2003-02-04 14:56:31 +00:00
|
|
|
|
/* Block-relocating memory allocator.
|
2007-01-14 03:38:22 +00:00
|
|
|
|
Copyright (C) 1993, 1995, 2000, 2001, 2002, 2003, 2004,
|
2008-01-08 04:37:27 +00:00
|
|
|
|
2005, 2006, 2007, 2008 Free Software Foundation, Inc.
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
This file is part of GNU Emacs.
|
|
|
|
|
|
2008-05-14 07:50:26 +00:00
|
|
|
|
GNU Emacs is free software: you can redistribute it and/or modify
|
1990-11-12 20:20:45 +00:00
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2008-05-14 07:50:26 +00:00
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
|
(at your option) any later version.
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
GNU Emacs is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2008-05-14 07:50:26 +00:00
|
|
|
|
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
/* NOTES:
|
|
|
|
|
|
1993-06-09 11:59:12 +00:00
|
|
|
|
Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
|
1990-11-12 20:20:45 +00:00
|
|
|
|
rather than all of them. This means allowing for a possible
|
1994-10-18 21:53:19 +00:00
|
|
|
|
hole between the first bloc and the end of malloc storage. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
#ifdef emacs
|
1992-10-12 21:40:50 +00:00
|
|
|
|
|
1993-09-10 06:15:46 +00:00
|
|
|
|
#include <config.h>
|
1992-03-14 19:09:32 +00:00
|
|
|
|
#include "lisp.h" /* Needed for VALBITS. */
|
2005-04-02 12:12:48 +00:00
|
|
|
|
#include "blockinput.h"
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
2000-06-23 17:33:37 +00:00
|
|
|
|
#ifdef HAVE_UNISTD_H
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#endif
|
1993-05-26 03:49:40 +00:00
|
|
|
|
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
typedef POINTER_TYPE *POINTER;
|
|
|
|
|
typedef size_t SIZE;
|
1992-10-20 06:12:43 +00:00
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
/* Declared in dispnew.c, this version doesn't screw up if regions
|
|
|
|
|
overlap. */
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
extern void safe_bcopy ();
|
|
|
|
|
|
1997-05-16 05:35:04 +00:00
|
|
|
|
#ifdef DOUG_LEA_MALLOC
|
2003-02-04 14:56:31 +00:00
|
|
|
|
#define M_TOP_PAD -2
|
1997-05-16 05:35:04 +00:00
|
|
|
|
extern int mallopt ();
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
#else /* not DOUG_LEA_MALLOC */
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#ifndef SYSTEM_MALLOC
|
2000-09-25 21:07:55 +00:00
|
|
|
|
extern size_t __malloc_extra_blocks;
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#endif /* SYSTEM_MALLOC */
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
#endif /* not DOUG_LEA_MALLOC */
|
1995-02-19 19:12:17 +00:00
|
|
|
|
|
1995-02-14 14:27:18 +00:00
|
|
|
|
#else /* not emacs */
|
1992-10-12 21:40:50 +00:00
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
#include <stddef.h>
|
1992-10-12 21:40:50 +00:00
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
typedef size_t SIZE;
|
|
|
|
|
typedef void *POINTER;
|
1992-10-12 21:40:50 +00:00
|
|
|
|
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
#include <malloc.h>
|
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
#define safe_bcopy(x, y, z) memmove (y, x, z)
|
1995-02-14 14:27:18 +00:00
|
|
|
|
#define bzero(x, len) memset (x, 0, len)
|
|
|
|
|
|
|
|
|
|
#endif /* not emacs */
|
1992-10-11 20:37:32 +00:00
|
|
|
|
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1995-02-14 14:27:18 +00:00
|
|
|
|
#include "getpagesize.h"
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
#define NIL ((POINTER) 0)
|
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
/* A flag to indicate whether we have initialized ralloc yet. For
|
|
|
|
|
Emacs's sake, please do not make this local to malloc_init; on some
|
|
|
|
|
machines, the dumping procedure makes all static variables
|
|
|
|
|
read-only. On these machines, the word static is #defined to be
|
|
|
|
|
the empty string, meaning that r_alloc_initialized becomes an
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
automatic variable, and loses its value each time Emacs is started
|
|
|
|
|
up. */
|
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
static int r_alloc_initialized = 0;
|
|
|
|
|
|
|
|
|
|
static void r_alloc_init ();
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1992-03-14 19:09:32 +00:00
|
|
|
|
/* Declarations for working with the malloc, ralloc, and system breaks. */
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Function to set the real break value. */
|
2000-07-05 16:31:17 +00:00
|
|
|
|
POINTER (*real_morecore) ();
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* The break value, as seen by malloc. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
static POINTER virtual_break_value;
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* The address of the end of the last data in use by ralloc,
|
|
|
|
|
including relocatable blocs as well as malloc data. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
static POINTER break_value;
|
|
|
|
|
|
1992-10-24 04:39:49 +00:00
|
|
|
|
/* This is the size of a page. We round memory requests to this boundary. */
|
|
|
|
|
static int page_size;
|
|
|
|
|
|
2003-02-04 14:56:31 +00:00
|
|
|
|
/* Whenever we get memory from the system, get this many extra bytes. This
|
1992-11-16 00:54:08 +00:00
|
|
|
|
must be a multiple of page_size. */
|
1992-10-24 04:39:49 +00:00
|
|
|
|
static int extra_bytes;
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
/* Macros for rounding. Note that rounding to any value is possible
|
1994-10-18 21:53:19 +00:00
|
|
|
|
by changing the definition of PAGE. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
#define PAGE (getpagesize ())
|
1993-07-22 18:59:43 +00:00
|
|
|
|
#define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
|
|
|
|
|
#define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
|
|
|
|
|
& ~(page_size - 1))
|
1992-10-24 04:39:49 +00:00
|
|
|
|
#define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
|
|
|
|
#define MEM_ALIGN sizeof(double)
|
|
|
|
|
#define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
|
|
|
|
|
& ~(MEM_ALIGN - 1))
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
2001-02-19 12:20:08 +00:00
|
|
|
|
/* The hook `malloc' uses for the function which gets more space
|
|
|
|
|
from the system. */
|
|
|
|
|
|
|
|
|
|
#ifndef SYSTEM_MALLOC
|
|
|
|
|
extern POINTER (*__morecore) ();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
/***********************************************************************
|
|
|
|
|
Implementation using sbrk
|
|
|
|
|
***********************************************************************/
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Data structures of heaps and blocs. */
|
|
|
|
|
|
|
|
|
|
/* The relocatable objects, or blocs, and the malloc data
|
|
|
|
|
both reside within one or more heaps.
|
|
|
|
|
Each heap contains malloc data, running from `start' to `bloc_start',
|
|
|
|
|
and relocatable objects, running from `bloc_start' to `free'.
|
|
|
|
|
|
|
|
|
|
Relocatable objects may relocate within the same heap
|
|
|
|
|
or may move into another heap; the heaps themselves may grow
|
|
|
|
|
but they never move.
|
|
|
|
|
|
|
|
|
|
We try to make just one heap and make it larger as necessary.
|
1996-01-05 10:03:17 +00:00
|
|
|
|
But sometimes we can't do that, because we can't get contiguous
|
1994-10-18 21:53:19 +00:00
|
|
|
|
space to add onto the heap. When that happens, we start a new heap. */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
typedef struct heap
|
|
|
|
|
{
|
|
|
|
|
struct heap *next;
|
|
|
|
|
struct heap *prev;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Start of memory range of this heap. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
POINTER start;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* End of memory range of this heap. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
POINTER end;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Start of relocatable data in this heap. */
|
|
|
|
|
POINTER bloc_start;
|
|
|
|
|
/* Start of unused space in this heap. */
|
|
|
|
|
POINTER free;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* First bloc in this heap. */
|
|
|
|
|
struct bp *first_bloc;
|
|
|
|
|
/* Last bloc in this heap. */
|
|
|
|
|
struct bp *last_bloc;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
} *heap_ptr;
|
|
|
|
|
|
|
|
|
|
#define NIL_HEAP ((heap_ptr) 0)
|
|
|
|
|
#define HEAP_PTR_SIZE (sizeof (struct heap))
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* This is the first heap object.
|
|
|
|
|
If we need additional heap objects, each one resides at the beginning of
|
|
|
|
|
the space it covers. */
|
|
|
|
|
static struct heap heap_base;
|
|
|
|
|
|
|
|
|
|
/* Head and tail of the list of heaps. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
static heap_ptr first_heap, last_heap;
|
|
|
|
|
|
|
|
|
|
/* These structures are allocated in the malloc arena.
|
|
|
|
|
The linked list is kept in order of increasing '.data' members.
|
|
|
|
|
The data blocks abut each other; if b->next is non-nil, then
|
2003-02-04 14:56:31 +00:00
|
|
|
|
b->data + b->size == b->next->data.
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
|
|
|
|
An element with variable==NIL denotes a freed block, which has not yet
|
2008-11-21 12:14:07 +00:00
|
|
|
|
been collected. They may only appear while r_alloc_freeze_level > 0,
|
|
|
|
|
and will be freed when the arena is thawed. Currently, these blocs are
|
|
|
|
|
not reusable, while the arena is frozen. Very inefficient. */
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
typedef struct bp
|
|
|
|
|
{
|
|
|
|
|
struct bp *next;
|
|
|
|
|
struct bp *prev;
|
|
|
|
|
POINTER *variable;
|
|
|
|
|
POINTER data;
|
|
|
|
|
SIZE size;
|
1996-01-05 10:03:17 +00:00
|
|
|
|
POINTER new_data; /* temporarily used for relocation */
|
1995-03-28 17:43:24 +00:00
|
|
|
|
struct heap *heap; /* Heap this bloc is in. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
} *bloc_ptr;
|
|
|
|
|
|
|
|
|
|
#define NIL_BLOC ((bloc_ptr) 0)
|
|
|
|
|
#define BLOC_PTR_SIZE (sizeof (struct bp))
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Head and tail of the list of relocatable blocs. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
static bloc_ptr first_bloc, last_bloc;
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
static int use_relocatable_buffers;
|
|
|
|
|
|
|
|
|
|
/* If >0, no relocation whatsoever takes place. */
|
|
|
|
|
static int r_alloc_freeze_level;
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1992-03-14 19:09:32 +00:00
|
|
|
|
/* Functions to get and return memory from the system. */
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Find the heap that ADDRESS falls within. */
|
|
|
|
|
|
|
|
|
|
static heap_ptr
|
|
|
|
|
find_heap (address)
|
|
|
|
|
POINTER address;
|
|
|
|
|
{
|
|
|
|
|
heap_ptr heap;
|
|
|
|
|
|
|
|
|
|
for (heap = last_heap; heap; heap = heap->prev)
|
|
|
|
|
{
|
|
|
|
|
if (heap->start <= address && address <= heap->end)
|
|
|
|
|
return heap;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return NIL_HEAP;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find SIZE bytes of space in a heap.
|
|
|
|
|
Try to get them at ADDRESS (which must fall within some heap's range)
|
|
|
|
|
if we can get that many within one heap.
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
If enough space is not presently available in our reserve, this means
|
1996-01-05 10:03:17 +00:00
|
|
|
|
getting more page-aligned space from the system. If the returned space
|
|
|
|
|
is not contiguous to the last heap, allocate a new heap, and append it
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
|
|
|
|
obtain does not try to keep track of whether space is in use
|
|
|
|
|
or not in use. It just returns the address of SIZE bytes that
|
|
|
|
|
fall within a single heap. If you call obtain twice in a row
|
|
|
|
|
with the same arguments, you typically get the same value.
|
|
|
|
|
to the heap list. It's the caller's responsibility to keep
|
|
|
|
|
track of what space is in use.
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
Return the address of the space if all went well, or zero if we couldn't
|
|
|
|
|
allocate the memory. */
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
static POINTER
|
|
|
|
|
obtain (address, size)
|
|
|
|
|
POINTER address;
|
|
|
|
|
SIZE size;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
heap_ptr heap;
|
|
|
|
|
SIZE already_available;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Find the heap that ADDRESS falls within. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
for (heap = last_heap; heap; heap = heap->prev)
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (heap->start <= address && address <= heap->end)
|
|
|
|
|
break;
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (! heap)
|
1994-10-18 21:53:19 +00:00
|
|
|
|
abort ();
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* If we can't fit SIZE bytes in that heap,
|
|
|
|
|
try successive later heaps. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
while (heap && (char *) address + size > (char *) heap->end)
|
1994-10-12 00:48:03 +00:00
|
|
|
|
{
|
|
|
|
|
heap = heap->next;
|
|
|
|
|
if (heap == NIL_HEAP)
|
|
|
|
|
break;
|
|
|
|
|
address = heap->bloc_start;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* If we can't fit them within any existing heap,
|
|
|
|
|
get more space. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (heap == NIL_HEAP)
|
|
|
|
|
{
|
|
|
|
|
POINTER new = (*real_morecore)(0);
|
|
|
|
|
SIZE get;
|
1992-09-29 01:08:33 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
already_available = (char *)last_heap->end - (char *)address;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (new != last_heap->end)
|
|
|
|
|
{
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Someone else called sbrk. Make a new heap. */
|
|
|
|
|
|
|
|
|
|
heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
|
|
|
|
|
POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
2000-09-07 19:24:42 +00:00
|
|
|
|
if ((*real_morecore) ((char *) bloc_start - (char *) new) != new)
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
new_heap->start = new;
|
|
|
|
|
new_heap->end = bloc_start;
|
|
|
|
|
new_heap->bloc_start = bloc_start;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
new_heap->free = bloc_start;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
new_heap->next = NIL_HEAP;
|
|
|
|
|
new_heap->prev = last_heap;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
new_heap->first_bloc = NIL_BLOC;
|
|
|
|
|
new_heap->last_bloc = NIL_BLOC;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
last_heap->next = new_heap;
|
|
|
|
|
last_heap = new_heap;
|
|
|
|
|
|
|
|
|
|
address = bloc_start;
|
|
|
|
|
already_available = 0;
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Add space to the last heap (which we may have just created).
|
|
|
|
|
Get some extra, so we can come here less often. */
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
get = size + extra_bytes - already_available;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
get = (char *) ROUNDUP ((char *)last_heap->end + get)
|
1994-10-12 00:48:03 +00:00
|
|
|
|
- (char *) last_heap->end;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if ((*real_morecore) (get) != last_heap->end)
|
|
|
|
|
return 0;
|
|
|
|
|
|
2000-09-07 19:24:42 +00:00
|
|
|
|
last_heap->end = (char *) last_heap->end + get;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return address;
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Return unused heap space to the system
|
|
|
|
|
if there is a lot of unused space now.
|
|
|
|
|
This can make the last heap smaller;
|
|
|
|
|
it can also eliminate the last heap entirely. */
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
static void
|
1994-10-12 00:48:03 +00:00
|
|
|
|
relinquish ()
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
register heap_ptr h;
|
2006-10-29 21:54:18 +00:00
|
|
|
|
long excess = 0;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Add the amount of space beyond break_value
|
|
|
|
|
in all heaps which have extend beyond break_value at all. */
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
for (h = last_heap; h && break_value < h->end; h = h->prev)
|
|
|
|
|
{
|
|
|
|
|
excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
|
|
|
|
|
? h->bloc_start : break_value);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1992-10-24 04:39:49 +00:00
|
|
|
|
/* Keep extra_bytes worth of empty space.
|
|
|
|
|
And don't free anything unless we can free at least extra_bytes. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
excess -= extra_bytes;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
|
|
|
|
|
{
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* This heap should have no blocs in it. */
|
|
|
|
|
if (last_heap->first_bloc != NIL_BLOC
|
|
|
|
|
|| last_heap->last_bloc != NIL_BLOC)
|
|
|
|
|
abort ();
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Return the last heap, with its header, to the system. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
excess = (char *)last_heap->end - (char *)last_heap->start;
|
|
|
|
|
last_heap = last_heap->prev;
|
|
|
|
|
last_heap->next = NIL_HEAP;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
excess = (char *) last_heap->end
|
1994-10-18 21:53:19 +00:00
|
|
|
|
- (char *) ROUNDUP ((char *)last_heap->end - excess);
|
2000-09-07 19:24:42 +00:00
|
|
|
|
last_heap->end = (char *) last_heap->end - excess;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if ((*real_morecore) (- excess) == 0)
|
1997-09-27 16:01:00 +00:00
|
|
|
|
{
|
|
|
|
|
/* If the system didn't want that much memory back, adjust
|
|
|
|
|
the end of the last heap to reflect that. This can occur
|
|
|
|
|
if break_value is still within the original data segment. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
last_heap->end = (char *) last_heap->end + excess;
|
1997-09-27 16:01:00 +00:00
|
|
|
|
/* Make sure that the result of the adjustment is accurate.
|
|
|
|
|
It should be, for the else clause above; the other case,
|
|
|
|
|
which returns the entire last heap to the system, seems
|
|
|
|
|
unlikely to trigger this mode of failure. */
|
|
|
|
|
if (last_heap->end != (*real_morecore) (0))
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
1995-02-07 22:43:23 +00:00
|
|
|
|
|
|
|
|
|
/* Return the total size in use by relocating allocator,
|
|
|
|
|
above where malloc gets space. */
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
r_alloc_size_in_use ()
|
|
|
|
|
{
|
2000-09-07 19:24:42 +00:00
|
|
|
|
return (char *) break_value - (char *) virtual_break_value;
|
1995-02-07 22:43:23 +00:00
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1992-03-14 19:09:32 +00:00
|
|
|
|
/* The meat - allocating, freeing, and relocating blocs. */
|
|
|
|
|
|
|
|
|
|
/* Find the bloc referenced by the address in PTR. Returns a pointer
|
1994-10-18 21:53:19 +00:00
|
|
|
|
to that block. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
static bloc_ptr
|
|
|
|
|
find_bloc (ptr)
|
|
|
|
|
POINTER *ptr;
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr p = first_bloc;
|
|
|
|
|
|
|
|
|
|
while (p != NIL_BLOC)
|
|
|
|
|
{
|
|
|
|
|
if (p->variable == ptr && p->data == *ptr)
|
|
|
|
|
return p;
|
|
|
|
|
|
|
|
|
|
p = p->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return p;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
|
1992-09-29 01:08:33 +00:00
|
|
|
|
Returns a pointer to the new bloc, or zero if we couldn't allocate
|
|
|
|
|
memory for the new block. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
static bloc_ptr
|
|
|
|
|
get_bloc (size)
|
|
|
|
|
SIZE size;
|
|
|
|
|
{
|
1992-09-29 01:08:33 +00:00
|
|
|
|
register bloc_ptr new_bloc;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
register heap_ptr heap;
|
1992-09-29 01:08:33 +00:00
|
|
|
|
|
|
|
|
|
if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|| ! (new_bloc->data = obtain (break_value, size)))
|
1992-09-29 01:08:33 +00:00
|
|
|
|
{
|
2008-06-02 06:00:54 +00:00
|
|
|
|
free (new_bloc);
|
1992-09-29 01:08:33 +00:00
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
2000-09-07 19:24:42 +00:00
|
|
|
|
break_value = (char *) new_bloc->data + size;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
new_bloc->size = size;
|
|
|
|
|
new_bloc->next = NIL_BLOC;
|
1992-08-19 06:36:35 +00:00
|
|
|
|
new_bloc->variable = (POINTER *) NIL;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
new_bloc->new_data = 0;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Record in the heap that this space is in use. */
|
|
|
|
|
heap = find_heap (new_bloc->data);
|
|
|
|
|
heap->free = break_value;
|
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* Maintain the correspondence between heaps and blocs. */
|
|
|
|
|
new_bloc->heap = heap;
|
|
|
|
|
heap->last_bloc = new_bloc;
|
|
|
|
|
if (heap->first_bloc == NIL_BLOC)
|
|
|
|
|
heap->first_bloc = new_bloc;
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Put this bloc on the doubly-linked list of blocs. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
if (first_bloc)
|
|
|
|
|
{
|
|
|
|
|
new_bloc->prev = last_bloc;
|
|
|
|
|
last_bloc->next = new_bloc;
|
|
|
|
|
last_bloc = new_bloc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
first_bloc = last_bloc = new_bloc;
|
|
|
|
|
new_bloc->prev = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return new_bloc;
|
|
|
|
|
}
|
1994-10-23 06:16:43 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Calculate new locations of blocs in the list beginning with BLOC,
|
|
|
|
|
relocating it to start at ADDRESS, in heap HEAP. If enough space is
|
|
|
|
|
not presently available in our reserve, call obtain for
|
2003-02-04 14:56:31 +00:00
|
|
|
|
more space.
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
Store the new location of each bloc in its new_data field.
|
|
|
|
|
Do not touch the contents of blocs or break_value. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
static int
|
|
|
|
|
relocate_blocs (bloc, heap, address)
|
|
|
|
|
bloc_ptr bloc;
|
|
|
|
|
heap_ptr heap;
|
|
|
|
|
POINTER address;
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr b = bloc;
|
1992-11-16 00:54:08 +00:00
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
/* No need to ever call this if arena is frozen, bug somewhere! */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (r_alloc_freeze_level)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
abort();
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
while (b)
|
|
|
|
|
{
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* If bloc B won't fit within HEAP,
|
|
|
|
|
move to the next heap and try again. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
while (heap && (char *) address + b->size > (char *) heap->end)
|
1994-10-12 00:48:03 +00:00
|
|
|
|
{
|
|
|
|
|
heap = heap->next;
|
|
|
|
|
if (heap == NIL_HEAP)
|
|
|
|
|
break;
|
|
|
|
|
address = heap->bloc_start;
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* If BLOC won't fit in any heap,
|
|
|
|
|
get enough new space to hold BLOC and all following blocs. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (heap == NIL_HEAP)
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr tb = b;
|
|
|
|
|
register SIZE s = 0;
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Add up the size of all the following blocs. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
while (tb != NIL_BLOC)
|
|
|
|
|
{
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (tb->variable)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
s += tb->size;
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
tb = tb->next;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Get that space. */
|
|
|
|
|
address = obtain (address, s);
|
|
|
|
|
if (address == 0)
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
heap = last_heap;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Record the new address of this bloc
|
|
|
|
|
and update where the next bloc can start. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
b->new_data = address;
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (b->variable)
|
2000-09-07 19:24:42 +00:00
|
|
|
|
address = (char *) address + b->size;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
b = b->next;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
|
|
|
|
|
This is necessary if we put the memory of space of BLOC
|
|
|
|
|
before that of BEFORE. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
reorder_bloc (bloc, before)
|
|
|
|
|
bloc_ptr bloc, before;
|
|
|
|
|
{
|
|
|
|
|
bloc_ptr prev, next;
|
|
|
|
|
|
|
|
|
|
/* Splice BLOC out from where it is. */
|
|
|
|
|
prev = bloc->prev;
|
|
|
|
|
next = bloc->next;
|
|
|
|
|
|
|
|
|
|
if (prev)
|
|
|
|
|
prev->next = next;
|
|
|
|
|
if (next)
|
|
|
|
|
next->prev = prev;
|
|
|
|
|
|
|
|
|
|
/* Splice it in before BEFORE. */
|
|
|
|
|
prev = before->prev;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
if (prev)
|
|
|
|
|
prev->next = bloc;
|
|
|
|
|
bloc->prev = prev;
|
|
|
|
|
|
|
|
|
|
before->prev = bloc;
|
|
|
|
|
bloc->next = before;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update the records of which heaps contain which blocs, starting
|
|
|
|
|
with heap HEAP and bloc BLOC. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
update_heap_bloc_correspondence (bloc, heap)
|
1994-10-18 21:53:19 +00:00
|
|
|
|
bloc_ptr bloc;
|
|
|
|
|
heap_ptr heap;
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr b;
|
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* Initialize HEAP's status to reflect blocs before BLOC. */
|
|
|
|
|
if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
|
|
|
|
|
{
|
|
|
|
|
/* The previous bloc is in HEAP. */
|
|
|
|
|
heap->last_bloc = bloc->prev;
|
2000-09-07 19:24:42 +00:00
|
|
|
|
heap->free = (char *) bloc->prev->data + bloc->prev->size;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* HEAP contains no blocs before BLOC. */
|
|
|
|
|
heap->first_bloc = NIL_BLOC;
|
|
|
|
|
heap->last_bloc = NIL_BLOC;
|
|
|
|
|
heap->free = heap->bloc_start;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Advance through blocs one by one. */
|
|
|
|
|
for (b = bloc; b != NIL_BLOC; b = b->next)
|
|
|
|
|
{
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* Advance through heaps, marking them empty,
|
|
|
|
|
till we get to the one that B is in. */
|
1994-10-18 21:53:19 +00:00
|
|
|
|
while (heap)
|
|
|
|
|
{
|
|
|
|
|
if (heap->bloc_start <= b->data && b->data <= heap->end)
|
|
|
|
|
break;
|
|
|
|
|
heap = heap->next;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* We know HEAP is not null now,
|
|
|
|
|
because there has to be space for bloc B. */
|
|
|
|
|
heap->first_bloc = NIL_BLOC;
|
|
|
|
|
heap->last_bloc = NIL_BLOC;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
heap->free = heap->bloc_start;
|
|
|
|
|
}
|
1994-10-23 06:16:43 +00:00
|
|
|
|
|
|
|
|
|
/* Update HEAP's status for bloc B. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
heap->free = (char *) b->data + b->size;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
heap->last_bloc = b;
|
|
|
|
|
if (heap->first_bloc == NIL_BLOC)
|
|
|
|
|
heap->first_bloc = b;
|
|
|
|
|
|
|
|
|
|
/* Record that B is in HEAP. */
|
|
|
|
|
b->heap = heap;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If there are any remaining heaps and no blocs left,
|
1994-10-23 06:16:43 +00:00
|
|
|
|
mark those heaps as empty. */
|
1994-10-18 21:53:19 +00:00
|
|
|
|
heap = heap->next;
|
|
|
|
|
while (heap)
|
|
|
|
|
{
|
1994-10-23 06:16:43 +00:00
|
|
|
|
heap->first_bloc = NIL_BLOC;
|
|
|
|
|
heap->last_bloc = NIL_BLOC;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
heap->free = heap->bloc_start;
|
|
|
|
|
heap = heap->next;
|
|
|
|
|
}
|
|
|
|
|
}
|
1994-10-23 06:16:43 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Resize BLOC to SIZE bytes. This relocates the blocs
|
|
|
|
|
that come after BLOC in memory. */
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
static int
|
|
|
|
|
resize_bloc (bloc, size)
|
|
|
|
|
bloc_ptr bloc;
|
|
|
|
|
SIZE size;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
register bloc_ptr b;
|
|
|
|
|
heap_ptr heap;
|
|
|
|
|
POINTER address;
|
|
|
|
|
SIZE old_size;
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
/* No need to ever call this if arena is frozen, bug somewhere! */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (r_alloc_freeze_level)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
abort();
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (bloc == NIL_BLOC || size == bloc->size)
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
|
|
|
|
|
{
|
|
|
|
|
if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (heap == NIL_HEAP)
|
1994-10-18 21:53:19 +00:00
|
|
|
|
abort ();
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
|
|
|
|
old_size = bloc->size;
|
|
|
|
|
bloc->size = size;
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Note that bloc could be moved into the previous heap. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
address = (bloc->prev ? (char *) bloc->prev->data + bloc->prev->size
|
|
|
|
|
: (char *) first_heap->bloc_start);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
while (heap)
|
|
|
|
|
{
|
|
|
|
|
if (heap->bloc_start <= address && address <= heap->end)
|
|
|
|
|
break;
|
|
|
|
|
heap = heap->prev;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! relocate_blocs (bloc, heap, address))
|
|
|
|
|
{
|
|
|
|
|
bloc->size = old_size;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (size > old_size)
|
|
|
|
|
{
|
|
|
|
|
for (b = last_bloc; b != bloc; b = b->prev)
|
|
|
|
|
{
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (!b->variable)
|
|
|
|
|
{
|
|
|
|
|
b->size = 0;
|
|
|
|
|
b->data = b->new_data;
|
2003-02-04 14:56:31 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
safe_bcopy (b->data, b->new_data, b->size);
|
|
|
|
|
*b->variable = b->data = b->new_data;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (!bloc->variable)
|
|
|
|
|
{
|
|
|
|
|
bloc->size = 0;
|
|
|
|
|
bloc->data = bloc->new_data;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
safe_bcopy (bloc->data, bloc->new_data, old_size);
|
2000-09-07 19:24:42 +00:00
|
|
|
|
bzero ((char *) bloc->new_data + old_size, size - old_size);
|
1995-03-28 17:43:24 +00:00
|
|
|
|
*bloc->variable = bloc->data = bloc->new_data;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1992-11-16 00:54:08 +00:00
|
|
|
|
for (b = bloc; b != NIL_BLOC; b = b->next)
|
|
|
|
|
{
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (!b->variable)
|
|
|
|
|
{
|
|
|
|
|
b->size = 0;
|
|
|
|
|
b->data = b->new_data;
|
2003-02-04 14:56:31 +00:00
|
|
|
|
}
|
|
|
|
|
else
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
safe_bcopy (b->data, b->new_data, b->size);
|
|
|
|
|
*b->variable = b->data = b->new_data;
|
|
|
|
|
}
|
1992-11-16 00:54:08 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
update_heap_bloc_correspondence (bloc, heap);
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
2000-09-07 19:24:42 +00:00
|
|
|
|
break_value = (last_bloc ? (char *) last_bloc->data + last_bloc->size
|
|
|
|
|
: (char *) first_heap->bloc_start);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return 1;
|
|
|
|
|
}
|
1994-10-23 06:16:43 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Free BLOC from the chain of blocs, relocating any blocs above it.
|
|
|
|
|
This may return space to the system. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
free_bloc (bloc)
|
|
|
|
|
bloc_ptr bloc;
|
|
|
|
|
{
|
1994-10-23 06:16:43 +00:00
|
|
|
|
heap_ptr heap = bloc->heap;
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (r_alloc_freeze_level)
|
|
|
|
|
{
|
|
|
|
|
bloc->variable = (POINTER *) NIL;
|
|
|
|
|
return;
|
|
|
|
|
}
|
2003-02-04 14:56:31 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
resize_bloc (bloc, 0);
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
if (bloc == first_bloc && bloc == last_bloc)
|
|
|
|
|
{
|
|
|
|
|
first_bloc = last_bloc = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
else if (bloc == last_bloc)
|
|
|
|
|
{
|
|
|
|
|
last_bloc = bloc->prev;
|
|
|
|
|
last_bloc->next = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
else if (bloc == first_bloc)
|
|
|
|
|
{
|
|
|
|
|
first_bloc = bloc->next;
|
|
|
|
|
first_bloc->prev = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
bloc->next->prev = bloc->prev;
|
|
|
|
|
bloc->prev->next = bloc->next;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
/* Update the records of which blocs are in HEAP. */
|
|
|
|
|
if (heap->first_bloc == bloc)
|
|
|
|
|
{
|
1995-02-14 14:27:18 +00:00
|
|
|
|
if (bloc->next != 0 && bloc->next->heap == heap)
|
1994-10-23 06:16:43 +00:00
|
|
|
|
heap->first_bloc = bloc->next;
|
|
|
|
|
else
|
|
|
|
|
heap->first_bloc = heap->last_bloc = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
if (heap->last_bloc == bloc)
|
|
|
|
|
{
|
1995-02-14 14:27:18 +00:00
|
|
|
|
if (bloc->prev != 0 && bloc->prev->heap == heap)
|
1994-10-23 06:16:43 +00:00
|
|
|
|
heap->last_bloc = bloc->prev;
|
|
|
|
|
else
|
|
|
|
|
heap->first_bloc = heap->last_bloc = NIL_BLOC;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
relinquish ();
|
1990-11-12 20:20:45 +00:00
|
|
|
|
free (bloc);
|
|
|
|
|
}
|
|
|
|
|
|
1992-03-14 19:09:32 +00:00
|
|
|
|
/* Interface routines. */
|
|
|
|
|
|
1992-09-29 01:08:33 +00:00
|
|
|
|
/* Obtain SIZE bytes of storage from the free pool, or the system, as
|
1992-10-11 20:37:32 +00:00
|
|
|
|
necessary. If relocatable blocs are in use, this means relocating
|
1992-09-29 01:08:33 +00:00
|
|
|
|
them. This function gets plugged into the GNU malloc's __morecore
|
|
|
|
|
hook.
|
|
|
|
|
|
1992-10-24 04:39:49 +00:00
|
|
|
|
We provide hysteresis, never relocating by less than extra_bytes.
|
|
|
|
|
|
1992-09-29 01:08:33 +00:00
|
|
|
|
If we're out of memory, we should return zero, to imitate the other
|
|
|
|
|
__morecore hook values - in particular, __default_morecore in the
|
|
|
|
|
GNU malloc package. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
2003-02-04 14:56:31 +00:00
|
|
|
|
POINTER
|
1990-11-12 20:20:45 +00:00
|
|
|
|
r_alloc_sbrk (size)
|
|
|
|
|
long size;
|
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
register bloc_ptr b;
|
|
|
|
|
POINTER address;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1995-02-16 06:45:36 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
if (! use_relocatable_buffers)
|
1992-10-12 21:07:25 +00:00
|
|
|
|
return (*real_morecore) (size);
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (size == 0)
|
|
|
|
|
return virtual_break_value;
|
1992-10-24 04:39:49 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (size > 0)
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Allocate a page-aligned space. GNU malloc would reclaim an
|
|
|
|
|
extra space if we passed an unaligned one. But we could
|
1996-01-05 10:03:17 +00:00
|
|
|
|
not always find a space which is contiguous to the previous. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
POINTER new_bloc_start;
|
|
|
|
|
heap_ptr h = first_heap;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
SIZE get = ROUNDUP (size);
|
1992-10-24 04:39:49 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
address = (POINTER) ROUNDUP (virtual_break_value);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Search the list upward for a heap which is large enough. */
|
|
|
|
|
while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
|
1994-10-12 00:48:03 +00:00
|
|
|
|
{
|
|
|
|
|
h = h->next;
|
|
|
|
|
if (h == NIL_HEAP)
|
|
|
|
|
break;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
address = (POINTER) ROUNDUP (h->start);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* If not found, obtain more space. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (h == NIL_HEAP)
|
|
|
|
|
{
|
|
|
|
|
get += extra_bytes + page_size;
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (! obtain (address, get))
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return 0;
|
1992-09-29 01:08:33 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (first_heap == last_heap)
|
1994-10-18 21:53:19 +00:00
|
|
|
|
address = (POINTER) ROUNDUP (virtual_break_value);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
else
|
1994-10-18 21:53:19 +00:00
|
|
|
|
address = (POINTER) ROUNDUP (last_heap->start);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
h = last_heap;
|
|
|
|
|
}
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
|
|
|
|
if (first_heap->bloc_start < new_bloc_start)
|
|
|
|
|
{
|
1995-03-28 17:43:24 +00:00
|
|
|
|
/* This is no clean solution - no idea how to do it better. */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (r_alloc_freeze_level)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
return NIL;
|
|
|
|
|
|
|
|
|
|
/* There is a bug here: if the above obtain call succeeded, but the
|
|
|
|
|
relocate_blocs call below does not succeed, we need to free
|
|
|
|
|
the memory that we got with obtain. */
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
/* Move all blocs upward. */
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (! relocate_blocs (first_bloc, h, new_bloc_start))
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Note that (POINTER)(h+1) <= new_bloc_start since
|
|
|
|
|
get >= page_size, so the following does not destroy the heap
|
1994-10-18 21:53:19 +00:00
|
|
|
|
header. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
for (b = last_bloc; b != NIL_BLOC; b = b->prev)
|
|
|
|
|
{
|
|
|
|
|
safe_bcopy (b->data, b->new_data, b->size);
|
|
|
|
|
*b->variable = b->data = b->new_data;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
h->bloc_start = new_bloc_start;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
1994-10-23 06:16:43 +00:00
|
|
|
|
update_heap_bloc_correspondence (first_bloc, h);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
|
|
|
|
if (h != first_heap)
|
|
|
|
|
{
|
|
|
|
|
/* Give up managing heaps below the one the new
|
1994-10-18 21:53:19 +00:00
|
|
|
|
virtual_break_value points to. */
|
1994-10-12 00:48:03 +00:00
|
|
|
|
first_heap->prev = NIL_HEAP;
|
|
|
|
|
first_heap->next = h->next;
|
|
|
|
|
first_heap->start = h->start;
|
|
|
|
|
first_heap->end = h->end;
|
1994-10-18 21:53:19 +00:00
|
|
|
|
first_heap->free = h->free;
|
1994-10-23 06:16:43 +00:00
|
|
|
|
first_heap->first_bloc = h->first_bloc;
|
|
|
|
|
first_heap->last_bloc = h->last_bloc;
|
1994-10-12 00:48:03 +00:00
|
|
|
|
first_heap->bloc_start = h->bloc_start;
|
|
|
|
|
|
|
|
|
|
if (first_heap->next)
|
|
|
|
|
first_heap->next->prev = first_heap;
|
|
|
|
|
else
|
|
|
|
|
last_heap = first_heap;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bzero (address, size);
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
1994-10-12 00:48:03 +00:00
|
|
|
|
else /* size < 0 */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
{
|
1994-10-12 00:48:03 +00:00
|
|
|
|
SIZE excess = (char *)first_heap->bloc_start
|
|
|
|
|
- ((char *)virtual_break_value + size);
|
|
|
|
|
|
|
|
|
|
address = virtual_break_value;
|
|
|
|
|
|
|
|
|
|
if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
|
|
|
|
|
{
|
|
|
|
|
excess -= extra_bytes;
|
|
|
|
|
first_heap->bloc_start
|
1994-10-23 06:16:43 +00:00
|
|
|
|
= (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
|
1992-10-24 04:39:49 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
for (b = first_bloc; b != NIL_BLOC; b = b->next)
|
|
|
|
|
{
|
|
|
|
|
safe_bcopy (b->data, b->new_data, b->size);
|
|
|
|
|
*b->variable = b->data = b->new_data;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((char *)virtual_break_value + size < (char *)first_heap->start)
|
|
|
|
|
{
|
|
|
|
|
/* We found an additional space below the first heap */
|
|
|
|
|
first_heap->start = (POINTER) ((char *)virtual_break_value + size);
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
virtual_break_value = (POINTER) ((char *)address + size);
|
1994-10-23 06:16:43 +00:00
|
|
|
|
break_value = (last_bloc
|
2000-09-07 19:24:42 +00:00
|
|
|
|
? (char *) last_bloc->data + last_bloc->size
|
|
|
|
|
: (char *) first_heap->bloc_start);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
if (size < 0)
|
1994-10-18 21:53:19 +00:00
|
|
|
|
relinquish ();
|
1992-10-24 04:39:49 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
return address;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
|
|
|
|
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
/* Allocate a relocatable bloc of storage of size SIZE. A pointer to
|
|
|
|
|
the data is returned in *PTR. PTR is thus the address of some variable
|
1992-09-29 01:08:33 +00:00
|
|
|
|
which will use the data area.
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
The allocation of 0 bytes is valid.
|
2008-11-21 12:14:07 +00:00
|
|
|
|
In case r_alloc_freeze_level is set, a best fit of unused blocs could be
|
|
|
|
|
done before allocating a new area. Not yet done.
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
1992-09-29 01:08:33 +00:00
|
|
|
|
If we can't allocate the necessary memory, set *PTR to zero, and
|
|
|
|
|
return zero. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
POINTER
|
|
|
|
|
r_alloc (ptr, size)
|
|
|
|
|
POINTER *ptr;
|
|
|
|
|
SIZE size;
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr new_bloc;
|
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1994-10-18 21:53:19 +00:00
|
|
|
|
new_bloc = get_bloc (MEM_ROUNDUP (size));
|
1992-09-29 01:08:33 +00:00
|
|
|
|
if (new_bloc)
|
|
|
|
|
{
|
|
|
|
|
new_bloc->variable = ptr;
|
|
|
|
|
*ptr = new_bloc->data;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
*ptr = 0;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
return *ptr;
|
|
|
|
|
}
|
|
|
|
|
|
1992-10-11 20:37:32 +00:00
|
|
|
|
/* Free a bloc of relocatable storage whose data is pointed to by PTR.
|
|
|
|
|
Store 0 in *PTR to show there's no block allocated. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
r_alloc_free (ptr)
|
|
|
|
|
register POINTER *ptr;
|
|
|
|
|
{
|
|
|
|
|
register bloc_ptr dead_bloc;
|
|
|
|
|
|
1995-02-16 06:45:36 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1990-11-12 20:20:45 +00:00
|
|
|
|
dead_bloc = find_bloc (ptr);
|
|
|
|
|
if (dead_bloc == NIL_BLOC)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
free_bloc (dead_bloc);
|
1992-10-11 20:37:32 +00:00
|
|
|
|
*ptr = 0;
|
1995-02-07 22:43:23 +00:00
|
|
|
|
|
1995-02-14 14:27:18 +00:00
|
|
|
|
#ifdef emacs
|
1995-02-07 22:43:23 +00:00
|
|
|
|
refill_memory_reserve ();
|
1995-02-14 14:27:18 +00:00
|
|
|
|
#endif
|
1990-11-12 20:20:45 +00:00
|
|
|
|
}
|
|
|
|
|
|
1992-09-09 00:05:42 +00:00
|
|
|
|
/* Given a pointer at address PTR to relocatable data, resize it to SIZE.
|
1992-09-29 01:08:33 +00:00
|
|
|
|
Do this by shifting all blocks above this one up in memory, unless
|
|
|
|
|
SIZE is less than or equal to the current bloc size, in which case
|
|
|
|
|
do nothing.
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
2008-11-21 12:14:07 +00:00
|
|
|
|
In case r_alloc_freeze_level is set, a new bloc is allocated, and the
|
1996-01-05 10:03:17 +00:00
|
|
|
|
memory copied to it. Not very efficient. We could traverse the
|
1995-03-28 17:43:24 +00:00
|
|
|
|
bloc_list for a best fit of free blocs first.
|
|
|
|
|
|
1992-09-29 01:08:33 +00:00
|
|
|
|
Change *PTR to reflect the new bloc, and return this value.
|
|
|
|
|
|
|
|
|
|
If more memory cannot be allocated, then leave *PTR unchanged, and
|
|
|
|
|
return zero. */
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
|
|
|
|
POINTER
|
|
|
|
|
r_re_alloc (ptr, size)
|
|
|
|
|
POINTER *ptr;
|
|
|
|
|
SIZE size;
|
|
|
|
|
{
|
1992-09-09 00:05:42 +00:00
|
|
|
|
register bloc_ptr bloc;
|
1990-11-12 20:20:45 +00:00
|
|
|
|
|
1995-02-16 06:45:36 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1995-03-28 17:43:24 +00:00
|
|
|
|
if (!*ptr)
|
|
|
|
|
return r_alloc (ptr, size);
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (!size)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
r_alloc_free (ptr);
|
|
|
|
|
return r_alloc (ptr, 0);
|
|
|
|
|
}
|
|
|
|
|
|
1992-09-09 00:05:42 +00:00
|
|
|
|
bloc = find_bloc (ptr);
|
|
|
|
|
if (bloc == NIL_BLOC)
|
1990-11-12 20:20:45 +00:00
|
|
|
|
abort ();
|
|
|
|
|
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (size < bloc->size)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
/* Wouldn't it be useful to actually resize the bloc here? */
|
|
|
|
|
/* I think so too, but not if it's too expensive... */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
|
|
|
|
|
&& r_alloc_freeze_level == 0)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
resize_bloc (bloc, MEM_ROUNDUP (size));
|
|
|
|
|
/* Never mind if this fails, just do nothing... */
|
|
|
|
|
/* It *should* be infallible! */
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (size > bloc->size)
|
|
|
|
|
{
|
|
|
|
|
if (r_alloc_freeze_level)
|
|
|
|
|
{
|
|
|
|
|
bloc_ptr new_bloc;
|
|
|
|
|
new_bloc = get_bloc (MEM_ROUNDUP (size));
|
|
|
|
|
if (new_bloc)
|
|
|
|
|
{
|
|
|
|
|
new_bloc->variable = ptr;
|
|
|
|
|
*ptr = new_bloc->data;
|
|
|
|
|
bloc->variable = (POINTER *) NIL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
return NIL;
|
|
|
|
|
}
|
2003-02-04 14:56:31 +00:00
|
|
|
|
else
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
|
|
|
|
|
return NIL;
|
|
|
|
|
}
|
|
|
|
|
}
|
1990-11-12 20:20:45 +00:00
|
|
|
|
return *ptr;
|
|
|
|
|
}
|
1994-09-20 05:51:50 +00:00
|
|
|
|
|
|
|
|
|
/* Disable relocations, after making room for at least SIZE bytes
|
|
|
|
|
of non-relocatable heap if possible. The relocatable blocs are
|
|
|
|
|
guaranteed to hold still until thawed, even if this means that
|
|
|
|
|
malloc must return a null pointer. */
|
1994-10-18 21:53:19 +00:00
|
|
|
|
|
1994-09-20 05:51:50 +00:00
|
|
|
|
void
|
|
|
|
|
r_alloc_freeze (size)
|
|
|
|
|
long size;
|
|
|
|
|
{
|
1995-02-16 06:45:36 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1994-09-20 05:51:50 +00:00
|
|
|
|
/* If already frozen, we can't make any more room, so don't try. */
|
|
|
|
|
if (r_alloc_freeze_level > 0)
|
|
|
|
|
size = 0;
|
|
|
|
|
/* If we can't get the amount requested, half is better than nothing. */
|
|
|
|
|
while (size > 0 && r_alloc_sbrk (size) == 0)
|
|
|
|
|
size /= 2;
|
|
|
|
|
++r_alloc_freeze_level;
|
|
|
|
|
if (size > 0)
|
|
|
|
|
r_alloc_sbrk (-size);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
r_alloc_thaw ()
|
|
|
|
|
{
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (! r_alloc_initialized)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
r_alloc_init ();
|
|
|
|
|
|
1994-09-20 05:51:50 +00:00
|
|
|
|
if (--r_alloc_freeze_level < 0)
|
|
|
|
|
abort ();
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
2003-02-04 14:56:31 +00:00
|
|
|
|
/* This frees all unused blocs. It is not too inefficient, as the resize
|
|
|
|
|
and bcopy is done only once. Afterwards, all unreferenced blocs are
|
1995-03-28 17:43:24 +00:00
|
|
|
|
already shrunk to zero size. */
|
2003-02-04 14:56:31 +00:00
|
|
|
|
if (!r_alloc_freeze_level)
|
1995-03-28 17:43:24 +00:00
|
|
|
|
{
|
|
|
|
|
bloc_ptr *b = &first_bloc;
|
2003-02-04 14:56:31 +00:00
|
|
|
|
while (*b)
|
|
|
|
|
if (!(*b)->variable)
|
|
|
|
|
free_bloc (*b);
|
|
|
|
|
else
|
1995-03-28 17:43:24 +00:00
|
|
|
|
b = &(*b)->next;
|
|
|
|
|
}
|
1994-09-20 05:51:50 +00:00
|
|
|
|
}
|
1995-03-28 17:43:24 +00:00
|
|
|
|
|
1997-07-12 07:04:43 +00:00
|
|
|
|
|
|
|
|
|
#if defined (emacs) && defined (DOUG_LEA_MALLOC)
|
|
|
|
|
|
|
|
|
|
/* Reinitialize the morecore hook variables after restarting a dumped
|
|
|
|
|
Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
|
|
|
|
|
void
|
|
|
|
|
r_alloc_reinit ()
|
|
|
|
|
{
|
|
|
|
|
/* Only do this if the hook has been reset, so that we don't get an
|
|
|
|
|
infinite loop, in case Emacs was linked statically. */
|
|
|
|
|
if (__morecore != r_alloc_sbrk)
|
|
|
|
|
{
|
|
|
|
|
real_morecore = __morecore;
|
|
|
|
|
__morecore = r_alloc_sbrk;
|
|
|
|
|
}
|
|
|
|
|
}
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
|
|
|
|
#endif /* emacs && DOUG_LEA_MALLOC */
|
1997-07-12 07:04:43 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
#ifdef DEBUG
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
1995-02-16 06:45:36 +00:00
|
|
|
|
void
|
1994-10-12 00:48:03 +00:00
|
|
|
|
r_alloc_check ()
|
|
|
|
|
{
|
1995-02-16 06:36:19 +00:00
|
|
|
|
int found = 0;
|
|
|
|
|
heap_ptr h, ph = 0;
|
|
|
|
|
bloc_ptr b, pb = 0;
|
|
|
|
|
|
|
|
|
|
if (!r_alloc_initialized)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
assert (first_heap);
|
|
|
|
|
assert (last_heap->end <= (POINTER) sbrk (0));
|
|
|
|
|
assert ((POINTER) first_heap < first_heap->start);
|
|
|
|
|
assert (first_heap->start <= virtual_break_value);
|
|
|
|
|
assert (virtual_break_value <= first_heap->end);
|
|
|
|
|
|
|
|
|
|
for (h = first_heap; h; h = h->next)
|
|
|
|
|
{
|
|
|
|
|
assert (h->prev == ph);
|
|
|
|
|
assert ((POINTER) ROUNDUP (h->end) == h->end);
|
1996-04-07 16:44:38 +00:00
|
|
|
|
#if 0 /* ??? The code in ralloc.c does not really try to ensure
|
|
|
|
|
the heap start has any sort of alignment.
|
|
|
|
|
Perhaps it should. */
|
1995-02-16 06:36:19 +00:00
|
|
|
|
assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
|
1996-04-07 16:44:38 +00:00
|
|
|
|
#endif
|
1995-02-16 06:36:19 +00:00
|
|
|
|
assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
|
|
|
|
|
assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
|
|
|
|
|
|
|
|
|
|
if (ph)
|
|
|
|
|
{
|
|
|
|
|
assert (ph->end < h->start);
|
|
|
|
|
assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (h->bloc_start <= break_value && break_value <= h->end)
|
|
|
|
|
found = 1;
|
|
|
|
|
|
|
|
|
|
ph = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert (found);
|
|
|
|
|
assert (last_heap == ph);
|
|
|
|
|
|
|
|
|
|
for (b = first_bloc; b; b = b->next)
|
|
|
|
|
{
|
|
|
|
|
assert (b->prev == pb);
|
|
|
|
|
assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
|
|
|
|
|
assert ((SIZE) MEM_ROUNDUP (b->size) == b->size);
|
|
|
|
|
|
|
|
|
|
ph = 0;
|
|
|
|
|
for (h = first_heap; h; h = h->next)
|
|
|
|
|
{
|
|
|
|
|
if (h->bloc_start <= b->data && b->data + b->size <= h->end)
|
|
|
|
|
break;
|
|
|
|
|
ph = h;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert (h);
|
|
|
|
|
|
|
|
|
|
if (pb && pb->data + pb->size != b->data)
|
|
|
|
|
{
|
|
|
|
|
assert (ph && b->data == h->bloc_start);
|
|
|
|
|
while (ph)
|
|
|
|
|
{
|
|
|
|
|
if (ph->bloc_start <= pb->data
|
|
|
|
|
&& pb->data + pb->size <= ph->end)
|
|
|
|
|
{
|
|
|
|
|
assert (pb->data + pb->size + b->size > ph->end);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
assert (ph->bloc_start + b->size > ph->end);
|
|
|
|
|
}
|
|
|
|
|
ph = ph->prev;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
pb = b;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
assert (last_bloc == pb);
|
|
|
|
|
|
|
|
|
|
if (last_bloc)
|
|
|
|
|
assert (last_bloc->data + last_bloc->size == break_value);
|
|
|
|
|
else
|
|
|
|
|
assert (first_heap->bloc_start == break_value);
|
1994-10-12 00:48:03 +00:00
|
|
|
|
}
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
1994-10-12 00:48:03 +00:00
|
|
|
|
#endif /* DEBUG */
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/***********************************************************************
|
|
|
|
|
Initialization
|
|
|
|
|
***********************************************************************/
|
|
|
|
|
|
|
|
|
|
/* Initialize various things for memory allocation. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
r_alloc_init ()
|
|
|
|
|
{
|
|
|
|
|
if (r_alloc_initialized)
|
|
|
|
|
return;
|
|
|
|
|
r_alloc_initialized = 1;
|
2003-02-04 14:56:31 +00:00
|
|
|
|
|
2000-09-08 13:46:27 +00:00
|
|
|
|
page_size = PAGE;
|
|
|
|
|
#ifndef SYSTEM_MALLOC
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
real_morecore = __morecore;
|
|
|
|
|
__morecore = r_alloc_sbrk;
|
|
|
|
|
|
|
|
|
|
first_heap = last_heap = &heap_base;
|
|
|
|
|
first_heap->next = first_heap->prev = NIL_HEAP;
|
|
|
|
|
first_heap->start = first_heap->bloc_start
|
|
|
|
|
= virtual_break_value = break_value = (*real_morecore) (0);
|
|
|
|
|
if (break_value == NIL)
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
extra_bytes = ROUNDUP (50000);
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#endif
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
|
|
|
|
#ifdef DOUG_LEA_MALLOC
|
2005-04-02 12:05:38 +00:00
|
|
|
|
BLOCK_INPUT;
|
|
|
|
|
mallopt (M_TOP_PAD, 64 * 4096);
|
|
|
|
|
UNBLOCK_INPUT;
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
#else
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#ifndef SYSTEM_MALLOC
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
/* Give GNU malloc's morecore some hysteresis
|
|
|
|
|
so that we move all the relocatable blocks much less often. */
|
|
|
|
|
__malloc_extra_blocks = 64;
|
|
|
|
|
#endif
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#endif
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
2000-09-08 16:03:04 +00:00
|
|
|
|
#ifndef SYSTEM_MALLOC
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
first_heap->end = (POINTER) ROUNDUP (first_heap->start);
|
|
|
|
|
|
|
|
|
|
/* The extra call to real_morecore guarantees that the end of the
|
|
|
|
|
address space is a multiple of page_size, even if page_size is
|
|
|
|
|
not really the page size of the system running the binary in
|
|
|
|
|
which page_size is stored. This allows a binary to be built on a
|
|
|
|
|
system with one page size and run on a system with a smaller page
|
|
|
|
|
size. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
(*real_morecore) ((char *) first_heap->end - (char *) first_heap->start);
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
|
|
|
|
|
/* Clear the rest of the last page; this memory is in our address space
|
|
|
|
|
even though it is after the sbrk value. */
|
|
|
|
|
/* Doubly true, with the additional call that explicitly adds the
|
|
|
|
|
rest of that page to the address space. */
|
2000-09-07 19:24:42 +00:00
|
|
|
|
bzero (first_heap->start,
|
|
|
|
|
(char *) first_heap->end - (char *) first_heap->start);
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
|
2000-09-08 13:46:27 +00:00
|
|
|
|
#endif
|
2003-02-04 14:56:31 +00:00
|
|
|
|
|
(POINTER, SIZE) [emacs]: Define in terms of
POINTER_TYPE and size_t.
(struct mmap_region) [REL_ALLOC_MMAP]: New structure.
(mmap_regions, mmap_regions_1) [REL_ALLOC_MMAP]: New variables.
(ROUND, MMAP_REGION_STRUCT_SIZE, MMAP_REGION, MMAP_USER_AREA)
[REL_ALLOC_MMAP]: New macros.
(mmap_find, mmap_free, mmap_enlarge, mmap_set_vars)
(mmap_mapped_bytes, r_alloc, r_re_alloc, r_alloc_free)
[REL_ALLOC_MMAP]: New functions.
2000-09-06 21:25:49 +00:00
|
|
|
|
use_relocatable_buffers = 1;
|
|
|
|
|
}
|
2003-09-01 15:45:59 +00:00
|
|
|
|
|
|
|
|
|
/* arch-tag: 6a524a15-faff-44c8-95d4-a5da6f55110f
|
|
|
|
|
(do not change this comment) */
|