs_error)); static void ahc_add_waiting_scb __P((u_long iobase, struct scb *scb)); static void ahc_done __P((struct ahc_data *ahc, struct scb *scbp)); static void ahc_free_scb __P((struct ahc_data *ahc, struct scb *scb, int flags)); static inline void ahc_fetch_scb __P((struct ahc_data *ahc, struct scb *scb, int iosize)); static struct scb * ahc_get_scb __P((struct ahc_data *ahc, int flags)); static void ahc_loadseq __P((u_long iobase)); static int ahc_match_scb __P((struct scb *scb, int target, char channel)); static int ahc_poll __P((struct ahc_data *ahc, int wait)); #ifdef AHC_DEBUG static void ahc_print_active_scb __P((struct ahc_data *ahc)); static void ahc_print_scb __P((struct scb *scb)); #endif static int ahc_reset_channel __P((struct ahc_data *ahc, char channel, u_char timedout_scb, u_int32_t xs_error, u_char initiate_reset)); static int ahc_reset_device __P((struct ahc_data *ahc, int target, char channel, u_char timedout_scb, u_int32_t xs_error)); static void ahc_reset_current_bus __P((u_long iobase)); static void ahc_run_done_queue __P((struct ahc_data *ahc)); static void ahc_scsirate __P((struct ahc_data* ahc, u_char *scsirate, int period, int offset, int target)); static inline void ahc_send_scb __P((struct ahc_data *ahc, struct scb *scb)); static timeout_t ahc_timeout; static void ahc_busy_target __P((int target, char channel, u_long iobase)); static void ahc_unbusy_target __P((int target, char channel, u_long iobase)); #ifdef AHC_DEBUG static void ahc_print_scb(scb) struct scb *scb; { printf("scb:%p control:0x%x tcl:0x%x cmdlen:%d cmdpointer:0x%lx\n" ,scb ,scb->control ,scb->target_channel_lun ,scb->cmdlen ,scb->cmdpointer ); printf(" datlen:%d data:0x%lx segs:0x%x segp:0x%lx\n" ,scb->datalen ,scb->data ,scb->SG_segment_count ,scb->SG_list_pointer); printf(" sg_addr:%lx sg_len:%ld\n" ,scb->ahc_dma[0].addr ,scb->ahc_dma[0].len); } static void ahc_print_active_scb(ahc) struct ahc_data *ahc; { int cur_scb_offset; u_long iobase = ahc->baseport; PAUSE_SEQUENCER(ahc); cur_scb_offset = inb(SCBPTR + iobase); UNPAUSE_SEQUENCER(ahc); ahc_print_scb(ahc->scbarray[cur_scb_offset]); } #endif #define PARERR 0x08 #define ILLOPCODE 0x04 #define ILLSADDR 0x02 #define ILLHADDR 0x01 static struct { u_char errno; char *errmesg; } hard_error[] = { { ILLHADDR, "Illegal Host Access" }, { ILLSADDR, "Illegal Sequencer Address referrenced" }, { ILLOPCODE, "Illegal Opcode in sequencer program" }, { PARERR, "Sequencer Ram Parity Error" } }; /* * Valid SCSIRATE values. (p. 3-17) * Provides a mapping of tranfer periods in ns to the proper value to * stick in the scsiscfr reg to use that transfer rate. */ static struct { short sxfr; /* Rates in Ultra mode have bit 8 of sxfr set */ #define ULTRA_SXFR 0x100 short period; /* in ns */ char *rate; } ahc_syncrates[] = { { 0x100, 50, "20.0" }, { 0x110, 62, "16.0" }, { 0x120, 75, "13.4" }, { 0x140, 100, "10.0" }, { 0x000, 100, "10.0" }, { 0x010, 125, "8.0" }, { 0x020, 150, "6.67" }, { 0x030, 175, "5.7" }, { 0x040, 200, "5.0" }, { 0x050, 225, "4.4" }, { 0x060, 250, "4.0" }, { 0x070, 275, "3.6" } }; static int ahc_num_syncrates = sizeof(ahc_syncrates) / sizeof(ahc_syncrates[0]); /* * Allocate a controller structures for a new device and initialize it. * ahc_reset should be called before now since we assume that the card * is paused. * */ struct ahc_data * ahc_alloc(unit, iobase, type, flags) int unit; u_long iobase; ahc_type type; ahc_flag flags; { /* * find unit and check we have that many defined */ struct ahc_data *ahc; /* * Allocate a storage area for us */ ahc = malloc(sizeof(struct ahc_data), M_TEMP, M_NOWAIT); if (!ahc) { printf("ahc%d: cannot malloc!\n", unit); return NULL; } bzero(ahc, sizeof(struct ahc_data)); ahc->unit = unit; ahc->baseport = iobase; ahc->type = type; ahc->flags = flags; ahc->unpause = (inb(HCNTRL + iobase) & IRQMS) | INTEN; ahc->pause = ahc->unpause | PAUSE; return (ahc); } void ahc_free(ahc) struct ahc_data *ahc; { free(ahc, M_DEVBUF); return; } void ahc_reset(iobase) u_long iobase; { u_char hcntrl; int wait; /* Retain the IRQ type accross the chip reset */ hcntrl = (inb(HCNTRL + iobase) & IRQMS) | INTEN; outb(HCNTRL + iobase, CHIPRST | PAUSE); /* * Ensure that the reset has finished */ wait = 1000; while (wait--) { DELAY(1000); if(!(inb(HCNTRL + iobase) & CHIPRST)) break; } if(wait == 0) { printf("ahc at 0x%lx: WARNING - Failed chip reset! " "Trying to initialize anyway.\n", iobase); } outb(HCNTRL + iobase, hcntrl | PAUSE); } /* * Look up the valid period to SCSIRATE conversion in our table. */ static void ahc_scsirate(ahc, scsirate, period, offset, target ) struct ahc_data *ahc; u_char *scsirate; short period; u_char offset; int target; { int i; for (i = 0; i < ahc_num_syncrates; i++) { if ((ahc_syncrates[i].period - period) >= 0) { /* * Watch out for Ultra speeds when ultra is not * enabled and vice-versa. */ if (ahc->type & AHC_ULTRA) { if (!(ahc_syncrates[i].sxfr & ULTRA_SXFR)) { printf("ahc%d: target %d requests " "%sMHz transfers, but adapter " "in Ultra mode can only sync at " "10MHz or above\n", ahc->unit, target, ahc_syncrates[i].rate); break; /* Use Async */ } } else { if (ahc_syncrates[i].sxfr & ULTRA_SXFR) { /* * This should only happen if the * drive is the first to negotiate * and chooses a high rate. We'll * just move down the table util * we hit a non ultra speed. */ continue; } } *scsirate = (ahc_syncrates[i].sxfr) | (offset & 0x0f); if(bootverbose) { printf("ahc%d: target %d synchronous at %sMHz," " offset = 0x%x\n", ahc->unit, target, ahc_syncrates[i].rate, offset ); } return; } } /* Default to asyncronous transfers. Also reject this SDTR request. */ *scsirate = 0; if(bootverbose) { printf("ahc%d: target %d using asyncronous transfers\n", ahc->unit, target ); } } /* * Attach all the sub-devices we can find */ int ahc_attach(ahc) struct ahc_data *ahc; { struct scsibus_data *scbus; /* * fill in the prototype scsi_link. */ ahc->sc_link.adapter_unit = ahc->unit; ahc->sc_link.adapter_targ = ahc->our_id; ahc->sc_link.adapter_softc = ahc; ahc->sc_link.adapter = &ahc_switch; ahc->sc_link.opennings = 2; ahc->sc_link.device = &ahc_dev; ahc->sc_link.flags = DEBUGLEVEL; ahc->sc_link.fordriver = 0; /* * Prepare the scsibus_data area for the upperlevel * scsi code. */ scbus = scsi_alloc_bus(); if(!scbus) return 0; scbus->adapter_link = &ahc->sc_link; if(ahc->type & AHC_WIDE) scbus->maxtarg = 15; /* * ask the adapter what subunits are present */ if(bootverbose) printf("ahc%d: Probing channel A\n", ahc->unit); scsi_attachdevs(scbus); scbus = NULL; /* Upper-level SCSI code owns this now */ if(ahc->type & AHC_TWIN) { /* Configure the second scsi bus */ ahc->sc_link_b = ahc->sc_link; ahc->sc_link_b.adapter_targ = ahc->our_id_b; ahc->sc_link_b.adapter_bus = 1; ahc->sc_link_b.fordriver = (void *)SELBUSB; scbus = scsi_alloc_bus(); if(!scbus) return 0; scbus->adapter_link = &ahc->sc_link_b; if(ahc->type & AHC_WIDE) scbus->maxtarg = 15; if(bootverbose) printf("ahc%d: Probing Channel B\n", ahc->unit); scsi_attachdevs(scbus); scbus = NULL; /* Upper-level SCSI code owns this now */ } return 1; } /* Send an SCB down to the card via PIO maintaining the SCB pointer */ static inline void ahc_send_scb(ahc, scb) struct ahc_data *ahc; struct scb *scb; { u_long iobase = ahc->baseport; u_char cur_scb; cur_scb = inb(SCBPTR + iobase); outb(SCBPTR + iobase, scb->position); outb(SCBCNT + iobase, SCBAUTO); if( ahc->type == AHC_284 ) /* Can only do 8bit PIO */ outsb(SCBARRAY+iobase, scb, SCB_PIO_TRANSFER_SIZE); else outsl(SCBARRAY+iobase, scb, (SCB_PIO_TRANSFER_SIZE + 3) / 4); outb(SCBCNT + iobase, 0); outb(SCBPTR + iobase, cur_scb); } static inline void ahc_fetch_scb(ahc, scb, iosize) struct ahc_data *ahc; struct scb *scb; int iosize; { u_long iobase = ahc->baseport; outb(SCBCNT + iobase, 0x80); /* SCBAUTO */ /* Can only do 8bit PIO for reads */ insb(SCBARRAY+iobase, scb, iosize); outb(SCBCNT + iobase, 0); } /* * Add this SCB to the head of the "waiting for selection" list. */ static void ahc_add_waiting_scb (iobase, scb) u_long iobase; struct scb *scb; { u_char next; u_char curscb; curscb = inb(SCBPTR + iobase); next = inb(WAITING_SCBH + iobase); outb(SCBPTR+iobase, scb->position); outb(SCB_NEXT_WAITING+iobase, next); outb(WAITING_SCBH + iobase, scb->position); outb(SCBPTR + iobase, curscb); } /* * Catch an interrupt from the adapter */ void ahc_intr(arg) void *arg; { int intstat; u_char status; u_long iobase; struct scb *scb = NULL; struct scsi_xfer *xs = NULL; struct ahc_data *ahc = (struct ahc_data *)arg; iobase = ahc->baseport; intstat = inb(INTSTAT + iobase); /* * Is this interrupt for me? or for * someone who is sharing my interrupt */ if (!(intstat & INT_PEND)) return; if (intstat & BRKADRINT) { /* We upset the sequencer :-( */ /* Lookup the error message */ int i, error = inb(ERROR + iobase); int num_errors = sizeof(hard_error)/sizeof(hard_error[0]); for(i = 0; error != 1 && i < num_errors; i++) error >>= 1; panic("ahc%d: brkadrint, %s at seqaddr = 0x%x\n", ahc->unit, hard_error[i].errmesg, (inb(SEQADDR1 + iobase) << 8) | inb(SEQADDR0 + iobase)); } if (intstat & SEQINT) { u_short targ_mask; u_char target = (inb(SCSIID + iobase) >> 4) & 0x0f; u_char scratch_offset = target; char channel = inb(SBLKCTL + iobase) & SELBUSB ? 'B': 'A'; if (channel == 'B') scratch_offset += 8; targ_mask = (0x01 << scratch_offset); switch (intstat & SEQINT_MASK) { case BAD_PHASE: panic("ahc%d:%c:%d: unknown scsi bus phase. " "Attempting to continue\n", ahc->unit, channel, target); break; case SEND_REJECT: { u_char rejbyte = inb(REJBYTE + iobase); if(( rejbyte & 0xf0) == 0x20) { /* Tagged Message */ printf("\nahc%d:%c:%d: Tagged message " "received without identify. " "Disabling tagged commands " "for this target.\n", ahc->unit, channel, target); ahc->tagenable &= ~targ_mask; } else printf("ahc%d:%c:%d: Warning - " "unknown message recieved from " "target (0x%x). Rejecting\n", ahc->unit, channel, target, rejbyte); break; } case NO_IDENT: panic("ahc%d:%c:%d: Target did not send an IDENTIFY " "message. SAVED_TCL == 0x%x\n", ahc->unit, channel, target, inb(SAVED_TCL + iobase)); break; case NO_MATCH: { printf("ahc%d:%c:%d: no active SCB for " "reconnecting target - " "issuing ABORT\n", ahc->unit, channel, target); printf("SAVED_TCL == 0x%x\n", inb(SAVED_TCL + iobase)); ahc_unbusy_target(target, channel, iobase); outb(SCBARRAY + iobase, 0); outb(CLRSINT1 + iobase, CLRSELTIMEO); RESTART_SEQUENCER(ahc); break; } case SDTR_MSG: { short period; u_char offset, rate; u_char targ_scratch; u_char maxoffset; /* * Help the sequencer to translate the * negotiated transfer rate. Transfer is * 1/4 the period in ns as is returned by * the sync negotiation message. So, we must * multiply by four */ period = inb(ARG_1 + iobase) << 2; offset = inb(ACCUM + iobase); targ_scratch = inb(TARG_SCRATCH + iobase + scratch_offset); if(targ_scratch & WIDEXFER) maxoffset = 0x08; else maxoffset = 0x0f; ahc_scsirate(ahc, &rate, period, MIN(offset,maxoffset), target); /* Preserve the WideXfer flag */ targ_scratch = rate | (targ_scratch & WIDEXFER); outb(TARG_SCRATCH + iobase + scratch_offset, targ_scratch); outb(SCSIRATE + iobase, targ_scratch); if( (targ_scratch & 0x0f) == 0 ) { /* * The requested rate was so low * that asyncronous transfers are * faster (not to mention the * controller won't support them), * so we issue a message reject to * ensure we go to asyncronous * transfers. */ outb(RETURN_1 + iobase, SEND_REJ); } /* See if we initiated Sync Negotiation */ else if(ahc->sdtrpending & targ_mask) { /* * Don't send an SDTR back to * the target */ outb(RETURN_1 + iobase, 0); } else{ /* * Send our own SDTR in reply */ #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) printf("Sending SDTR!!\n"); #endif outb(RETURN_1 + iobase, SEND_SDTR); } /* * Negate the flags */ ahc->needsdtr &= ~targ_mask; ahc->sdtrpending &= ~targ_mask; break; } case WDTR_MSG: { u_char scratch, bus_width; bus_width = inb(ARG_1 + iobase); scratch = inb(TARG_SCRATCH + iobase + scratch_offset); if(ahc->wdtrpending & targ_mask) { /* * Don't send a WDTR back to the * target, since we asked first. */ outb(RETURN_1 + iobase, 0); switch(bus_width) { case BUS_8_BIT: scratch &= 0x7f; break; case BUS_16_BIT: if(bootverbose) printf("ahc%d: target " "%d using 16Bit " "transfers\n", ahc->unit, target); scratch |= 0x80; break; case BUS_32_BIT: /* * How can we do 32bit * transfers on a 16bit * bus? */ outb(RETURN_1 + iobase, SEND_REJ); printf("ahc%d: target " "%d requested 32Bit " "transfers. " "Rejecting...\n", ahc->unit, target); break; default: break; } } else { /* * Send our own WDTR in reply */ switch(bus_width) { case BUS_8_BIT: scratch &= 0x7f; break; case BUS_32_BIT: /* Negotiate 16_BITS */ bus_width = BUS_16_BIT; case BUS_16_BIT: if(bootverbose) printf("ahc%d: target " "%d using 16Bit " "transfers\n", ahc->unit, target); scratch |= 0x80; break; default: break; } outb(RETURN_1 + iobase, bus_width | SEND_WDTR); } ahc->needwdtr &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; outb(TARG_SCRATCH + iobase + scratch_offset, scratch); outb(SCSIRATE + iobase, scratch); break; } case REJECT_MSG: { /* * What we care about here is if we had an * outstanding SDTR or WDTR message for this * target. If we did, this is a signal that * the target is refusing negotiation. */ u_char targ_scratch; targ_scratch = inb(TARG_SCRATCH + iobase + scratch_offset); if(ahc->wdtrpending & targ_mask){ /* note 8bit xfers and clear flag */ targ_scratch &= 0x7f; ahc->needwdtr &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; printf("ahc%d:%c:%d: refuses " "WIDE negotiation. Using " "8bit transfers\n", ahc->unit, channel, target); } else if(ahc->sdtrpending & targ_mask){ /* note asynch xfers and clear flag */ targ_scratch &= 0xf0; ahc->needsdtr &= ~targ_mask; ahc->sdtrpending &= ~targ_mask; printf("ahc%d:%c:%d: refuses " "syncronous negotiation. Using " "asyncronous transfers\n", ahc->unit, channel, target); } else { /* * Otherwise, we ignore it. */ #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) printf("ahc%d:%c:%d: Message reject -- ignored\n", ahc->unit, channel, target); #endif break; } outb(TARG_SCRATCH + iobase + scratch_offset, targ_scratch); outb(SCSIRATE + iobase, targ_scratch); break; } case BAD_STATUS: { int scb_index; /* The sequencer will notify us when a command * has an error that would be of interest to * the kernel. This allows us to leave the sequencer * running in the common case of command completes * without error. */ scb_index = inb(SCBPTR + iobase); scb = ahc->scbarray[scb_index]; /* * Set the default return value to 0 (don't * send sense). The sense code will change * this if needed and this reduces code * duplication. */ outb(RETURN_1 + iobase, 0); if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("ahc%d:%c:%d: ahc_intr - referenced scb " "not valid during seqint 0x%x scb(%d)\n", ahc->unit, channel, target, intstat, scb_index); goto clear; } xs = scb->xs; ahc_fetch_scb(ahc, scb, SCB_PIO_TRANSFER_SIZE); #ifdef AHC_DEBUG if((ahc_debug & AHC_SHOWSCBS) && xs->sc_link->target == DEBUGTARG) ahc_print_scb(scb); #endif xs->status = scb->target_status; switch(scb->target_status){ case SCSI_OK: printf("ahc%d: Interrupted for staus of" " 0???\n", ahc->unit); break; case SCSI_CHECK: #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWSENSE) { sc_print_addr(xs->sc_link); printf("requests Check Status\n"); } #endif if((xs->error == XS_NOERROR) && !(scb->flags & SCB_SENSE)) { u_char control = scb->control; u_short active; struct ahc_dma_seg *sg = scb->ahc_dma; struct scsi_sense *sc = &(scb->sense_cmd); u_char tcl = scb->target_channel_lun; #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWSENSE) { sc_print_addr(xs->sc_link); printf("Sending Sense\n"); } #endif bzero(scb, SCB_PIO_TRANSFER_SIZE); scb->control |= control & DISCENB; scb->flags |= SCB_SENSE; sc->op_code = REQUEST_SENSE; sc->byte2 = xs->sc_link->lun << 5; sc->length = sizeof(struct scsi_sense_data); sc->control = 0; sg->addr = KVTOPHYS(&xs->sense); sg->len = sizeof(struct scsi_sense_data); scb->target_channel_lun = tcl; scb->SG_segment_count = 1; scb->SG_list_pointer = KVTOPHYS(sg); scb->cmdpointer = KVTOPHYS(sc); scb->cmdlen = sizeof(*sc); scb->data = sg->addr; scb->datalen = sg->len; ahc_send_scb(ahc, scb); outb(SCB_NEXT_WAITING+iobase, SCB_LIST_NULL); /* * Ensure that the target is "BUSY" * so we don't get overlapping * commands if we happen to be doing * tagged I/O. */ ahc_busy_target(target,channel,iobase); /* * Make us the next command to run */ ahc_add_waiting_scb(iobase, scb); outb(RETURN_1 + iobase, SEND_SENSE); break; } /* * Clear the SCB_SENSE Flag and have * the sequencer do a normal command * complete with either a "DRIVER_STUFFUP" * error or whatever other error condition * we already had. */ scb->flags &= ~SCB_SENSE; if(xs->error == XS_NOERROR) xs->error = XS_DRIVER_STUFFUP; break; case SCSI_BUSY: xs->error = XS_BUSY; sc_print_addr(xs->sc_link); printf("Target Busy\n"); break; case SCSI_QUEUE_FULL: /* * The upper level SCSI code will eventually * handle this properly. */ sc_print_addr(xs->sc_link); printf("Queue Full\n"); xs->error = XS_BUSY; break; default: sc_print_addr(xs->sc_link); printf("unexpected targ_status: %x\n", scb->target_status); xs->error = XS_DRIVER_STUFFUP; break; } break; } case RESIDUAL: { int scb_index; scb_index = inb(SCBPTR + iobase); scb = ahc->scbarray[scb_index]; xs = scb->xs; /* * Don't clobber valid resid info with * a resid coming from a check sense * operation. */ if(!(scb->flags & SCB_SENSE)) { int resid_sgs; /* * Remainder of the SG where the transfer * stopped. */ scb->xs->resid = (inb(iobase+SCB_RESID_DCNT2)<<16) | (inb(iobase+SCB_RESID_DCNT1)<<8) | inb(iobase+SCB_RESID_DCNT0); /* * Add up the contents of all residual * SG segments that are after the SG where * the transfer stopped. */ resid_sgs = inb(SCB_RESID_SGCNT + iobase) - 1; while(resid_sgs > 0) { int sg; sg = scb->SG_segment_count - resid_sgs; scb->xs->resid += scb->ahc_dma[sg].len; resid_sgs--; } xs->flags |= SCSI_RESID_VALID; #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) { sc_print_addr(xs->sc_link); printf("Handled Residual of %ld bytes\n" ,scb->xs->resid); } #endif } break; } case ABORT_TAG: { int scb_index; scb_index = inb(SCBPTR + iobase); scb = ahc->scbarray[scb_index]; xs = scb->xs; /* * We didn't recieve a valid tag back from * the target on a reconnect. */ sc_print_addr(xs->sc_link); printf("invalid tag recieved -- sending ABORT_TAG\n"); scb->xs->error = XS_DRIVER_STUFFUP; untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); break; } case AWAITING_MSG: { int scb_index; scb_index = inb(SCBPTR + iobase); scb = ahc->scbarray[scb_index]; /* * This SCB had a zero length command, informing * the sequencer that we wanted to send a special * message to this target. We only do this for * BUS_DEVICE_RESET messages currently. */ if(scb->flags & SCB_DEVICE_RESET) { outb(MSG0 + iobase, MSG_BUS_DEVICE_RESET); outb(MSG_LEN + iobase, 1); } else panic("ahc_intr: AWAITING_MSG for an SCB that " "does not have a waiting message"); break; } case IMMEDDONE: { /* * Take care of device reset messages */ u_char scbindex = inb(SCBPTR + iobase); scb = ahc->scbarray[scbindex]; if(scb->flags & SCB_DEVICE_RESET) { u_char targ_scratch; int found; /* * Go back to async/narrow transfers and * renegotiate. */ ahc_unbusy_target(target, channel, iobase); ahc->needsdtr |= ahc->needsdtr_orig & targ_mask; ahc->needwdtr |= ahc->needwdtr_orig & targ_mask; ahc->sdtrpending &= ~targ_mask; ahc->wdtrpending &= ~targ_mask; targ_scratch = inb(TARG_SCRATCH + iobase + scratch_offset); targ_scratch &= SXFR; outb(TARG_SCRATCH + iobase + scratch_offset, targ_scratch); found = ahc_reset_device(ahc, target, channel, SCB_LIST_NULL, XS_NOERROR); sc_print_addr(scb->xs->sc_link); printf("Bus Device Reset delivered. " "%d SCBs aborted\n", found); ahc->in_timeout = FALSE; ahc_run_done_queue(ahc); } else panic("ahc_intr: Immediate complete for " "unknown operation."); break; } #if NOT_YET /* XXX Fill these in later */ case MESG_BUFFER_BUSY: break; case MSGIN_PHASEMIS: break; #endif case PARITY_ERROR: { /* * Determine the bus phase and * queue an appropriate message */ char *phase; u_char mesg_out = MSG_NOP; u_char lastphase = inb(LASTPHASE + iobase); int scb_index = inb(SCBPTR + iobase); scb = ahc->scbarray[scb_index]; sc_print_addr(scb->xs->sc_link); switch(lastphase) { case P_DATAOUT: phase = "Data-Out"; break; case P_DATAIN: phase = "Data-In"; mesg_out = MSG_INITIATOR_DET_ERROR; break; case P_COMMAND: phase = "Command"; break; case P_MESGOUT: phase = "Message-Out"; break; case P_STATUS: phase = "Status"; mesg_out = MSG_INITIATOR_DET_ERROR; break; case P_MESGIN: phase = "Message-In"; mesg_out = MSG_MSG_PARITY_ERROR; break; default: phase = "unknown"; break; } printf("parity error during %s phase.\n", phase); /* * We've set the hardware to assert ATN if we * get a parity error on "in" phases, so all we * need to do is stuff the message buffer with * the appropriate message. In phases have set * mesg_out to something other than MSG_NOP. */ if(mesg_out != MSG_NOP) { outb(MSG0 + iobase, mesg_out); outb(MSG_LEN + iobase, 1); } else /* * Should we allow the target to make * this decision for us? */ scb->xs->error = XS_DRIVER_STUFFUP; break; } default: printf("ahc: seqint, " "intstat == 0x%x, scsisigi = 0x%x\n", intstat, inb(SCSISIGI + iobase)); break; } clear: /* * Clear the upper byte that holds SEQINT status * codes and clear the SEQINT bit. */ outb(CLRINT + iobase, CLRSEQINT); /* * The sequencer is paused immediately on * a SEQINT, so we should restart it when * we leave this section. */ UNPAUSE_SEQUENCER(ahc); } if (intstat & SCSIINT) { int scb_index = inb(SCBPTR + iobase); status = inb(SSTAT1 + iobase); scb = ahc->scbarray[scb_index]; if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("ahc%d: ahc_intr - referenced scb not " "valid during scsiint 0x%x scb(%d)\n", ahc->unit, status, scb_index); outb(CLRSINT1 + iobase, status); UNPAUSE_SEQUENCER(ahc); outb(CLRINT + iobase, CLRSCSIINT); scb = NULL; goto cmdcomplete; } xs = scb->xs; if (status & SCSIRSTI) { u_char channel; PAUSE_SEQUENCER(ahc); channel = inb(SBLKCTL + iobase); if( !(inb(SCSISEQ + iobase ) & SCSIRSTO) && (ahc->flags & AHC_TWIN) ) { /* Its on the other bus */ channel ^= SELBUSB; } ahc_reset_channel(ahc, channel & SELBUSB ? 'B' : 'A', SCB_LIST_NULL, XS_BUSY, /* Initiate Reset */FALSE); ahc_run_done_queue(ahc); } if (status & SELTO) { u_char waiting; u_char flags; xs->error = XS_TIMEOUT; /* * Stop the Selection */ outb(SCSISEQ + iobase, 0); /* * Clear any pending messages for the timed out * target, and mark the target as free */ flags = inb(FLAGS + iobase); outb(MSG_LEN + iobase, 0); ahc_unbusy_target(xs->sc_link->target, ((long)xs->sc_link->fordriver & SELBUSB) ? 'B' : 'A', iobase); outb(SCBARRAY + iobase, 0); outb(CLRSINT1 + iobase, CLRSELTIMEO); outb(CLRINT + iobase, CLRSCSIINT); /* Shift the waiting for selection queue forward */ waiting = inb(WAITING_SCBH + iobase); outb(SCBPTR + iobase, waiting); waiting = inb(SCB_NEXT_WAITING + iobase); outb(WAITING_SCBH + iobase, waiting); RESTART_SEQUENCER(ahc); } else if (!(status & BUSFREE)) { sc_print_addr(xs->sc_link); printf("Unknown SCSIINT. Status = 0x%x\n", status); outb(CLRSINT1 + iobase, status); UNPAUSE_SEQUENCER(ahc); outb(CLRINT + iobase, CLRSCSIINT); scb = NULL; } if(scb != NULL) { /* We want to process the command */ untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); } } cmdcomplete: if (intstat & CMDCMPLT) { int scb_index; do { scb_index = inb(QOUTFIFO + iobase); scb = ahc->scbarray[scb_index]; if (!scb || !(scb->flags & SCB_ACTIVE)) { printf("ahc%d: WARNING " "no command for scb %d (cmdcmplt)\n" "QOUTCNT == %d\n", ahc->unit, scb_index, inb(QOUTCNT + iobase)); outb(CLRINT + iobase, CLRCMDINT); continue; } outb(CLRINT + iobase, CLRCMDINT); untimeout(ahc_timeout, (caddr_t)scb); ahc_done(ahc, scb); } while (inb(QOUTCNT + iobase)); } } /* * We have a scb which has been processed by the * adaptor, now we look to see how the operation * went. */ static void ahc_done(ahc, scb) struct ahc_data *ahc; struct scb *scb; { struct scsi_xfer *xs = scb->xs; SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_done\n")); /* * Put the results of the operation * into the xfer and call whoever started it */ if(scb->flags & SCB_SENSE) xs->error = XS_SENSE; if ((xs->flags & SCSI_ERR_OK) && !(xs->error == XS_SENSE)) { /* All went correctly OR errors expected */ xs->error = XS_NOERROR; } xs->flags |= ITSDONE; #ifdef AHC_TAGENABLE if(xs->cmd->opcode == 0x12 && xs->error == XS_NOERROR) { struct scsi_inquiry_data *inq_data; u_short mask = 0x01 << (xs->sc_link->target | (scb->target_channel_lun & 0x08)); /* * Sneak a look at the results of the SCSI Inquiry * command and see if we can do Tagged queing. This * should really be done by the higher level drivers. */ inq_data = (struct scsi_inquiry_data *)xs->data; if((inq_data->flags & SID_CmdQue) && !(ahc->tagenable & mask)) { printf("ahc%d: target %d Tagged Queuing Device\n", ahc->unit, xs->sc_link->target); ahc->tagenable |= mask; #ifdef QUEUE_FULL_SUPPORTED xs->sc_link->opennings += 2; #endif } } #endif ahc_free_scb(ahc, scb, xs->flags); scsi_done(xs); } /* * Start the board, ready for normal operation */ int ahc_init(ahc) struct ahc_data *ahc; { u_long iobase = ahc->baseport; u_char scsi_conf, sblkctl, i; int max_targ = 15; /* * Assume we have a board at this stage and it has been reset. */ /* Determine channel configuration and who we are on the scsi bus. */ switch ( (sblkctl = inb(SBLKCTL + iobase) & 0x0a) ) { case 0: ahc->our_id = (inb(SCSICONF + iobase) & HSCSIID); if(ahc->type == AHC_394) printf("Channel %c, SCSI Id=%d, ", ahc->flags & AHC_CHNLB ? 'B' : 'A', ahc->our_id); else printf("Single Channel, SCSI Id=%d, ", ahc->our_id); outb(FLAGS + iobase, SINGLE_BUS); break; case 2: ahc->our_id = (inb(SCSICONF + 1 + iobase) & HWSCSIID); if(ahc->type == AHC_394) printf("Wide Channel %c, SCSI Id=%d, ", ahc->flags & AHC_CHNLB ? 'B' : 'A', ahc->our_id); else printf("Wide Channel, SCSI Id=%d, ", ahc->our_id); ahc->type |= AHC_WIDE; outb(FLAGS + iobase, WIDE_BUS); break; case 8: ahc->our_id = (inb(SCSICONF + iobase) & HSCSIID); ahc->our_id_b = (inb(SCSICONF + 1 + iobase) & HSCSIID); printf("Twin Channel, A SCSI Id=%d, B SCSI Id=%d, ", ahc->our_id, ahc->our_id_b); ahc->type |= AHC_TWIN; outb(FLAGS + iobase, TWIN_BUS); break; default: printf(" Unsupported adapter type. Ignoring\n"); return(-1); } printf("%d SCBs\n", ahc->maxscbs); #ifdef AHC_DEBUG if(ahc_debug & AHC_SHOWMISC) { struct scb test; printf("ahc%d: hardware scb %ld bytes; kernel scb; " "ahc_dma %d bytes\n", ahc->unit, (u_long)&(test.next) - (u_long)(&test), sizeof(test), sizeof(struct ahc_dma_seg)); } #endif /* AHC_DEBUG */ /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/ if(ahc->type & AHC_TWIN) { /* * The device is gated to channel B after a chip reset, * so set those values first */ outb(SCSIID + iobase, ahc->our_id_b); scsi_conf = inb(SCSICONF + 1 + iobase) & (/*ENSPCHK|*/STIMESEL); outb(SXFRCTL1 + iobase, scsi_conf|ENSTIMER|ACTNEGEN|STPWEN); outb(SIMODE1 + iobase, ENSELTIMO|ENSCSIRST); if(ahc->type & AHC_ULTRA) outb(SXFRCTL0 + iobase, DFON|SPIOEN|ULTRAEN); else outb(SXFRCTL0 + iobase, DFON|SPIOEN); /* Reset the bus */ outb(SCSISEQ + iobase, SCSIRSTO); DELAY(1000); outb(SCSISEQ + iobase, 0); /* Select Channel A */ outb(SBLKCTL + iobase, 0); } outb(SCSIID + iobase, ahc->our_id); scsi_conf = inb(SCSICONF + iobase) & (/*ENSPCHK|*/STIMESEL); outb(SXFRCTL1 + iobase, scsi_conf|ENSTIMER|ACTNEGEN|STPWEN); outb(SIMODE1 + iobase, ENSELTIMO|ENSCSIRST); if(ahc->type & AHC_ULTRA) outb(SXFRCTL0 + iobase, DFON|SPIOEN|ULTRAEN); else outb(SXFRCTL0 + iobase, DFON|SPIOEN); /* Reset the bus */ outb(SCSISEQ + iobase, SCSIRSTO); DELAY(1000); outb(SCSISEQ + iobase, 0); /* * Look at the information that board initialization or * the board bios has left us. In the lower four bits of each * target's scratch space any value other than 0 indicates * that we should initiate syncronous transfers. If it's zero, * the user or the BIOS has decided to disable syncronous * negotiation to that target so we don't activate the needsdtr * flag. */ ahc->needsdtr_orig = 0; ahc->needwdtr_orig = 0; /* Grab the disconnection disable table and invert it for our needs */ if(ahc->flags & AHC_USEDEFAULTS) { printf("ahc%d: Host Adapter Bios disabled. Using default SCSI " "device parameters\n", ahc->unit); ahc->discenable = 0xff; } else ahc->discenable = ~((inb(DISC_DSB + iobase + 1) << 8) | inb(DISC_DSB + iobase)); if(!(ahc->type & (AHC_WIDE|AHC_TWIN))) max_targ = 7; for(i = 0; i <= max_targ; i++){ u_char target_settings; if (ahc->flags & AHC_USEDEFAULTS) { target_settings = 0; /* 10MHz */ ahc->needsdtr_orig |= (0x01 << i); ahc->needwdtr_orig |= (0x01 << i); } else { /* Take the settings leftover in scratch RAM. */ target_settings = inb(TARG_SCRATCH + i + iobase); if(target_settings & 0x0f){ ahc->needsdtr_orig |= (0x01 << i); /*Default to a asyncronous transfers(0 offset)*/ target_settings &= 0xf0; } if(target_settings & 0x80){ ahc->needwdtr_orig |= (0x01 << i); /* * We'll set the Wide flag when we * are successful with Wide negotiation. * Turn it off for now so we aren't * confused. */ target_settings &= 0x7f; } } outb(TARG_SCRATCH+i+iobase,target_settings); } /* * If we are not a WIDE device, forget WDTR. This * makes the driver work on some cards that don't * leave these fields cleared when the BIOS is not * installed. */ if(!(ahc->type & AHC_WIDE)) ahc->needwdtr_orig = 0; ahc->needsdtr = ahc->needsdtr_orig; ahc->needwdtr = ahc->needwdtr_orig; ahc->sdtrpending = 0; ahc->wdtrpending = 0; ahc->tagenable = 0; #ifdef AHC_DEBUG /* How did we do? */ if(ahc_debug & AHC_SHOWMISC) printf("NEEDSDTR == 0x%x\nNEEDWDTR == 0x%x\n" "DISCENABLE == 0x%x\n", ahc->needsdtr, ahc->needwdtr, ahc->discenable); #endif /* * Clear the control byte for every SCB so that the sequencer * doesn't get confused and think that one of them is valid */ for(i = 0; i < ahc->maxscbs; i++) { outb(SCBPTR + iobase, i); outb(SCBARRAY + iobase, 0); } /* * Set the number of availible SCBs */ outb(SCBCOUNT + iobase, ahc->maxscbs); /* * 2s compliment of SCBCOUNT */ i = ahc->maxscbs; outb(COMP_SCBCOUNT + iobase, -i & 0xff); /* We don't have any busy targets right now */ outb( ACTIVE_A + iobase, 0 ); outb( ACTIVE_B + iobase, 0 ); /* We don't have any waiting selections */ outb( WAITING_SCBH + iobase, SCB_LIST_NULL ); outb( WAITING_SCBT + iobase, SCB_LIST_NULL ); /* Message out buffer starts empty */ outb(MSG_LEN + iobase, 0x00); /* * Load the Sequencer program and Enable the adapter * in "fast" mode. */ if(bootverbose) printf("ahc%d: Downloading Sequencer Program...", ahc->unit); ahc_loadseq(iobase); if(bootverbose) printf("Done\n"); outb(SEQCTL + iobase, FASTMODE); UNPAUSE_SEQUENCER(ahc); /* * Note that we are going and return (to probe) */ ahc->flags = AHC_INIT; return (0); } static void ahcminphys(bp) struct buf *bp; { /* * Even though the card can transfer up to 16megs per command * we are limited by the number of segments in the dma segment * list that we can hold. The worst case is that all pages are * discontinuous physically, hense the "page per segment" limit * enforced here. */ if (bp->b_bcount > ((AHC_NSEG - 1) * PAGESIZ)) { bp->b_bcount = ((AHC_NSEG - 1) * PAGESIZ); } } /* * start a scsi operation given the command and * the data address, target, and lun all of which * are stored in the scsi_xfer struct */ static int32_t ahc_scsi_cmd(xs) struct scsi_xfer *xs; { struct scb *scb; struct ahc_dma_seg *sg; int seg; /* scatter gather seg being worked on */ int thiskv; physaddr thisphys, nextphys; int bytes_this_seg, bytes_this_page, datalen, flags; struct ahc_data *ahc; u_short mask; int s; ahc = (struct ahc_data *)xs->sc_link->adapter_softc; mask = (0x01 << (xs->sc_link->target | ((u_long)xs->sc_link->fordriver & 0x08))); SC_DEBUG(xs->sc_link, SDEV_DB2, ("ahc_scsi_cmd\n")); /* * get an scb to use. If the transfer * is from a buf (possibly from interrupt time) * then we can't allow it to sleep */ flags = xs->flags; if (flags & ITSDONE) { printf("ahc%d: Already done?", ahc->unit); xs->flags &= ~ITSDONE; } if (!(flags & INUSE)) { printf("ahc%d: Not in use?", ahc->unit); xs->flags |= INUSE; } if (!(scb = ahc_get_scb(ahc, flags))) { xs->error = XS_DRIVER_STUFFUP; return (TRY_AGAIN_LATER); } SC_DEBUG(xs->sc_link, SDEV_DB3, ("start scb(%p)\n", scb)); scb->xs = xs; if (flags & SCSI_RESET) scb->flags |= SCB_DEVICE_RESET|SCB_IMMED; /* * Put all the arguments for the xfer in the scb */ if(ahc->tagenable & mask) scb->control |= TAG_ENB; if(ahc->discenable & mask) scb->control |= DISCENB; if((ahc->needwdtr & mask) && !(ahc->wdtrpending & mask)) { scb->control |= NEEDWDTR; ahc->wdtrpending |= mask; } else if((ahc->needsdtr & mask) && !(ahc->sdtrpending & mask)) { scb->control |= NEEDSDTR; ahc->sdtrpending |= mask; } scb->target_channel_lun = ((xs->sc_link->target << 4) & 0xF0) | ((u_long)xs->sc_link->fordriver & 0x08) | (xs->sc_link->lun & 0x07); scb->cmdlen = xs->cmdlen; scb->cmdpointer = KVTOPHYS(xs->cmd); xs->resid = 0; xs->status = 0; if (xs->datalen) { /* should use S/G only if not zero length */ scb->SG_list_pointer = KVTOPHYS(scb->ahc_dma); sg = scb->ahc_dma; seg = 0; { /* * Set up the scatter gather block */ SC_DEBUG(xs->sc_link, SDEV_DB4, ("%ld @%p:- ", xs->datalen, xs->data)); datalen = xs->datalen; thiskv = (int) xs->data; thisphys = KVTOPHYS(thiskv); while ((datalen) && (seg < AHC_NSEG)) { bytes_this_seg = 0; /* put in the base address */ sg->addr = thisphys; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("0x%lx", thisphys)); /* do it at least once */ nextphys = thisphys; while ((datalen) && (thisphys == nextphys)) { /* * This page is contiguous (physically) * with the the last, just extend the * length */ /* how far to the end of the page */ nextphys = (thisphys & (~(PAGESIZ - 1))) + PAGESIZ; bytes_this_page = nextphys - thisphys; /**** or the data ****/ bytes_this_page = min(bytes_this_page ,datalen); bytes_this_seg += bytes_this_page; datalen -= bytes_this_page; /* get more ready for the next page */ thiskv = (thiskv & (~(PAGESIZ - 1))) + PAGESIZ; if (datalen) thisphys = KVTOPHYS(thiskv); } /* * next page isn't contiguous, finish the seg */ SC_DEBUGN(xs->sc_link, SDEV_DB4, ("(0x%x)", bytes_this_seg)); sg->len = bytes_this_seg; sg++; seg++; } } /*end of iov/kv decision */ scb->SG_segment_count = seg; /* Copy the first SG into the data pointer area */ scb->data = scb->ahc_dma->addr; scb->datalen = scb->ahc_dma->len; SC_DEBUGN(xs->sc_link, SDEV_DB4, ("\n")); if (datalen) { /* there's still data, must have run out of segs! */ printf("ahc_scsi_cmd%d: more than %d DMA segs\n", ahc->unit, AHC_NSEG); xs->error = XS_DRIVER_STUFFUP; ahc_free_scb(ahc, scb, flags); return (COMPLETE); } } else { /* * No data xfer, use non S/G values */ scb->SG_segment_count = 0; scb->SG_list_pointer = 0; scb->data = 0; scb->datalen = 0; } #ifdef AHC_DEBUG if((ahc_debug & AHC_SHOWSCBS) && (xs->sc_link->target == DEBUGTARG)) ahc_print_scb(scb); #endif if (!(flags & SCSI_NOMASK)) { s = splbio(); PAUSE_SEQUENCER(ahc); ahc_send_scb(ahc, scb); outb(QINFIFO + ahc->baseport, scb->position); UNPAUSE_SEQUENCER(ahc); timeout(ahc_timeout, (caddr_t)scb, (xs->timeout * hz) / 1000); splx(s); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_sent\n")); return (SUCCESSFULLY_QUEUED); } /* * If we can't use interrupts, poll for completion */ s = splbio(); PAUSE_SEQUENCER(ahc); ahc_send_scb(ahc, scb); outb(QINFIFO + ahc->baseport, scb->position); UNPAUSE_SEQUENCER(ahc); SC_DEBUG(xs->sc_link, SDEV_DB3, ("cmd_wait\n")); do { if (ahc_poll(ahc, xs->timeout)) { if (!(xs->flags & SCSI_SILENT)) printf("cmd fail\n"); ahc_timeout(scb); break; } } while (!(xs->flags & ITSDONE)); /* a non command complete intr */ splx(s); return (COMPLETE); } /* * Return some information to the caller about * the adapter and it's capabilities. */ static u_int32_t ahc_adapter_info(unit) int unit; { return (2); /* 2 outstanding requests at a time per device */ } /* * A scb (and hence an scb entry on the board is put onto the * free list. */ static void ahc_free_scb(ahc, scb, flags) struct ahc_data *ahc; int flags; struct scb *scb; { unsigned int opri; opri = splbio(); scb->flags = SCB_FREE; scb->next = ahc->free_scb; ahc->free_scb = scb; #ifdef AHC_DEBUG ahc->activescbs--; #endif /* * If there were none, wake abybody waiting for * one to come free, starting with queued entries */ if (!scb->next) { wakeup((caddr_t)&ahc->free_scb); } splx(opri); } /* * Get a free scb * If there are none, see if we can allocate a * new one. Otherwise either return an error or sleep */ static struct scb * ahc_get_scb(ahc, flags) struct ahc_data *ahc; int flags; { unsigned opri; struct scb *scbp; opri = splbio(); /* * If we can and have to, sleep waiting for one to come free * but only if we can't allocate a new one. */ while (!(scbp = ahc->free_scb)) { if (ahc->numscbs < ahc->maxscbs) { scbp = (struct scb *) malloc(sizeof(struct scb), M_TEMP, M_NOWAIT); if (scbp) { bzero(scbp, sizeof(struct scb)); scbp->position = ahc->numscbs; ahc->numscbs++; scbp->flags = SCB_ACTIVE; /* * Place in the scbarray * Never is removed. Position * in ahc->scbarray is the scbarray * position on the board we will * load it into. */ ahc->scbarray[scbp->position] = scbp; } else { printf("ahc%d: Can't malloc SCB\n", ahc->unit); } break; } else { if (!(flags & SCSI_NOSLEEP)) { tsleep((caddr_t)&ahc->free_scb, PRIBIO, "ahcscb", 0); continue; } break; } } if (scbp) { /* Get SCB from from free list */ ahc->free_scb = scbp->next; scbp->control = 0; scbp->flags = SCB_ACTIVE; #ifdef AHC_DEBUG ahc->activescbs++; if((ahc_debug & AHC_SHOWSCBCNT) && (ahc->activescbs == ahc->maxscbs)) printf("ahc%d: Max SCBs active\n", ahc->unit); #endif } splx(opri); return (scbp); } static void ahc_loadseq(iobase) u_long iobase; { static unsigned char seqprog[] = { # include "aic7xxx_seq.h" }; outb(SEQCTL + iobase, PERRORDIS|SEQRESET|LOADRAM); outsb(SEQRAM + iobase, seqprog, sizeof(seqprog)); outb(SEQCTL + iobase, FASTMODE|SEQRESET); do { outb(SEQCTL + iobase, SEQRESET|FASTMODE); } while (inb(SEQADDR0 + iobase) != 0 && inb(SEQADDR1 + iobase != 0)); } /* * Function to poll for command completion when * interrupts are disabled (crash dumps) */ static int ahc_poll(ahc, wait) struct ahc_data *ahc; int wait; /* in msec */ { u_long iobase = ahc->baseport; u_long stport = INTSTAT + iobase; while (--wait) { DELAY(1000); if (inb(stport) & INT_PEND) break; } if (wait == 0) { printf("ahc%d: board not responding\n", ahc->unit); return (EIO); } ahc_intr((void *)ahc); return (0); } static void ahc_timeout(arg) void *arg; { struct scb *scb = (struct scb *)arg; struct ahc_data *ahc; int s, h, found; u_char bus_state; u_long iobase; s = splbio(); h = splhigh(); if (!(scb->flags & SCB_ACTIVE)) { /* Previous timeout took care of me already */ splx(h); splx(s); return; } ahc = (struct ahc_data *)scb->xs->sc_link->adapter_softc; if (ahc->in_timeout) { /* * Some other SCB has started a recovery operation * and is still working on cleaning things up. */ if (scb->flags & SCB_TIMEDOUT) { /* * This SCB has been here before and is not the * recovery SCB. Cut our losses and panic. Its * better to do this than trash a filesystem. */ panic("ahc%d: Timed-out command times out " "again\n", ahc->unit); } else if (!(scb->flags & SCB_ABORTED)) { /* * This is not the SCB that started this timeout * processing. Give this scb another lifetime so * that it can continue once we deal with the * timeout. */ scb->flags |= SCB_TIMEDOUT; timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); splx(h); splx(s); return; } } ahc->in_timeout = TRUE; splx(h); /* * Ensure that the card doesn't do anything * behind our back. */ PAUSE_SEQUENCER(ahc); sc_print_addr(scb->xs->sc_link); printf("timed out "); /* * Take a snapshot of the bus state and print out * some information so we can track down driver bugs. */ iobase = ahc->baseport; bus_state = inb(iobase + LASTPHASE); switch(bus_state & PHASE_MASK) { case P_DATAOUT: printf("in dataout phase"); break; case P_DATAIN: printf("in datain phase"); break; case P_COMMAND: printf("in command phase"); break; case P_MESGOUT: printf("in message out phase"); break; case P_STATUS: printf("in status phase"); break; case P_MESGIN: printf("in message in phase"); break; default: printf("while idle, LASTPHASE == 0x%x", bus_state); /* * We aren't in a valid phase, so assume we're * idle. */ bus_state = 0; break; } printf(", SCSISIGI == 0x%x\n", inb(iobase + SCSISIGI)); /* Decide our course of action */ if(scb->flags & SCB_ABORTED) { /* * Been down this road before. * Do a full bus reset. */ char channel = (scb->target_channel_lun & SELBUSB) ? 'B': 'A'; found = ahc_reset_channel(ahc, channel, scb->position, XS_TIMEOUT, /*Initiate Reset*/TRUE); printf("ahc%d: Issued Channel %c Bus Reset #1. " "%d SCBs aborted\n", ahc->unit, channel, found); ahc->in_timeout = FALSE; } else { /* * Send a Bus Device Reset Message: * The target that is holding up the bus may not * be the same as the one that triggered this timeout * (different commands have different timeout lengths). * It is also impossible to get a message to a target * if we are in a "frozen" data transfer phase. Our * strategy here is to queue a bus device reset message * to the timed out target if it is disconnected. * Otherwise, if we have an active target we stuff the * message buffer with a bus device reset message and * assert ATN in the hopes that the target will let go * of the bus and finally disconnect. If this fails, * we'll get another timeout 2 seconds later which will * cause a bus reset. */ u_char active_scb, control; struct scb *active_scbp; active_scb = inb(SCBPTR + iobase); active_scbp = ahc->scbarray[active_scb]; control = inb(SCB_CONTROL + iobase); /* Test to see if scb is disconnected */ outb(SCBPTR + iobase, scb->position); if(inb(SCB_CONTROL + iobase) & DISCONNECTED) { scb->flags |= SCB_DEVICE_RESET|SCB_ABORTED; scb->SG_segment_count = 0; scb->SG_list_pointer = 0; scb->data = 0; scb->datalen = 0; ahc_send_scb(ahc, scb); ahc_add_waiting_scb(iobase, scb); timeout(ahc_timeout, (caddr_t)scb, (2 * hz)); sc_print_addr(scb->xs->sc_link); printf("BUS DEVICE RESET message queued.\n"); outb(SCBPTR + iobase, active_scb); UNPAUSE_SEQUENCER(ahc); } /* Is the active SCB really active? */ else if((active_scbp->flags & SCB_ACTIVE) && bus_state) { outb(MSG_LEN + iobase, 1); outb(MSG0 + iobase, MSG_BUS_DEVICE_RESET); outb(SCSISIGO + iobase, bus_state|ATNO); sc_print_addr(active_scbp->xs->sc_link); printf("asserted ATN - device reset in message buffer\n"); active_scbp->flags |= SCB_DEVICE_RESET|SCB_ABORTED; if(active_scbp != scb) { untimeout(ahc_timeout, (caddr_t)active_scbp); /* Give scb a new lease on life */ timeout(ahc_timeout, (caddr_t)scb, (scb->xs->timeout * hz) / 1000); } timeout(ahc_timeout, (caddr_t)active_scbp, (2 * hz)); outb(SCBPTR + iobase, active_scb); UNPAUSE_SEQUENCER(ahc); } else { /* No active target? Try reseting the bus */ char channel = (scb->target_channel_lun & SELBUSB) ? 'B': 'A'; found = ahc_reset_channel(ahc, channel, scb->position, XS_TIMEOUT, /*Initiate Reset*/TRUE); printf("ahc%d: Issued Channel %c Bus Reset #2. " "%d SCBs aborted\n", ahc->unit, channel, found); ahc->in_timeout = FALSE; } } splx(s); } /* * The device at the given target/channel has been reset. Abort * all active and queued scbs for that target/channel. */ static int ahc_reset_device(ahc, target, channel, timedout_scb, xs_error) struct ahc_data *ahc; int target; char channel; u_char timedout_scb; u_int32_t xs_error; { u_long iobase = ahc->baseport; struct scb *scbp; u_char active_scb; int i = 0; int found = 0; /* restore this when we're done */ active_scb = inb(SCBPTR + iobase); /* * Search the QINFIFO. */ { int saved_queue[AHC_SCB_MAX]; int queued = inb(QINCNT + iobase); for (i = 0; i < (queued - found); i++) { saved_queue[i] = inb(QINFIFO + iobase); scbp = ahc->scbarray[saved_queue[i]]; if (ahc_match_scb (scbp, target, channel)){ /* * We found an scb that needs to be aborted. */ scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->position != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); outb(SCBPTR + iobase, scbp->position); outb(SCBARRAY + iobase, 0); i--; found++; } } /* Now put the saved scbs back. */ for (queued = 0; queued < i; queued++) { outb (QINFIFO + iobase, saved_queue[queued]); } } /* * Search waiting for selection list. */ { u_char next, prev; next = inb(WAITING_SCBH + iobase); /* Start at head of list. */ prev = SCB_LIST_NULL; while (next != SCB_LIST_NULL) { scbp = ahc->scbarray[next]; /* * Select the SCB. */ if (ahc_match_scb(scbp, target, channel)) { next = ahc_abort_wscb(ahc, scbp, prev, iobase, timedout_scb, xs_error); found++; } else { outb(SCBPTR + iobase, scbp->position); prev = next; next = inb(SCB_NEXT_WAITING + iobase); } } } /* * Go through the entire SCB array now and look for * commands for this target that are active. These * are other (most likely tagged) commands that * were disconnected when the reset occured. */ for(i = 0; i < ahc->numscbs; i++) { scbp = ahc->scbarray[i]; if((scbp->flags & SCB_ACTIVE) && ahc_match_scb(scbp, target, channel)) { /* Ensure the target is "free" */ ahc_unbusy_target(target, channel, iobase); outb(SCBPTR + iobase, scbp->position); outb(SCBARRAY + iobase, 0); scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->position != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); found++; } } outb(SCBPTR + iobase, active_scb); return found; } /* * Manipulate the waiting for selection list and return the * scb that follows the one that we remove. */ static u_char ahc_abort_wscb (ahc, scbp, prev, iobase, timedout_scb, xs_error) struct ahc_data *ahc; struct scb *scbp; u_char prev; u_long iobase; u_char timedout_scb; u_int32_t xs_error; { u_char curscbp, next; int target = ((scbp->target_channel_lun >> 4) & 0x0f); char channel = (scbp->target_channel_lun & SELBUSB) ? 'B' : 'A'; /* * Select the SCB we want to abort and * pull the next pointer out of it. */ curscbp = inb(SCBPTR + iobase); outb(SCBPTR + iobase, scbp->position); next = inb(SCB_NEXT_WAITING + iobase); /* Clear the necessary fields */ outb(SCB_CONTROL + iobase, 0); outb(SCB_NEXT_WAITING + iobase, SCB_LIST_NULL); ahc_unbusy_target(target, channel, iobase); /* update the waiting list */ if( prev == SCB_LIST_NULL ) /* First in the list */ outb(WAITING_SCBH + iobase, next); else { /* * Select the scb that pointed to us * and update its next pointer. */ outb(SCBPTR + iobase, prev); outb(SCB_NEXT_WAITING + iobase, next); } /* * Point us back at the original scb position * and inform the SCSI system that the command * has been aborted. */ outb(SCBPTR + iobase, curscbp); scbp->flags = SCB_ABORTED|SCB_QUEUED_FOR_DONE; scbp->xs->error |= xs_error; if(scbp->position != timedout_scb) untimeout(ahc_timeout, (caddr_t)scbp); return next; } static void ahc_busy_target(target, channel, iobase) u_char target; char channel; u_long iobase; { u_char active; u_long active_port = ACTIVE_A + iobase; if(target > 0x07 || channel == 'B') { /* * targets on the Second channel or * above id 7 store info in byte two * of HA_ACTIVE */ active_port++; } active = inb(active_port); active |= (0x01 << (target & 0x07)); outb(active_port, active); } static void ahc_unbusy_target(target, channel, iobase) u_char target; char channel; u_long iobase; { u_char active; u_long active_port = ACTIVE_A + iobase; if(target > 0x07 || channel == 'B') { /* * targets on the Second channel or * above id 7 store info in byte two * of HA_ACTIVE */ active_port++; } active = inb(active_port); active &= ~(0x01 << (target & 0x07)); outb(active_port, active); } static void ahc_reset_current_bus(iobase) u_long iobase; { outb(SCSISEQ + iobase, SCSIRSTO); DELAY(1000); outb(SCSISEQ + iobase, 0); } static int ahc_reset_channel(ahc, channel, timedout_scb, xs_error, initiate_reset) struct ahc_data *ahc; char channel; u_char timedout_scb; u_int32_t xs_error; u_char initiate_reset; { u_long iobase = ahc->baseport; u_char sblkctl; char cur_channel; u_long offset, offset_max; int found; /* * Clean up all the state information for the * pending transactions on this bus. */ found = ahc_reset_device(ahc, ALL_TARGETS, channel, timedout_scb, xs_error); if(channel == 'B'){ ahc->needsdtr |= (ahc->needsdtr_orig & 0xff00); ahc->sdtrpending &= 0x00ff; outb(ACTIVE_B + iobase, 0); offset = TARG_SCRATCH + iobase + 8; offset_max = TARG_SCRATCH + iobase + 16; } else if (ahc->type & AHC_WIDE){ ahc->needsdtr = ahc->needsdtr_orig; ahc->needwdtr = ahc->needwdtr_orig; ahc->sdtrpending = 0; ahc->wdtrpending = 0; outb(ACTIVE_A + iobase, 0); outb(ACTIVE_B + iobase, 0); offset = TARG_SCRATCH + iobase; offset_max = TARG_SCRATCH + iobase + 16; } else{ ahc->needsdtr |= (ahc->needsdtr_orig & 0x00ff); ahc->sdtrpending &= 0xff00; outb(ACTIVE_A + iobase, 0); offset = TARG_SCRATCH + iobase; offset_max = TARG_SCRATCH + iobase + 8; } for(;offset < offset_max;offset++) { /* * Revert to async/narrow transfers * until we renegotiate. */ u_char targ_scratch; targ_scratch = inb(offset); targ_scratch &= SXFR; outb(offset, targ_scratch); } /* * Reset the bus if we are initiating this reset and * restart/unpause the sequencer */ /* Case 1: Command for another bus is active */ sblkctl = inb(SBLKCTL + iobase); cur_channel = (sblkctl & SELBUSB) ? 'B' : 'A'; if(cur_channel != channel) { /* * Stealthily reset the other bus * without upsetting the current bus */ outb(SBLKCTL + iobase, sblkctl ^ SELBUSB); if( initiate_reset ) { ahc_reset_current_bus(iobase); } outb(CLRSINT1 + iobase, CLRSCSIRSTI); outb(SBLKCTL + iobase, sblkctl); UNPAUSE_SEQUENCER(ahc); } /* Case 2: A command from this bus is active or we're idle */ else { if( initiate_reset ) { ahc_reset_current_bus(iobase); } outb(CLRSINT1 + iobase, CLRSCSIRSTI); RESTART_SEQUENCER(ahc); } ahc_run_done_queue(ahc); return found; } void ahc_run_done_queue(ahc) struct ahc_data *ahc; { int i; struct scb *scbp; for(i = 0; i < ahc->numscbs; i++) { scbp = ahc->scbarray[i]; if(scbp->flags & SCB_QUEUED_FOR_DONE) ahc_done(ahc, scbp); } } static int ahc_match_scb (scb, target, channel) struct scb *scb; int target; char channel; { int targ = (scb->target_channel_lun >> 4) & 0x0f; char chan = (scb->target_channel_lun & SELBUSB) ? 'B' : 'A'; if (target == ALL_TARGETS) return (chan == channel); else return ((chan == channel) && (targ == target)); }