1994-03-28 05:41:05 +00:00
|
|
|
@c -*-texinfo-*-
|
|
|
|
@c This is part of the GNU Emacs Lisp Reference Manual.
|
|
|
|
@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
|
|
@c See the file elisp.texi for copying conditions.
|
|
|
|
@setfilename ../info/searching
|
|
|
|
@node Searching and Matching, Syntax Tables, Text, Top
|
|
|
|
@chapter Searching and Matching
|
|
|
|
@cindex searching
|
|
|
|
|
|
|
|
GNU Emacs provides two ways to search through a buffer for specified
|
|
|
|
text: exact string searches and regular expression searches. After a
|
|
|
|
regular expression search, you can examine the @dfn{match data} to
|
|
|
|
determine which text matched the whole regular expression or various
|
|
|
|
portions of it.
|
|
|
|
|
|
|
|
@menu
|
|
|
|
* String Search:: Search for an exact match.
|
|
|
|
* Regular Expressions:: Describing classes of strings.
|
|
|
|
* Regexp Search:: Searching for a match for a regexp.
|
1995-06-05 12:23:13 +00:00
|
|
|
* POSIX Regexps:: Searching POSIX-style for the longest match.
|
1994-03-28 05:41:05 +00:00
|
|
|
* Search and Replace:: Internals of @code{query-replace}.
|
|
|
|
* Match Data:: Finding out which part of the text matched
|
|
|
|
various parts of a regexp, after regexp search.
|
|
|
|
* Searching and Case:: Case-independent or case-significant searching.
|
|
|
|
* Standard Regexps:: Useful regexps for finding sentences, pages,...
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
The @samp{skip-chars@dots{}} functions also perform a kind of searching.
|
|
|
|
@xref{Skipping Characters}.
|
|
|
|
|
|
|
|
@node String Search
|
|
|
|
@section Searching for Strings
|
|
|
|
@cindex string search
|
|
|
|
|
|
|
|
These are the primitive functions for searching through the text in a
|
|
|
|
buffer. They are meant for use in programs, but you may call them
|
|
|
|
interactively. If you do so, they prompt for the search string;
|
|
|
|
@var{limit} and @var{noerror} are set to @code{nil}, and @var{repeat}
|
|
|
|
is set to 1.
|
|
|
|
|
|
|
|
@deffn Command search-forward string &optional limit noerror repeat
|
|
|
|
This function searches forward from point for an exact match for
|
|
|
|
@var{string}. If successful, it sets point to the end of the occurrence
|
|
|
|
found, and returns the new value of point. If no match is found, the
|
|
|
|
value and side effects depend on @var{noerror} (see below).
|
|
|
|
@c Emacs 19 feature
|
|
|
|
|
|
|
|
In the following example, point is initially at the beginning of the
|
|
|
|
line. Then @code{(search-forward "fox")} moves point after the last
|
|
|
|
letter of @samp{fox}:
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@point{}The quick brown fox jumped over the lazy dog.
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(search-forward "fox")
|
|
|
|
@result{} 20
|
|
|
|
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
The quick brown fox@point{} jumped over the lazy dog.
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
The argument @var{limit} specifies the upper bound to the search. (It
|
|
|
|
must be a position in the current buffer.) No match extending after
|
|
|
|
that position is accepted. If @var{limit} is omitted or @code{nil}, it
|
|
|
|
defaults to the end of the accessible portion of the buffer.
|
|
|
|
|
|
|
|
@kindex search-failed
|
|
|
|
What happens when the search fails depends on the value of
|
|
|
|
@var{noerror}. If @var{noerror} is @code{nil}, a @code{search-failed}
|
|
|
|
error is signaled. If @var{noerror} is @code{t}, @code{search-forward}
|
|
|
|
returns @code{nil} and does nothing. If @var{noerror} is neither
|
|
|
|
@code{nil} nor @code{t}, then @code{search-forward} moves point to the
|
|
|
|
upper bound and returns @code{nil}. (It would be more consistent now
|
|
|
|
to return the new position of point in that case, but some programs
|
|
|
|
may depend on a value of @code{nil}.)
|
|
|
|
|
1994-08-03 00:12:07 +00:00
|
|
|
If @var{repeat} is supplied (it must be a positive number), then the
|
|
|
|
search is repeated that many times (each time starting at the end of the
|
|
|
|
previous time's match). If these successive searches succeed, the
|
|
|
|
function succeeds, moving point and returning its new value. Otherwise
|
|
|
|
the search fails.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command search-backward string &optional limit noerror repeat
|
|
|
|
This function searches backward from point for @var{string}. It is
|
|
|
|
just like @code{search-forward} except that it searches backwards and
|
|
|
|
leaves point at the beginning of the match.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command word-search-forward string &optional limit noerror repeat
|
|
|
|
@cindex word search
|
|
|
|
This function searches forward from point for a ``word'' match for
|
|
|
|
@var{string}. If it finds a match, it sets point to the end of the
|
|
|
|
match found, and returns the new value of point.
|
|
|
|
@c Emacs 19 feature
|
|
|
|
|
|
|
|
Word matching regards @var{string} as a sequence of words, disregarding
|
|
|
|
punctuation that separates them. It searches the buffer for the same
|
|
|
|
sequence of words. Each word must be distinct in the buffer (searching
|
|
|
|
for the word @samp{ball} does not match the word @samp{balls}), but the
|
|
|
|
details of punctuation and spacing are ignored (searching for @samp{ball
|
|
|
|
boy} does match @samp{ball. Boy!}).
|
|
|
|
|
|
|
|
In this example, point is initially at the beginning of the buffer; the
|
|
|
|
search leaves it between the @samp{y} and the @samp{!}.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@point{}He said "Please! Find
|
|
|
|
the ball boy!"
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(word-search-forward "Please find the ball, boy.")
|
|
|
|
@result{} 35
|
|
|
|
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
He said "Please! Find
|
|
|
|
the ball boy@point{}!"
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
If @var{limit} is non-@code{nil} (it must be a position in the current
|
|
|
|
buffer), then it is the upper bound to the search. The match found must
|
|
|
|
not extend after that position.
|
|
|
|
|
|
|
|
If @var{noerror} is @code{nil}, then @code{word-search-forward} signals
|
|
|
|
an error if the search fails. If @var{noerror} is @code{t}, then it
|
|
|
|
returns @code{nil} instead of signaling an error. If @var{noerror} is
|
|
|
|
neither @code{nil} nor @code{t}, it moves point to @var{limit} (or the
|
|
|
|
end of the buffer) and returns @code{nil}.
|
|
|
|
|
|
|
|
If @var{repeat} is non-@code{nil}, then the search is repeated that many
|
|
|
|
times. Point is positioned at the end of the last match.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command word-search-backward string &optional limit noerror repeat
|
|
|
|
This function searches backward from point for a word match to
|
|
|
|
@var{string}. This function is just like @code{word-search-forward}
|
|
|
|
except that it searches backward and normally leaves point at the
|
|
|
|
beginning of the match.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@node Regular Expressions
|
|
|
|
@section Regular Expressions
|
|
|
|
@cindex regular expression
|
|
|
|
@cindex regexp
|
|
|
|
|
|
|
|
A @dfn{regular expression} (@dfn{regexp}, for short) is a pattern that
|
|
|
|
denotes a (possibly infinite) set of strings. Searching for matches for
|
|
|
|
a regexp is a very powerful operation. This section explains how to write
|
|
|
|
regexps; the following section says how to search for them.
|
|
|
|
|
|
|
|
@menu
|
|
|
|
* Syntax of Regexps:: Rules for writing regular expressions.
|
|
|
|
* Regexp Example:: Illustrates regular expression syntax.
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
@node Syntax of Regexps
|
|
|
|
@subsection Syntax of Regular Expressions
|
|
|
|
|
1994-08-03 00:12:07 +00:00
|
|
|
Regular expressions have a syntax in which a few characters are
|
|
|
|
special constructs and the rest are @dfn{ordinary}. An ordinary
|
|
|
|
character is a simple regular expression that matches that character and
|
|
|
|
nothing else. The special characters are @samp{.}, @samp{*}, @samp{+},
|
|
|
|
@samp{?}, @samp{[}, @samp{]}, @samp{^}, @samp{$}, and @samp{\}; no new
|
|
|
|
special characters will be defined in the future. Any other character
|
|
|
|
appearing in a regular expression is ordinary, unless a @samp{\}
|
|
|
|
precedes it.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
For example, @samp{f} is not a special character, so it is ordinary, and
|
|
|
|
therefore @samp{f} is a regular expression that matches the string
|
|
|
|
@samp{f} and no other string. (It does @emph{not} match the string
|
|
|
|
@samp{ff}.) Likewise, @samp{o} is a regular expression that matches
|
|
|
|
only @samp{o}.@refill
|
|
|
|
|
|
|
|
Any two regular expressions @var{a} and @var{b} can be concatenated. The
|
1994-08-03 00:12:07 +00:00
|
|
|
result is a regular expression that matches a string if @var{a} matches
|
1994-03-28 05:41:05 +00:00
|
|
|
some amount of the beginning of that string and @var{b} matches the rest of
|
|
|
|
the string.@refill
|
|
|
|
|
|
|
|
As a simple example, we can concatenate the regular expressions @samp{f}
|
|
|
|
and @samp{o} to get the regular expression @samp{fo}, which matches only
|
|
|
|
the string @samp{fo}. Still trivial. To do something more powerful, you
|
|
|
|
need to use one of the special characters. Here is a list of them:
|
|
|
|
|
|
|
|
@need 1200
|
|
|
|
@table @kbd
|
|
|
|
@item .@: @r{(Period)}
|
|
|
|
@cindex @samp{.} in regexp
|
|
|
|
is a special character that matches any single character except a newline.
|
|
|
|
Using concatenation, we can make regular expressions like @samp{a.b}, which
|
|
|
|
matches any three-character string that begins with @samp{a} and ends with
|
|
|
|
@samp{b}.@refill
|
|
|
|
|
|
|
|
@item *
|
|
|
|
@cindex @samp{*} in regexp
|
|
|
|
is not a construct by itself; it is a suffix operator that means to
|
|
|
|
repeat the preceding regular expression as many times as possible. In
|
|
|
|
@samp{fo*}, the @samp{*} applies to the @samp{o}, so @samp{fo*} matches
|
|
|
|
one @samp{f} followed by any number of @samp{o}s. The case of zero
|
|
|
|
@samp{o}s is allowed: @samp{fo*} does match @samp{f}.@refill
|
|
|
|
|
|
|
|
@samp{*} always applies to the @emph{smallest} possible preceding
|
|
|
|
expression. Thus, @samp{fo*} has a repeating @samp{o}, not a
|
|
|
|
repeating @samp{fo}.@refill
|
|
|
|
|
|
|
|
The matcher processes a @samp{*} construct by matching, immediately,
|
|
|
|
as many repetitions as can be found. Then it continues with the rest
|
|
|
|
of the pattern. If that fails, backtracking occurs, discarding some
|
|
|
|
of the matches of the @samp{*}-modified construct in case that makes
|
|
|
|
it possible to match the rest of the pattern. For example, in matching
|
|
|
|
@samp{ca*ar} against the string @samp{caaar}, the @samp{a*} first
|
|
|
|
tries to match all three @samp{a}s; but the rest of the pattern is
|
|
|
|
@samp{ar} and there is only @samp{r} left to match, so this try fails.
|
|
|
|
The next alternative is for @samp{a*} to match only two @samp{a}s.
|
|
|
|
With this choice, the rest of the regexp matches successfully.@refill
|
|
|
|
|
1995-05-02 03:47:29 +00:00
|
|
|
Nested repetition operators can be extremely slow if they specify
|
1995-06-05 12:23:13 +00:00
|
|
|
backtracking loops. For example, it could take hours for the regular
|
|
|
|
expression @samp{\(x+y*\)*a} to match the sequence
|
|
|
|
@samp{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz}. The slowness is because
|
|
|
|
Emacs must try each imaginable way of grouping the 35 @samp{x}'s before
|
|
|
|
concluding that none of them can work. To make sure your regular
|
|
|
|
expressions run fast, check nested repetitions carefully.
|
1995-05-02 03:47:29 +00:00
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
@item +
|
|
|
|
@cindex @samp{+} in regexp
|
|
|
|
is a suffix operator similar to @samp{*} except that the preceding
|
|
|
|
expression must match at least once. So, for example, @samp{ca+r}
|
|
|
|
matches the strings @samp{car} and @samp{caaaar} but not the string
|
|
|
|
@samp{cr}, whereas @samp{ca*r} matches all three strings.
|
|
|
|
|
|
|
|
@item ?
|
|
|
|
@cindex @samp{?} in regexp
|
|
|
|
is a suffix operator similar to @samp{*} except that the preceding
|
|
|
|
expression can match either once or not at all. For example,
|
|
|
|
@samp{ca?r} matches @samp{car} or @samp{cr}, but does not match anyhing
|
|
|
|
else.
|
|
|
|
|
|
|
|
@item [ @dots{} ]
|
|
|
|
@cindex character set (in regexp)
|
|
|
|
@cindex @samp{[} in regexp
|
|
|
|
@cindex @samp{]} in regexp
|
|
|
|
@samp{[} begins a @dfn{character set}, which is terminated by a
|
|
|
|
@samp{]}. In the simplest case, the characters between the two brackets
|
|
|
|
form the set. Thus, @samp{[ad]} matches either one @samp{a} or one
|
|
|
|
@samp{d}, and @samp{[ad]*} matches any string composed of just @samp{a}s
|
|
|
|
and @samp{d}s (including the empty string), from which it follows that
|
|
|
|
@samp{c[ad]*r} matches @samp{cr}, @samp{car}, @samp{cdr},
|
|
|
|
@samp{caddaar}, etc.@refill
|
|
|
|
|
|
|
|
The usual regular expression special characters are not special inside a
|
|
|
|
character set. A completely different set of special characters exists
|
|
|
|
inside character sets: @samp{]}, @samp{-} and @samp{^}.@refill
|
|
|
|
|
|
|
|
@samp{-} is used for ranges of characters. To write a range, write two
|
|
|
|
characters with a @samp{-} between them. Thus, @samp{[a-z]} matches any
|
|
|
|
lower case letter. Ranges may be intermixed freely with individual
|
|
|
|
characters, as in @samp{[a-z$%.]}, which matches any lower case letter
|
1994-08-03 00:12:07 +00:00
|
|
|
or @samp{$}, @samp{%}, or a period.@refill
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
To include a @samp{]} in a character set, make it the first character.
|
|
|
|
For example, @samp{[]a]} matches @samp{]} or @samp{a}. To include a
|
1994-08-03 00:12:07 +00:00
|
|
|
@samp{-}, write @samp{-} as the first character in the set, or put it
|
1994-03-28 05:41:05 +00:00
|
|
|
immediately after a range. (You can replace one individual character
|
|
|
|
@var{c} with the range @samp{@var{c}-@var{c}} to make a place to put the
|
1994-08-03 00:12:07 +00:00
|
|
|
@samp{-}.) There is no way to write a set containing just @samp{-} and
|
1994-03-28 05:41:05 +00:00
|
|
|
@samp{]}.
|
|
|
|
|
|
|
|
To include @samp{^} in a set, put it anywhere but at the beginning of
|
|
|
|
the set.
|
|
|
|
|
|
|
|
@item [^ @dots{} ]
|
|
|
|
@cindex @samp{^} in regexp
|
|
|
|
@samp{[^} begins a @dfn{complement character set}, which matches any
|
|
|
|
character except the ones specified. Thus, @samp{[^a-z0-9A-Z]}
|
|
|
|
matches all characters @emph{except} letters and digits.@refill
|
|
|
|
|
|
|
|
@samp{^} is not special in a character set unless it is the first
|
|
|
|
character. The character following the @samp{^} is treated as if it
|
|
|
|
were first (thus, @samp{-} and @samp{]} are not special there).
|
|
|
|
|
|
|
|
Note that a complement character set can match a newline, unless
|
|
|
|
newline is mentioned as one of the characters not to match.
|
|
|
|
|
|
|
|
@item ^
|
|
|
|
@cindex @samp{^} in regexp
|
|
|
|
@cindex beginning of line in regexp
|
1994-08-03 00:12:07 +00:00
|
|
|
is a special character that matches the empty string, but only at the
|
|
|
|
beginning of a line in the text being matched. Otherwise it fails to
|
|
|
|
match anything. Thus, @samp{^foo} matches a @samp{foo} that occurs at
|
|
|
|
the beginning of a line.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
1994-08-03 00:12:07 +00:00
|
|
|
When matching a string instead of a buffer, @samp{^} matches at the
|
|
|
|
beginning of the string or after a newline character @samp{\n}.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item $
|
|
|
|
@cindex @samp{$} in regexp
|
|
|
|
is similar to @samp{^} but matches only at the end of a line. Thus,
|
|
|
|
@samp{x+$} matches a string of one @samp{x} or more at the end of a line.
|
|
|
|
|
1994-08-03 00:12:07 +00:00
|
|
|
When matching a string instead of a buffer, @samp{$} matches at the end
|
|
|
|
of the string or before a newline character @samp{\n}.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item \
|
|
|
|
@cindex @samp{\} in regexp
|
|
|
|
has two functions: it quotes the special characters (including
|
|
|
|
@samp{\}), and it introduces additional special constructs.
|
|
|
|
|
|
|
|
Because @samp{\} quotes special characters, @samp{\$} is a regular
|
1994-08-03 00:12:07 +00:00
|
|
|
expression that matches only @samp{$}, and @samp{\[} is a regular
|
|
|
|
expression that matches only @samp{[}, and so on.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
Note that @samp{\} also has special meaning in the read syntax of Lisp
|
|
|
|
strings (@pxref{String Type}), and must be quoted with @samp{\}. For
|
|
|
|
example, the regular expression that matches the @samp{\} character is
|
|
|
|
@samp{\\}. To write a Lisp string that contains the characters
|
|
|
|
@samp{\\}, Lisp syntax requires you to quote each @samp{\} with another
|
|
|
|
@samp{\}. Therefore, the read syntax for a regular expression matching
|
|
|
|
@samp{\} is @code{"\\\\"}.@refill
|
|
|
|
@end table
|
|
|
|
|
1994-05-28 15:27:52 +00:00
|
|
|
@strong{Please note:} For historical compatibility, special characters
|
1994-03-28 05:41:05 +00:00
|
|
|
are treated as ordinary ones if they are in contexts where their special
|
|
|
|
meanings make no sense. For example, @samp{*foo} treats @samp{*} as
|
|
|
|
ordinary since there is no preceding expression on which the @samp{*}
|
1994-08-03 00:12:07 +00:00
|
|
|
can act. It is poor practice to depend on this behavior; quote the
|
|
|
|
special character anyway, regardless of where it appears.@refill
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
For the most part, @samp{\} followed by any character matches only
|
|
|
|
that character. However, there are several exceptions: characters
|
1994-08-03 00:12:07 +00:00
|
|
|
that, when preceded by @samp{\}, are special constructs. Such
|
1994-03-28 05:41:05 +00:00
|
|
|
characters are always ordinary when encountered on their own. Here
|
|
|
|
is a table of @samp{\} constructs:
|
|
|
|
|
|
|
|
@table @kbd
|
|
|
|
@item \|
|
|
|
|
@cindex @samp{|} in regexp
|
|
|
|
@cindex regexp alternative
|
|
|
|
specifies an alternative.
|
|
|
|
Two regular expressions @var{a} and @var{b} with @samp{\|} in
|
|
|
|
between form an expression that matches anything that either @var{a} or
|
|
|
|
@var{b} matches.@refill
|
|
|
|
|
|
|
|
Thus, @samp{foo\|bar} matches either @samp{foo} or @samp{bar}
|
|
|
|
but no other string.@refill
|
|
|
|
|
|
|
|
@samp{\|} applies to the largest possible surrounding expressions. Only a
|
|
|
|
surrounding @samp{\( @dots{} \)} grouping can limit the grouping power of
|
|
|
|
@samp{\|}.@refill
|
|
|
|
|
|
|
|
Full backtracking capability exists to handle multiple uses of @samp{\|}.
|
|
|
|
|
|
|
|
@item \( @dots{} \)
|
|
|
|
@cindex @samp{(} in regexp
|
|
|
|
@cindex @samp{)} in regexp
|
|
|
|
@cindex regexp grouping
|
|
|
|
is a grouping construct that serves three purposes:
|
|
|
|
|
|
|
|
@enumerate
|
|
|
|
@item
|
|
|
|
To enclose a set of @samp{\|} alternatives for other operations.
|
|
|
|
Thus, @samp{\(foo\|bar\)x} matches either @samp{foox} or @samp{barx}.
|
|
|
|
|
|
|
|
@item
|
|
|
|
To enclose an expression for a suffix operator such as @samp{*} to act
|
|
|
|
on. Thus, @samp{ba\(na\)*} matches @samp{bananana}, etc., with any
|
|
|
|
(zero or more) number of @samp{na} strings.@refill
|
|
|
|
|
|
|
|
@item
|
|
|
|
To record a matched substring for future reference.
|
|
|
|
@end enumerate
|
|
|
|
|
|
|
|
This last application is not a consequence of the idea of a
|
1994-08-03 00:12:07 +00:00
|
|
|
parenthetical grouping; it is a separate feature that happens to be
|
1994-03-28 05:41:05 +00:00
|
|
|
assigned as a second meaning to the same @samp{\( @dots{} \)} construct
|
|
|
|
because there is no conflict in practice between the two meanings.
|
|
|
|
Here is an explanation of this feature:
|
|
|
|
|
|
|
|
@item \@var{digit}
|
1994-08-03 00:12:07 +00:00
|
|
|
matches the same text that matched the @var{digit}th occurrence of a
|
1994-03-28 05:41:05 +00:00
|
|
|
@samp{\( @dots{} \)} construct.
|
|
|
|
|
|
|
|
In other words, after the end of a @samp{\( @dots{} \)} construct. the
|
|
|
|
matcher remembers the beginning and end of the text matched by that
|
|
|
|
construct. Then, later on in the regular expression, you can use
|
|
|
|
@samp{\} followed by @var{digit} to match that same text, whatever it
|
|
|
|
may have been.
|
|
|
|
|
|
|
|
The strings matching the first nine @samp{\( @dots{} \)} constructs
|
|
|
|
appearing in a regular expression are assigned numbers 1 through 9 in
|
|
|
|
the order that the open parentheses appear in the regular expression.
|
|
|
|
So you can use @samp{\1} through @samp{\9} to refer to the text matched
|
|
|
|
by the corresponding @samp{\( @dots{} \)} constructs.
|
|
|
|
|
|
|
|
For example, @samp{\(.*\)\1} matches any newline-free string that is
|
|
|
|
composed of two identical halves. The @samp{\(.*\)} matches the first
|
|
|
|
half, which may be anything, but the @samp{\1} that follows must match
|
|
|
|
the same exact text.
|
|
|
|
|
|
|
|
@item \w
|
|
|
|
@cindex @samp{\w} in regexp
|
|
|
|
matches any word-constituent character. The editor syntax table
|
|
|
|
determines which characters these are. @xref{Syntax Tables}.
|
|
|
|
|
|
|
|
@item \W
|
|
|
|
@cindex @samp{\W} in regexp
|
1994-08-03 00:12:07 +00:00
|
|
|
matches any character that is not a word constituent.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item \s@var{code}
|
|
|
|
@cindex @samp{\s} in regexp
|
|
|
|
matches any character whose syntax is @var{code}. Here @var{code} is a
|
1994-08-03 00:12:07 +00:00
|
|
|
character that represents a syntax code: thus, @samp{w} for word
|
1994-03-28 05:41:05 +00:00
|
|
|
constituent, @samp{-} for whitespace, @samp{(} for open parenthesis,
|
|
|
|
etc. @xref{Syntax Tables}, for a list of syntax codes and the
|
|
|
|
characters that stand for them.
|
|
|
|
|
|
|
|
@item \S@var{code}
|
|
|
|
@cindex @samp{\S} in regexp
|
|
|
|
matches any character whose syntax is not @var{code}.
|
|
|
|
@end table
|
|
|
|
|
1994-08-03 00:12:07 +00:00
|
|
|
The following regular expression constructs match the empty string---that is,
|
1994-03-28 05:41:05 +00:00
|
|
|
they don't use up any characters---but whether they match depends on the
|
|
|
|
context.
|
|
|
|
|
|
|
|
@table @kbd
|
|
|
|
@item \`
|
|
|
|
@cindex @samp{\`} in regexp
|
|
|
|
matches the empty string, but only at the beginning
|
|
|
|
of the buffer or string being matched against.
|
|
|
|
|
|
|
|
@item \'
|
|
|
|
@cindex @samp{\'} in regexp
|
|
|
|
matches the empty string, but only at the end of
|
|
|
|
the buffer or string being matched against.
|
|
|
|
|
|
|
|
@item \=
|
|
|
|
@cindex @samp{\=} in regexp
|
|
|
|
matches the empty string, but only at point.
|
|
|
|
(This construct is not defined when matching against a string.)
|
|
|
|
|
|
|
|
@item \b
|
|
|
|
@cindex @samp{\b} in regexp
|
|
|
|
matches the empty string, but only at the beginning or
|
|
|
|
end of a word. Thus, @samp{\bfoo\b} matches any occurrence of
|
|
|
|
@samp{foo} as a separate word. @samp{\bballs?\b} matches
|
|
|
|
@samp{ball} or @samp{balls} as a separate word.@refill
|
|
|
|
|
|
|
|
@item \B
|
|
|
|
@cindex @samp{\B} in regexp
|
|
|
|
matches the empty string, but @emph{not} at the beginning or
|
|
|
|
end of a word.
|
|
|
|
|
|
|
|
@item \<
|
|
|
|
@cindex @samp{\<} in regexp
|
|
|
|
matches the empty string, but only at the beginning of a word.
|
|
|
|
|
|
|
|
@item \>
|
|
|
|
@cindex @samp{\>} in regexp
|
|
|
|
matches the empty string, but only at the end of a word.
|
|
|
|
@end table
|
|
|
|
|
|
|
|
@kindex invalid-regexp
|
|
|
|
Not every string is a valid regular expression. For example, a string
|
|
|
|
with unbalanced square brackets is invalid (with a few exceptions, such
|
1994-08-03 00:12:07 +00:00
|
|
|
as @samp{[]]}), and so is a string that ends with a single @samp{\}. If
|
1994-03-28 05:41:05 +00:00
|
|
|
an invalid regular expression is passed to any of the search functions,
|
|
|
|
an @code{invalid-regexp} error is signaled.
|
|
|
|
|
|
|
|
@defun regexp-quote string
|
|
|
|
This function returns a regular expression string that matches exactly
|
|
|
|
@var{string} and nothing else. This allows you to request an exact
|
|
|
|
string match when calling a function that wants a regular expression.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(regexp-quote "^The cat$")
|
|
|
|
@result{} "\\^The cat\\$"
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
One use of @code{regexp-quote} is to combine an exact string match with
|
|
|
|
context described as a regular expression. For example, this searches
|
1994-08-03 00:12:07 +00:00
|
|
|
for the string that is the value of @code{string}, surrounded by
|
1994-03-28 05:41:05 +00:00
|
|
|
whitespace:
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(re-search-forward
|
1994-08-03 00:12:07 +00:00
|
|
|
(concat "\\s-" (regexp-quote string) "\\s-"))
|
1994-03-28 05:41:05 +00:00
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@node Regexp Example
|
|
|
|
@comment node-name, next, previous, up
|
|
|
|
@subsection Complex Regexp Example
|
|
|
|
|
|
|
|
Here is a complicated regexp, used by Emacs to recognize the end of a
|
|
|
|
sentence together with any whitespace that follows. It is the value of
|
|
|
|
the variable @code{sentence-end}.
|
|
|
|
|
|
|
|
First, we show the regexp as a string in Lisp syntax to distinguish
|
|
|
|
spaces from tab characters. The string constant begins and ends with a
|
|
|
|
double-quote. @samp{\"} stands for a double-quote as part of the
|
|
|
|
string, @samp{\\} for a backslash as part of the string, @samp{\t} for a
|
|
|
|
tab and @samp{\n} for a newline.
|
|
|
|
|
|
|
|
@example
|
|
|
|
"[.?!][]\"')@}]*\\($\\| $\\|\t\\| \\)[ \t\n]*"
|
|
|
|
@end example
|
|
|
|
|
|
|
|
In contrast, if you evaluate the variable @code{sentence-end}, you
|
|
|
|
will see the following:
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
sentence-end
|
|
|
|
@result{}
|
|
|
|
"[.?!][]\"')@}]*\\($\\| $\\| \\| \\)[
|
|
|
|
]*"
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@noindent
|
|
|
|
In this output, tab and newline appear as themselves.
|
|
|
|
|
|
|
|
This regular expression contains four parts in succession and can be
|
|
|
|
deciphered as follows:
|
|
|
|
|
|
|
|
@table @code
|
|
|
|
@item [.?!]
|
1994-08-07 00:25:52 +00:00
|
|
|
The first part of the pattern is a character set that matches any one of
|
|
|
|
three characters: period, question mark, and exclamation mark. The
|
1994-03-28 05:41:05 +00:00
|
|
|
match must begin with one of these three characters.
|
|
|
|
|
|
|
|
@item []\"')@}]*
|
|
|
|
The second part of the pattern matches any closing braces and quotation
|
|
|
|
marks, zero or more of them, that may follow the period, question mark
|
|
|
|
or exclamation mark. The @code{\"} is Lisp syntax for a double-quote in
|
|
|
|
a string. The @samp{*} at the end indicates that the immediately
|
|
|
|
preceding regular expression (a character set, in this case) may be
|
|
|
|
repeated zero or more times.
|
|
|
|
|
1994-08-07 00:25:52 +00:00
|
|
|
@item \\($\\|@ $\\|\t\\|@ @ \\)
|
1994-03-28 05:41:05 +00:00
|
|
|
The third part of the pattern matches the whitespace that follows the
|
|
|
|
end of a sentence: the end of a line, or a tab, or two spaces. The
|
|
|
|
double backslashes mark the parentheses and vertical bars as regular
|
1994-08-07 00:25:52 +00:00
|
|
|
expression syntax; the parentheses delimit a group and the vertical bars
|
1994-03-28 05:41:05 +00:00
|
|
|
separate alternatives. The dollar sign is used to match the end of a
|
|
|
|
line.
|
|
|
|
|
|
|
|
@item [ \t\n]*
|
|
|
|
Finally, the last part of the pattern matches any additional whitespace
|
|
|
|
beyond the minimum needed to end a sentence.
|
|
|
|
@end table
|
|
|
|
|
|
|
|
@node Regexp Search
|
|
|
|
@section Regular Expression Searching
|
|
|
|
@cindex regular expression searching
|
|
|
|
@cindex regexp searching
|
|
|
|
@cindex searching for regexp
|
|
|
|
|
|
|
|
In GNU Emacs, you can search for the next match for a regexp either
|
|
|
|
incrementally or not. For incremental search commands, see @ref{Regexp
|
|
|
|
Search, , Regular Expression Search, emacs, The GNU Emacs Manual}. Here
|
|
|
|
we describe only the search functions useful in programs. The principal
|
|
|
|
one is @code{re-search-forward}.
|
|
|
|
|
|
|
|
@deffn Command re-search-forward regexp &optional limit noerror repeat
|
|
|
|
This function searches forward in the current buffer for a string of
|
|
|
|
text that is matched by the regular expression @var{regexp}. The
|
|
|
|
function skips over any amount of text that is not matched by
|
|
|
|
@var{regexp}, and leaves point at the end of the first match found.
|
|
|
|
It returns the new value of point.
|
|
|
|
|
|
|
|
If @var{limit} is non-@code{nil} (it must be a position in the current
|
|
|
|
buffer), then it is the upper bound to the search. No match extending
|
|
|
|
after that position is accepted.
|
|
|
|
|
|
|
|
What happens when the search fails depends on the value of
|
|
|
|
@var{noerror}. If @var{noerror} is @code{nil}, a @code{search-failed}
|
|
|
|
error is signaled. If @var{noerror} is @code{t},
|
|
|
|
@code{re-search-forward} does nothing and returns @code{nil}. If
|
|
|
|
@var{noerror} is neither @code{nil} nor @code{t}, then
|
|
|
|
@code{re-search-forward} moves point to @var{limit} (or the end of the
|
|
|
|
buffer) and returns @code{nil}.
|
|
|
|
|
|
|
|
If @var{repeat} is supplied (it must be a positive number), then the
|
|
|
|
search is repeated that many times (each time starting at the end of the
|
|
|
|
previous time's match). If these successive searches succeed, the
|
|
|
|
function succeeds, moving point and returning its new value. Otherwise
|
|
|
|
the search fails.
|
|
|
|
|
|
|
|
In the following example, point is initially before the @samp{T}.
|
|
|
|
Evaluating the search call moves point to the end of that line (between
|
|
|
|
the @samp{t} of @samp{hat} and the newline).
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
I read "@point{}The cat in the hat
|
|
|
|
comes back" twice.
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(re-search-forward "[a-z]+" nil t 5)
|
|
|
|
@result{} 27
|
|
|
|
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
I read "The cat in the hat@point{}
|
|
|
|
comes back" twice.
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command re-search-backward regexp &optional limit noerror repeat
|
|
|
|
This function searches backward in the current buffer for a string of
|
|
|
|
text that is matched by the regular expression @var{regexp}, leaving
|
|
|
|
point at the beginning of the first text found.
|
|
|
|
|
1994-08-07 00:25:52 +00:00
|
|
|
This function is analogous to @code{re-search-forward}, but they are not
|
|
|
|
simple mirror images. @code{re-search-forward} finds the match whose
|
|
|
|
beginning is as close as possible to the starting point. If
|
|
|
|
@code{re-search-backward} were a perfect mirror image, it would find the
|
|
|
|
match whose end is as close as possible. However, in fact it finds the
|
|
|
|
match whose beginning is as close as possible. The reason is that
|
|
|
|
matching a regular expression at a given spot always works from
|
|
|
|
beginning to end, and starts at a specified beginning position.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
A true mirror-image of @code{re-search-forward} would require a special
|
|
|
|
feature for matching regexps from end to beginning. It's not worth the
|
|
|
|
trouble of implementing that.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@defun string-match regexp string &optional start
|
|
|
|
This function returns the index of the start of the first match for
|
|
|
|
the regular expression @var{regexp} in @var{string}, or @code{nil} if
|
|
|
|
there is no match. If @var{start} is non-@code{nil}, the search starts
|
|
|
|
at that index in @var{string}.
|
|
|
|
|
|
|
|
For example,
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(string-match
|
|
|
|
"quick" "The quick brown fox jumped quickly.")
|
|
|
|
@result{} 4
|
|
|
|
@end group
|
|
|
|
@group
|
|
|
|
(string-match
|
|
|
|
"quick" "The quick brown fox jumped quickly." 8)
|
|
|
|
@result{} 27
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@noindent
|
|
|
|
The index of the first character of the
|
|
|
|
string is 0, the index of the second character is 1, and so on.
|
|
|
|
|
|
|
|
After this function returns, the index of the first character beyond
|
|
|
|
the match is available as @code{(match-end 0)}. @xref{Match Data}.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(string-match
|
|
|
|
"quick" "The quick brown fox jumped quickly." 8)
|
|
|
|
@result{} 27
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(match-end 0)
|
|
|
|
@result{} 32
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun looking-at regexp
|
|
|
|
This function determines whether the text in the current buffer directly
|
|
|
|
following point matches the regular expression @var{regexp}. ``Directly
|
|
|
|
following'' means precisely that: the search is ``anchored'' and it can
|
|
|
|
succeed only starting with the first character following point. The
|
|
|
|
result is @code{t} if so, @code{nil} otherwise.
|
|
|
|
|
|
|
|
This function does not move point, but it updates the match data, which
|
|
|
|
you can access using @code{match-beginning} and @code{match-end}.
|
|
|
|
@xref{Match Data}.
|
|
|
|
|
|
|
|
In this example, point is located directly before the @samp{T}. If it
|
|
|
|
were anywhere else, the result would be @code{nil}.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
I read "@point{}The cat in the hat
|
|
|
|
comes back" twice.
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
|
|
|
|
(looking-at "The cat in the hat$")
|
|
|
|
@result{} t
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end defun
|
|
|
|
|
1995-06-05 12:23:13 +00:00
|
|
|
@node POSIX Regexps
|
|
|
|
@section POSIX Regular Expression Searching
|
|
|
|
|
|
|
|
The usual regular expression functions do backtracking when necessary
|
|
|
|
to handle the @samp{\|} and repetition constructs, but they continue
|
|
|
|
this only until they find @emph{some} match. Then they succeed and
|
|
|
|
report the first match found.
|
|
|
|
|
|
|
|
This section describes alternative search functions which perform the
|
|
|
|
full backtracking specified by the POSIX standard for regular expression
|
|
|
|
matching. They continue backtracking until they have tried all
|
|
|
|
possibilities and found all matches, so they can report the longest
|
|
|
|
match, as required by POSIX. This is much slower, so use these
|
|
|
|
functions only when you really need the longest match.
|
|
|
|
|
|
|
|
In Emacs versions prior to 19.29, these functions did not exist, and
|
|
|
|
the functions described above implemented full POSIX backtracking.
|
|
|
|
|
|
|
|
@defun posix-search-forward regexp &optional limit noerror repeat
|
|
|
|
This is like @code{re-search-forward} except that it performs the full
|
|
|
|
backtracking specified by the POSIX standard for regular expression
|
|
|
|
matching.
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun posix-search-backward regexp &optional limit noerror repeat
|
|
|
|
This is like @code{re-search-backward} except that it performs the full
|
|
|
|
backtracking specified by the POSIX standard for regular expression
|
|
|
|
matching.
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun posix-looking-at regexp
|
|
|
|
This is like @code{looking-at} except that it performs the full
|
|
|
|
backtracking specified by the POSIX standard for regular expression
|
|
|
|
matching.
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun posix-string-match regexp string &optional start
|
|
|
|
This is like @code{string-match} except that it performs the full
|
|
|
|
backtracking specified by the POSIX standard for regular expression
|
|
|
|
matching.
|
|
|
|
@end defun
|
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
@ignore
|
|
|
|
@deffn Command delete-matching-lines regexp
|
|
|
|
This function is identical to @code{delete-non-matching-lines}, save
|
|
|
|
that it deletes what @code{delete-non-matching-lines} keeps.
|
|
|
|
|
|
|
|
In the example below, point is located on the first line of text.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
We hold these truths
|
|
|
|
to be self-evident,
|
|
|
|
that all men are created
|
|
|
|
equal, and that they are
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(delete-matching-lines "the")
|
|
|
|
@result{} nil
|
|
|
|
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
to be self-evident,
|
|
|
|
that all men are created
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command flush-lines regexp
|
|
|
|
This function is the same as @code{delete-matching-lines}.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@defun delete-non-matching-lines regexp
|
|
|
|
This function deletes all lines following point which don't
|
|
|
|
contain a match for the regular expression @var{regexp}.
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@deffn Command keep-lines regexp
|
|
|
|
This function is the same as @code{delete-non-matching-lines}.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command how-many regexp
|
|
|
|
This function counts the number of matches for @var{regexp} there are in
|
|
|
|
the current buffer following point. It prints this number in
|
|
|
|
the echo area, returning the string printed.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command count-matches regexp
|
|
|
|
This function is a synonym of @code{how-many}.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@deffn Command list-matching-lines regexp nlines
|
|
|
|
This function is a synonym of @code{occur}.
|
|
|
|
Show all lines following point containing a match for @var{regexp}.
|
|
|
|
Display each line with @var{nlines} lines before and after,
|
|
|
|
or @code{-}@var{nlines} before if @var{nlines} is negative.
|
|
|
|
@var{nlines} defaults to @code{list-matching-lines-default-context-lines}.
|
|
|
|
Interactively it is the prefix arg.
|
|
|
|
|
|
|
|
The lines are shown in a buffer named @samp{*Occur*}.
|
|
|
|
It serves as a menu to find any of the occurrences in this buffer.
|
|
|
|
@kbd{C-h m} (@code{describe-mode} in that buffer gives help.
|
|
|
|
@end deffn
|
|
|
|
|
|
|
|
@defopt list-matching-lines-default-context-lines
|
|
|
|
Default value is 0.
|
|
|
|
Default number of context lines to include around a @code{list-matching-lines}
|
|
|
|
match. A negative number means to include that many lines before the match.
|
|
|
|
A positive number means to include that many lines both before and after.
|
|
|
|
@end defopt
|
|
|
|
@end ignore
|
|
|
|
|
|
|
|
@node Search and Replace
|
|
|
|
@section Search and Replace
|
|
|
|
@cindex replacement
|
|
|
|
|
|
|
|
@defun perform-replace from-string replacements query-flag regexp-flag delimited-flag &optional repeat-count map
|
|
|
|
This function is the guts of @code{query-replace} and related commands.
|
|
|
|
It searches for occurrences of @var{from-string} and replaces some or
|
|
|
|
all of them. If @var{query-flag} is @code{nil}, it replaces all
|
|
|
|
occurrences; otherwise, it asks the user what to do about each one.
|
|
|
|
|
|
|
|
If @var{regexp-flag} is non-@code{nil}, then @var{from-string} is
|
|
|
|
considered a regular expression; otherwise, it must match literally. If
|
|
|
|
@var{delimited-flag} is non-@code{nil}, then only replacements
|
|
|
|
surrounded by word boundaries are considered.
|
|
|
|
|
|
|
|
The argument @var{replacements} specifies what to replace occurrences
|
|
|
|
with. If it is a string, that string is used. It can also be a list of
|
|
|
|
strings, to be used in cyclic order.
|
|
|
|
|
1995-06-16 19:17:59 +00:00
|
|
|
If @var{repeat-count} is non-@code{nil}, it should be an integer. Then
|
|
|
|
it specifies how many times to use each of the strings in the
|
|
|
|
@var{replacements} list before advancing cyclicly to the next one.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
Normally, the keymap @code{query-replace-map} defines the possible user
|
1994-08-07 00:25:52 +00:00
|
|
|
responses for queries. The argument @var{map}, if non-@code{nil}, is a
|
|
|
|
keymap to use instead of @code{query-replace-map}.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defvar query-replace-map
|
|
|
|
This variable holds a special keymap that defines the valid user
|
|
|
|
responses for @code{query-replace} and related functions, as well as
|
|
|
|
@code{y-or-n-p} and @code{map-y-or-n-p}. It is unusual in two ways:
|
|
|
|
|
|
|
|
@itemize @bullet
|
|
|
|
@item
|
|
|
|
The ``key bindings'' are not commands, just symbols that are meaningful
|
|
|
|
to the functions that use this map.
|
|
|
|
|
|
|
|
@item
|
|
|
|
Prefix keys are not supported; each key binding must be for a single event
|
|
|
|
key sequence. This is because the functions don't use read key sequence to
|
|
|
|
get the input; instead, they read a single event and look it up ``by hand.''
|
|
|
|
@end itemize
|
|
|
|
@end defvar
|
|
|
|
|
|
|
|
Here are the meaningful ``bindings'' for @code{query-replace-map}.
|
|
|
|
Several of them are meaningful only for @code{query-replace} and
|
|
|
|
friends.
|
|
|
|
|
|
|
|
@table @code
|
|
|
|
@item act
|
|
|
|
Do take the action being considered---in other words, ``yes.''
|
|
|
|
|
|
|
|
@item skip
|
|
|
|
Do not take action for this question---in other words, ``no.''
|
|
|
|
|
|
|
|
@item exit
|
1994-08-07 00:25:52 +00:00
|
|
|
Answer this question ``no,'' and give up on the entire series of
|
|
|
|
questions, assuming that the answers will be ``no.''
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item act-and-exit
|
1994-08-07 00:25:52 +00:00
|
|
|
Answer this question ``yes,'' and give up on the entire series of
|
|
|
|
questions, assuming that subsequent answers will be ``no.''
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item act-and-show
|
|
|
|
Answer this question ``yes,'' but show the results---don't advance yet
|
|
|
|
to the next question.
|
|
|
|
|
|
|
|
@item automatic
|
|
|
|
Answer this question and all subsequent questions in the series with
|
|
|
|
``yes,'' without further user interaction.
|
|
|
|
|
|
|
|
@item backup
|
|
|
|
Move back to the previous place that a question was asked about.
|
|
|
|
|
|
|
|
@item edit
|
|
|
|
Enter a recursive edit to deal with this question---instead of any
|
|
|
|
other action that would normally be taken.
|
|
|
|
|
|
|
|
@item delete-and-edit
|
|
|
|
Delete the text being considered, then enter a recursive edit to replace
|
|
|
|
it.
|
|
|
|
|
|
|
|
@item recenter
|
|
|
|
Redisplay and center the window, then ask the same question again.
|
|
|
|
|
|
|
|
@item quit
|
|
|
|
Perform a quit right away. Only @code{y-or-n-p} and related functions
|
|
|
|
use this answer.
|
|
|
|
|
|
|
|
@item help
|
|
|
|
Display some help, then ask again.
|
|
|
|
@end table
|
|
|
|
|
|
|
|
@node Match Data
|
|
|
|
@section The Match Data
|
|
|
|
@cindex match data
|
|
|
|
|
|
|
|
Emacs keeps track of the positions of the start and end of segments of
|
|
|
|
text found during a regular expression search. This means, for example,
|
|
|
|
that you can search for a complex pattern, such as a date in an Rmail
|
|
|
|
message, and then extract parts of the match under control of the
|
|
|
|
pattern.
|
|
|
|
|
|
|
|
Because the match data normally describe the most recent search only,
|
|
|
|
you must be careful not to do another search inadvertently between the
|
|
|
|
search you wish to refer back to and the use of the match data. If you
|
|
|
|
can't avoid another intervening search, you must save and restore the
|
|
|
|
match data around it, to prevent it from being overwritten.
|
|
|
|
|
|
|
|
@menu
|
|
|
|
* Simple Match Data:: Accessing single items of match data,
|
|
|
|
such as where a particular subexpression started.
|
|
|
|
* Replacing Match:: Replacing a substring that was matched.
|
|
|
|
* Entire Match Data:: Accessing the entire match data at once, as a list.
|
|
|
|
* Saving Match Data:: Saving and restoring the match data.
|
|
|
|
@end menu
|
|
|
|
|
|
|
|
@node Simple Match Data
|
|
|
|
@subsection Simple Match Data Access
|
|
|
|
|
1995-06-05 12:23:13 +00:00
|
|
|
This section explains how to use the match data to find out what was
|
|
|
|
matched by the last search or match operation.
|
|
|
|
|
|
|
|
You can ask about the entire matching text, or about a particular
|
|
|
|
parenthetical subexpression of a regular expression. The @var{count}
|
|
|
|
argument in the functions below specifies which. If @var{count} is
|
|
|
|
zero, you are asking about the entire match. If @var{count} is
|
|
|
|
positive, it specifies which subexpression you want.
|
|
|
|
|
|
|
|
Recall that the subexpressions of a regular expression are those
|
|
|
|
expressions grouped with escaped parentheses, @samp{\(@dots{}\)}. The
|
|
|
|
@var{count}th subexpression is found by counting occurrences of
|
|
|
|
@samp{\(} from the beginning of the whole regular expression. The first
|
|
|
|
subexpression is numbered 1, the second 2, and so on. Only regular
|
|
|
|
expressions can have subexpressions---after a simple string search, the
|
|
|
|
only information available is about the entire match.
|
|
|
|
|
|
|
|
@defun match-string count &optional in-string
|
|
|
|
This function returns, as a string, the text matched in the last search
|
|
|
|
or match operation. It returns the entire text if @var{count} is zero,
|
|
|
|
or just the portion corresponding to the @var{count}th parenthetical
|
|
|
|
subexpression, if @var{count} is positive. If @var{count} is out of
|
1995-06-06 19:21:15 +00:00
|
|
|
range, or if that subexpression didn't match anything, the value is
|
|
|
|
@code{nil}.
|
1995-06-05 12:23:13 +00:00
|
|
|
|
|
|
|
If the last such operation was done against a string with
|
|
|
|
@code{string-match}, then you should pass the same string as the
|
|
|
|
argument @var{in-string}. Otherwise, after a buffer search or match,
|
|
|
|
you should omit @var{in-string} or pass @code{nil} for it; but you
|
|
|
|
should make sure that the current buffer when you call
|
|
|
|
@code{match-string} is the one in which you did the searching or
|
|
|
|
matching.
|
|
|
|
@end defun
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@defun match-beginning count
|
|
|
|
This function returns the position of the start of text matched by the
|
|
|
|
last regular expression searched for, or a subexpression of it.
|
|
|
|
|
1994-08-07 00:25:52 +00:00
|
|
|
If @var{count} is zero, then the value is the position of the start of
|
1995-06-08 04:43:19 +00:00
|
|
|
the entire match. Otherwise, @var{count} specifies a subexpression in
|
1995-06-05 12:23:13 +00:00
|
|
|
the regular expresion, and the value of the function is the starting
|
|
|
|
position of the match for that subexpression.
|
|
|
|
|
|
|
|
The value is @code{nil} for a subexpression inside a @samp{\|}
|
|
|
|
alternative that wasn't used in the match.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun match-end count
|
1995-06-05 12:23:13 +00:00
|
|
|
This function is like @code{match-beginning} except that it returns the
|
|
|
|
position of the end of the match, rather than the position of the
|
|
|
|
beginning.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defun
|
|
|
|
|
|
|
|
Here is an example of using the match data, with a comment showing the
|
|
|
|
positions within the text:
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(string-match "\\(qu\\)\\(ick\\)"
|
|
|
|
"The quick fox jumped quickly.")
|
|
|
|
;0123456789
|
|
|
|
@result{} 4
|
|
|
|
@end group
|
|
|
|
|
1995-06-05 12:23:13 +00:00
|
|
|
@group
|
|
|
|
(match-string 0 "The quick fox jumped quickly.")
|
|
|
|
@result{} "quick"
|
|
|
|
(match-string 1 "The quick fox jumped quickly.")
|
|
|
|
@result{} "qu"
|
|
|
|
(match-string 2 "The quick fox jumped quickly.")
|
|
|
|
@result{} "ick"
|
|
|
|
@end group
|
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
@group
|
|
|
|
(match-beginning 1) ; @r{The beginning of the match}
|
|
|
|
@result{} 4 ; @r{with @samp{qu} is at index 4.}
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(match-beginning 2) ; @r{The beginning of the match}
|
|
|
|
@result{} 6 ; @r{with @samp{ick} is at index 6.}
|
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
(match-end 1) ; @r{The end of the match}
|
|
|
|
@result{} 6 ; @r{with @samp{qu} is at index 6.}
|
|
|
|
|
|
|
|
(match-end 2) ; @r{The end of the match}
|
|
|
|
@result{} 9 ; @r{with @samp{ick} is at index 9.}
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
Here is another example. Point is initially located at the beginning
|
|
|
|
of the line. Searching moves point to between the space and the word
|
|
|
|
@samp{in}. The beginning of the entire match is at the 9th character of
|
|
|
|
the buffer (@samp{T}), and the beginning of the match for the first
|
|
|
|
subexpression is at the 13th character (@samp{c}).
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(list
|
|
|
|
(re-search-forward "The \\(cat \\)")
|
|
|
|
(match-beginning 0)
|
|
|
|
(match-beginning 1))
|
1994-08-07 00:25:52 +00:00
|
|
|
@result{} (9 9 13)
|
1994-03-28 05:41:05 +00:00
|
|
|
@end group
|
|
|
|
|
|
|
|
@group
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
I read "The cat @point{}in the hat comes back" twice.
|
|
|
|
^ ^
|
|
|
|
9 13
|
|
|
|
---------- Buffer: foo ----------
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@noindent
|
|
|
|
(In this case, the index returned is a buffer position; the first
|
|
|
|
character of the buffer counts as 1.)
|
|
|
|
|
|
|
|
@node Replacing Match
|
|
|
|
@subsection Replacing the Text That Matched
|
|
|
|
|
|
|
|
This function replaces the text matched by the last search with
|
|
|
|
@var{replacement}.
|
|
|
|
|
|
|
|
@cindex case in replacements
|
1995-08-08 20:08:09 +00:00
|
|
|
@defun replace-match replacement &optional fixedcase literal string subexp
|
1995-06-05 12:23:13 +00:00
|
|
|
This function replaces the text in the buffer (or in @var{string}) that
|
|
|
|
was matched by the last search. It replaces that text with
|
|
|
|
@var{replacement}.
|
|
|
|
|
1995-06-06 19:21:15 +00:00
|
|
|
If you did the last search in a buffer, you should specify @code{nil}
|
|
|
|
for @var{string}. Then @code{replace-match} does the replacement by
|
|
|
|
editing the buffer; it leaves point at the end of the replacement text,
|
|
|
|
and returns @code{t}.
|
|
|
|
|
|
|
|
If you did the search in a string, pass the same string as @var{string}.
|
|
|
|
Then @code{replace-match} does the replacement by constructing and
|
|
|
|
returning a new string.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
If @var{fixedcase} is non-@code{nil}, then the case of the replacement
|
|
|
|
text is not changed; otherwise, the replacement text is converted to a
|
|
|
|
different case depending upon the capitalization of the text to be
|
|
|
|
replaced. If the original text is all upper case, the replacement text
|
1994-04-24 21:47:17 +00:00
|
|
|
is converted to upper case. If the first word of the original text is
|
|
|
|
capitalized, then the first word of the replacement text is capitalized.
|
|
|
|
If the original text contains just one word, and that word is a capital
|
|
|
|
letter, @code{replace-match} considers this a capitalized first word
|
|
|
|
rather than all upper case.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
1994-08-07 00:25:52 +00:00
|
|
|
If @code{case-replace} is @code{nil}, then case conversion is not done,
|
|
|
|
regardless of the value of @var{fixed-case}. @xref{Searching and Case}.
|
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
If @var{literal} is non-@code{nil}, then @var{replacement} is inserted
|
|
|
|
exactly as it is, the only alterations being case changes as needed.
|
|
|
|
If it is @code{nil} (the default), then the character @samp{\} is treated
|
|
|
|
specially. If a @samp{\} appears in @var{replacement}, then it must be
|
|
|
|
part of one of the following sequences:
|
|
|
|
|
|
|
|
@table @asis
|
|
|
|
@item @samp{\&}
|
|
|
|
@cindex @samp{&} in replacement
|
|
|
|
@samp{\&} stands for the entire text being replaced.
|
|
|
|
|
|
|
|
@item @samp{\@var{n}}
|
|
|
|
@cindex @samp{\@var{n}} in replacement
|
1994-08-07 00:25:52 +00:00
|
|
|
@samp{\@var{n}}, where @var{n} is a digit, stands for the text that
|
|
|
|
matched the @var{n}th subexpression in the original regexp.
|
|
|
|
Subexpressions are those expressions grouped inside @samp{\(@dots{}\)}.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@item @samp{\\}
|
|
|
|
@cindex @samp{\} in replacement
|
|
|
|
@samp{\\} stands for a single @samp{\} in the replacement text.
|
|
|
|
@end table
|
1995-08-08 20:08:09 +00:00
|
|
|
|
|
|
|
If @var{subexp} is non-@code{nil}, that says to replace just
|
|
|
|
subexpression number @var{subexp} of the regexp that was matched, not
|
|
|
|
the entire match. For example, after matching @samp{foo \(ba*r\)},
|
|
|
|
calling @code{replace-match} with 1 as @var{subexp} means to replace
|
|
|
|
just the text that matched @samp{\(ba*r\)}.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defun
|
|
|
|
|
|
|
|
@node Entire Match Data
|
|
|
|
@subsection Accessing the Entire Match Data
|
|
|
|
|
|
|
|
The functions @code{match-data} and @code{set-match-data} read or
|
|
|
|
write the entire match data, all at once.
|
|
|
|
|
|
|
|
@defun match-data
|
|
|
|
This function returns a newly constructed list containing all the
|
|
|
|
information on what text the last search matched. Element zero is the
|
|
|
|
position of the beginning of the match for the whole expression; element
|
|
|
|
one is the position of the end of the match for the expression. The
|
|
|
|
next two elements are the positions of the beginning and end of the
|
|
|
|
match for the first subexpression, and so on. In general, element
|
|
|
|
@ifinfo
|
|
|
|
number 2@var{n}
|
|
|
|
@end ifinfo
|
|
|
|
@tex
|
|
|
|
number {\mathsurround=0pt $2n$}
|
|
|
|
@end tex
|
|
|
|
corresponds to @code{(match-beginning @var{n})}; and
|
|
|
|
element
|
|
|
|
@ifinfo
|
|
|
|
number 2@var{n} + 1
|
|
|
|
@end ifinfo
|
|
|
|
@tex
|
|
|
|
number {\mathsurround=0pt $2n+1$}
|
|
|
|
@end tex
|
|
|
|
corresponds to @code{(match-end @var{n})}.
|
|
|
|
|
|
|
|
All the elements are markers or @code{nil} if matching was done on a
|
|
|
|
buffer, and all are integers or @code{nil} if matching was done on a
|
|
|
|
string with @code{string-match}. (In Emacs 18 and earlier versions,
|
|
|
|
markers were used even for matching on a string, except in the case
|
|
|
|
of the integer 0.)
|
|
|
|
|
|
|
|
As always, there must be no possibility of intervening searches between
|
|
|
|
the call to a search function and the call to @code{match-data} that is
|
|
|
|
intended to access the match data for that search.
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(match-data)
|
|
|
|
@result{} (#<marker at 9 in foo>
|
|
|
|
#<marker at 17 in foo>
|
|
|
|
#<marker at 13 in foo>
|
|
|
|
#<marker at 17 in foo>)
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@defun set-match-data match-list
|
|
|
|
This function sets the match data from the elements of @var{match-list},
|
|
|
|
which should be a list that was the value of a previous call to
|
|
|
|
@code{match-data}.
|
|
|
|
|
|
|
|
If @var{match-list} refers to a buffer that doesn't exist, you don't get
|
|
|
|
an error; that sets the match data in a meaningless but harmless way.
|
|
|
|
|
|
|
|
@findex store-match-data
|
|
|
|
@code{store-match-data} is an alias for @code{set-match-data}.
|
|
|
|
@end defun
|
|
|
|
|
|
|
|
@node Saving Match Data
|
|
|
|
@subsection Saving and Restoring the Match Data
|
|
|
|
|
1994-11-22 04:31:18 +00:00
|
|
|
When you call a function that may do a search, you may need to save
|
|
|
|
and restore the match data around that call, if you want to preserve the
|
|
|
|
match data from an earlier search for later use. Here is an example
|
|
|
|
that shows the problem that arises if you fail to save the match data:
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(re-search-forward "The \\(cat \\)")
|
|
|
|
@result{} 48
|
|
|
|
(foo) ; @r{Perhaps @code{foo} does}
|
|
|
|
; @r{more searching.}
|
|
|
|
(match-end 0)
|
|
|
|
@result{} 61 ; @r{Unexpected result---not 48!}
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
1994-11-22 04:31:18 +00:00
|
|
|
You can save and restore the match data with @code{save-match-data}:
|
1994-03-28 05:41:05 +00:00
|
|
|
|
1995-06-06 19:21:15 +00:00
|
|
|
@defmac save-match-data body@dots{}
|
1994-03-28 05:41:05 +00:00
|
|
|
This special form executes @var{body}, saving and restoring the match
|
1994-11-22 04:31:18 +00:00
|
|
|
data around it.
|
1995-06-06 19:21:15 +00:00
|
|
|
@end defmac
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
You can use @code{set-match-data} together with @code{match-data} to
|
|
|
|
imitate the effect of the special form @code{save-match-data}. This is
|
|
|
|
useful for writing code that can run in Emacs 18. Here is how:
|
|
|
|
|
|
|
|
@example
|
|
|
|
@group
|
|
|
|
(let ((data (match-data)))
|
|
|
|
(unwind-protect
|
|
|
|
@dots{} ; @r{May change the original match data.}
|
|
|
|
(set-match-data data)))
|
|
|
|
@end group
|
|
|
|
@end example
|
|
|
|
|
1994-11-22 04:31:18 +00:00
|
|
|
Emacs automatically saves and restores the match data when it runs
|
|
|
|
process filter functions (@pxref{Filter Functions}) and process
|
|
|
|
sentinels (@pxref{Sentinels}).
|
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
@ignore
|
|
|
|
Here is a function which restores the match data provided the buffer
|
|
|
|
associated with it still exists.
|
|
|
|
|
|
|
|
@smallexample
|
|
|
|
@group
|
|
|
|
(defun restore-match-data (data)
|
|
|
|
@c It is incorrect to split the first line of a doc string.
|
|
|
|
@c If there's a problem here, it should be solved in some other way.
|
|
|
|
"Restore the match data DATA unless the buffer is missing."
|
|
|
|
(catch 'foo
|
|
|
|
(let ((d data))
|
|
|
|
@end group
|
|
|
|
(while d
|
|
|
|
(and (car d)
|
|
|
|
(null (marker-buffer (car d)))
|
|
|
|
@group
|
|
|
|
;; @file{match-data} @r{buffer is deleted.}
|
|
|
|
(throw 'foo nil))
|
|
|
|
(setq d (cdr d)))
|
|
|
|
(set-match-data data))))
|
|
|
|
@end group
|
|
|
|
@end smallexample
|
|
|
|
@end ignore
|
|
|
|
|
|
|
|
@node Searching and Case
|
|
|
|
@section Searching and Case
|
|
|
|
@cindex searching and case
|
|
|
|
|
|
|
|
By default, searches in Emacs ignore the case of the text they are
|
|
|
|
searching through; if you specify searching for @samp{FOO}, then
|
|
|
|
@samp{Foo} or @samp{foo} is also considered a match. Regexps, and in
|
|
|
|
particular character sets, are included: thus, @samp{[aB]} would match
|
|
|
|
@samp{a} or @samp{A} or @samp{b} or @samp{B}.
|
|
|
|
|
|
|
|
If you do not want this feature, set the variable
|
|
|
|
@code{case-fold-search} to @code{nil}. Then all letters must match
|
1994-08-07 00:25:52 +00:00
|
|
|
exactly, including case. This is a buffer-local variable; altering the
|
|
|
|
variable affects only the current buffer. (@xref{Intro to
|
1994-03-28 05:41:05 +00:00
|
|
|
Buffer-Local}.) Alternatively, you may change the value of
|
|
|
|
@code{default-case-fold-search}, which is the default value of
|
|
|
|
@code{case-fold-search} for buffers that do not override it.
|
|
|
|
|
|
|
|
Note that the user-level incremental search feature handles case
|
|
|
|
distinctions differently. When given a lower case letter, it looks for
|
|
|
|
a match of either case, but when given an upper case letter, it looks
|
|
|
|
for an upper case letter only. But this has nothing to do with the
|
|
|
|
searching functions Lisp functions use.
|
|
|
|
|
|
|
|
@defopt case-replace
|
1994-08-07 00:25:52 +00:00
|
|
|
This variable determines whether the replacement functions should
|
|
|
|
preserve case. If the variable is @code{nil}, that means to use the
|
|
|
|
replacement text verbatim. A non-@code{nil} value means to convert the
|
|
|
|
case of the replacement text according to the text being replaced.
|
|
|
|
|
|
|
|
The function @code{replace-match} is where this variable actually has
|
|
|
|
its effect. @xref{Replacing Match}.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defopt
|
|
|
|
|
|
|
|
@defopt case-fold-search
|
|
|
|
This buffer-local variable determines whether searches should ignore
|
|
|
|
case. If the variable is @code{nil} they do not ignore case; otherwise
|
|
|
|
they do ignore case.
|
|
|
|
@end defopt
|
|
|
|
|
|
|
|
@defvar default-case-fold-search
|
|
|
|
The value of this variable is the default value for
|
|
|
|
@code{case-fold-search} in buffers that do not override it. This is the
|
|
|
|
same as @code{(default-value 'case-fold-search)}.
|
|
|
|
@end defvar
|
|
|
|
|
|
|
|
@node Standard Regexps
|
|
|
|
@section Standard Regular Expressions Used in Editing
|
|
|
|
@cindex regexps used standardly in editing
|
|
|
|
@cindex standard regexps used in editing
|
|
|
|
|
|
|
|
This section describes some variables that hold regular expressions
|
|
|
|
used for certain purposes in editing:
|
|
|
|
|
|
|
|
@defvar page-delimiter
|
|
|
|
This is the regexp describing line-beginnings that separate pages. The
|
1994-08-07 00:25:52 +00:00
|
|
|
default value is @code{"^\014"} (i.e., @code{"^^L"} or @code{"^\C-l"});
|
|
|
|
this matches a line that starts with a formfeed character.
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defvar
|
|
|
|
|
1995-06-05 12:23:13 +00:00
|
|
|
The following two regular expressions should @emph{not} assume the
|
|
|
|
match always starts at the beginning of a line; they should not use
|
|
|
|
@samp{^} to anchor the match. Most often, the paragraph commands do
|
|
|
|
check for a match only at the beginning of a line, which means that
|
1995-06-06 19:21:15 +00:00
|
|
|
@samp{^} would be superfluous. When there is a nonzero left margin,
|
|
|
|
they accept matches that start after the left margin. In that case, a
|
|
|
|
@samp{^} would be incorrect. However, a @samp{^} is harmless in modes
|
|
|
|
where a left margin is never used.
|
1995-06-05 12:23:13 +00:00
|
|
|
|
1994-03-28 05:41:05 +00:00
|
|
|
@defvar paragraph-separate
|
|
|
|
This is the regular expression for recognizing the beginning of a line
|
|
|
|
that separates paragraphs. (If you change this, you may have to
|
1994-08-07 00:25:52 +00:00
|
|
|
change @code{paragraph-start} also.) The default value is
|
1995-06-05 12:23:13 +00:00
|
|
|
@w{@code{"[@ \t\f]*$"}}, which matches a line that consists entirely of
|
|
|
|
spaces, tabs, and form feeds (after its left margin).
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defvar
|
|
|
|
|
|
|
|
@defvar paragraph-start
|
|
|
|
This is the regular expression for recognizing the beginning of a line
|
|
|
|
that starts @emph{or} separates paragraphs. The default value is
|
1995-06-05 12:23:13 +00:00
|
|
|
@w{@code{"[@ \t\n\f]"}}, which matches a line starting with a space, tab,
|
|
|
|
newline, or form feed (after its left margin).
|
1994-03-28 05:41:05 +00:00
|
|
|
@end defvar
|
|
|
|
|
|
|
|
@defvar sentence-end
|
|
|
|
This is the regular expression describing the end of a sentence. (All
|
|
|
|
paragraph boundaries also end sentences, regardless.) The default value
|
|
|
|
is:
|
|
|
|
|
|
|
|
@example
|
1994-08-07 00:25:52 +00:00
|
|
|
"[.?!][]\"')@}]*\\($\\| $\\|\t\\| \\)[ \t\n]*"
|
1994-03-28 05:41:05 +00:00
|
|
|
@end example
|
|
|
|
|
1994-08-07 00:25:52 +00:00
|
|
|
This means a period, question mark or exclamation mark, followed
|
|
|
|
optionally by a closing parenthetical character, followed by tabs,
|
|
|
|
spaces or new lines.
|
1994-03-28 05:41:05 +00:00
|
|
|
|
|
|
|
For a detailed explanation of this regular expression, see @ref{Regexp
|
|
|
|
Example}.
|
|
|
|
@end defvar
|