mirror of
https://git.savannah.gnu.org/git/emacs.git
synced 2024-12-28 10:56:36 +00:00
* lisp/emacs-lisp/avl-tree.el (avl-tree--del-balance): Rename from
avl-tree--del-balance1 and make it work both ways. (avl-tree--del-balance2): Remove. (avl-tree--enter-balance): Rename from avl-tree--enter-balance1 and make it work both ways. (avl-tree--enter-balance2): Remove. (avl-tree--switch-dir, avl-tree--dir-to-sign, avl-tree--sign-to-dir): New macros. (avl-tree--mapc, avl-tree-map): Add direction argument.
This commit is contained in:
parent
18480f8fc0
commit
3769ddcf1e
@ -1,3 +1,15 @@
|
||||
2009-11-23 Toby Cubitt <toby-predictive@dr-qubit.org>
|
||||
|
||||
* emacs-lisp/avl-tree.el (avl-tree--del-balance): Rename from
|
||||
avl-tree--del-balance1 and make it work both ways.
|
||||
(avl-tree--del-balance2): Remove.
|
||||
(avl-tree--enter-balance): Rename from avl-tree--enter-balance1 and
|
||||
make it work both ways.
|
||||
(avl-tree--enter-balance2): Remove.
|
||||
(avl-tree--switch-dir, avl-tree--dir-to-sign, avl-tree--sign-to-dir):
|
||||
New macros.
|
||||
(avl-tree--mapc, avl-tree-map): Add direction argument.
|
||||
|
||||
2011-05-27 David Michael <fedora.dm0@gmail.com>
|
||||
|
||||
* files.el (interpreter-mode-alist): Add rbash (bug#8745).
|
||||
|
@ -3,11 +3,12 @@
|
||||
;; Copyright (C) 1995, 2007-2011 Free Software Foundation, Inc.
|
||||
|
||||
;; Author: Per Cederqvist <ceder@lysator.liu.se>
|
||||
;; Inge Wallin <inge@lysator.liu.se>
|
||||
;; Thomas Bellman <bellman@lysator.liu.se>
|
||||
;; Inge Wallin <inge@lysator.liu.se>
|
||||
;; Thomas Bellman <bellman@lysator.liu.se>
|
||||
;; Toby Cubitt <toby-predictive@dr-qubit.org>
|
||||
;; Maintainer: FSF
|
||||
;; Created: 10 May 1991
|
||||
;; Keywords: extensions, data structures
|
||||
;; Keywords: extensions, data structures, AVL, tree
|
||||
|
||||
;; This file is part of GNU Emacs.
|
||||
|
||||
@ -26,14 +27,24 @@
|
||||
|
||||
;;; Commentary:
|
||||
|
||||
;; An AVL tree is a nearly-perfect balanced binary tree. A tree consists of
|
||||
;; two elements, the root node and the compare function. The actual tree
|
||||
;; has a dummy node as its root with the real root in the left pointer.
|
||||
;; An AVL tree is a self-balancing binary tree. As such, inserting,
|
||||
;; deleting, and retrieving data from an AVL tree containing n elements
|
||||
;; is O(log n). It is somewhat more rigidly balanced than other
|
||||
;; self-balancing binary trees (such as red-black trees and AA trees),
|
||||
;; making insertion slighty slower, deletion somewhat slower, and
|
||||
;; retrieval somewhat faster (the asymptotic scaling is of course the
|
||||
;; same for all types). Thus it may be a good choice when the tree will
|
||||
;; be relatively static, i.e. data will be retrieved more often than
|
||||
;; they are modified.
|
||||
;;
|
||||
;; Internally, a tree consists of two elements, the root node and the
|
||||
;; comparison function. The actual tree has a dummy node as its root
|
||||
;; with the real root in the left pointer, which allows the root node to
|
||||
;; be treated on a par with all other nodes.
|
||||
;;
|
||||
;; Each node of the tree consists of one data element, one left
|
||||
;; sub-tree and one right sub-tree. Each node also has a balance
|
||||
;; count, which is the difference in depth of the left and right
|
||||
;; sub-trees.
|
||||
;; sub-tree, one right sub-tree, and a balance count. The latter is the
|
||||
;; difference in depth of the left and right sub-trees.
|
||||
;;
|
||||
;; The functions with names of the form "avl-tree--" are intended for
|
||||
;; internal use only.
|
||||
@ -42,43 +53,21 @@
|
||||
|
||||
(eval-when-compile (require 'cl))
|
||||
|
||||
|
||||
|
||||
;; ================================================================
|
||||
;;; Functions and macros handling an AVL tree node.
|
||||
;;; Internal functions and macros for use in the AVL tree package
|
||||
|
||||
(defstruct (avl-tree--node
|
||||
;; We force a representation without tag so it matches the
|
||||
;; pre-defstruct representation. Also we use the underlying
|
||||
;; representation in the implementation of avl-tree--node-branch.
|
||||
(:type vector)
|
||||
(:constructor nil)
|
||||
(:constructor avl-tree--node-create (left right data balance))
|
||||
(:copier nil))
|
||||
left right data balance)
|
||||
|
||||
(defalias 'avl-tree--node-branch 'aref
|
||||
;; This implementation is efficient but breaks the defstruct abstraction.
|
||||
;; An alternative could be
|
||||
;; (funcall (aref [avl-tree-left avl-tree-right avl-tree-data] branch) node)
|
||||
"Get value of a branch of a node.
|
||||
|
||||
NODE is the node, and BRANCH is the branch.
|
||||
0 for left pointer, 1 for right pointer and 2 for the data.\"
|
||||
\(fn node branch)")
|
||||
;; The funcall/aref trick doesn't work for the setf method, unless we try
|
||||
;; and access the underlying setter function, but this wouldn't be
|
||||
;; portable either.
|
||||
(defsetf avl-tree--node-branch aset)
|
||||
|
||||
|
||||
;; ================================================================
|
||||
;;; Internal functions for use in the AVL tree package
|
||||
;; ----------------------------------------------------------------
|
||||
;; Functions and macros handling an AVL tree.
|
||||
|
||||
(defstruct (avl-tree-
|
||||
;; A tagged list is the pre-defstruct representation.
|
||||
;; (:type list)
|
||||
:named
|
||||
(:constructor nil)
|
||||
(:constructor avl-tree-create (cmpfun))
|
||||
(:constructor avl-tree--create (cmpfun))
|
||||
(:predicate avl-tree-p)
|
||||
(:copier nil))
|
||||
(dummyroot (avl-tree--node-create nil nil nil 0))
|
||||
@ -86,112 +75,129 @@ NODE is the node, and BRANCH is the branch.
|
||||
|
||||
(defmacro avl-tree--root (tree)
|
||||
;; Return the root node for an avl-tree. INTERNAL USE ONLY.
|
||||
`(avl-tree--node-left (avl-tree--dummyroot tree)))
|
||||
`(avl-tree--node-left (avl-tree--dummyroot ,tree)))
|
||||
|
||||
(defsetf avl-tree--root (tree) (node)
|
||||
`(setf (avl-tree--node-left (avl-tree--dummyroot ,tree)) ,node))
|
||||
|
||||
|
||||
|
||||
;; ----------------------------------------------------------------
|
||||
;; Functions and macros handling an AVL tree node.
|
||||
|
||||
(defstruct (avl-tree--node
|
||||
;; We force a representation without tag so it matches the
|
||||
;; pre-defstruct representation. Also we use the underlying
|
||||
;; representation in the implementation of
|
||||
;; avl-tree--node-branch.
|
||||
(:type vector)
|
||||
(:constructor nil)
|
||||
(:constructor avl-tree--node-create (left right data balance))
|
||||
(:copier nil))
|
||||
left right data balance)
|
||||
|
||||
|
||||
(defalias 'avl-tree--node-branch 'aref
|
||||
;; This implementation is efficient but breaks the defstruct
|
||||
;; abstraction. An alternative could be (funcall (aref [avl-tree-left
|
||||
;; avl-tree-right avl-tree-data] branch) node)
|
||||
"Get value of a branch of a node.
|
||||
NODE is the node, and BRANCH is the branch.
|
||||
0 for left pointer, 1 for right pointer and 2 for the data.")
|
||||
|
||||
|
||||
;; The funcall/aref trick wouldn't work for the setf method, unless we
|
||||
;; tried to access the underlying setter function, but this wouldn't be
|
||||
;; portable either.
|
||||
(defsetf avl-tree--node-branch aset)
|
||||
|
||||
|
||||
|
||||
;; ----------------------------------------------------------------
|
||||
;; Convenience macros
|
||||
|
||||
(defmacro avl-tree--switch-dir (dir)
|
||||
"Return opposite direction to DIR (0 = left, 1 = right)."
|
||||
`(- 1 ,dir))
|
||||
|
||||
(defmacro avl-tree--dir-to-sign (dir)
|
||||
"Convert direction (0,1) to sign factor (-1,+1)."
|
||||
`(1- (* 2 ,dir)))
|
||||
|
||||
(defmacro avl-tree--sign-to-dir (dir)
|
||||
"Convert sign factor (-x,+x) to direction (0,1)."
|
||||
`(if (< ,dir 0) 0 1))
|
||||
|
||||
|
||||
;; ----------------------------------------------------------------
|
||||
;; Deleting data
|
||||
|
||||
(defun avl-tree--del-balance1 (node branch)
|
||||
;; Rebalance a tree and return t if the height of the tree has shrunk.
|
||||
(defun avl-tree--del-balance (node branch dir)
|
||||
"Rebalance a tree after deleting a node.
|
||||
The deletion was done from the left (DIR=0) or right (DIR=1) sub-tree of the
|
||||
left (BRANCH=0) or right (BRANCH=1) child of NODE.
|
||||
Return t if the height of the tree has shrunk."
|
||||
;; (or is it vice-versa for BRANCH?)
|
||||
(let ((br (avl-tree--node-branch node branch))
|
||||
p1 b1 p2 b2 result)
|
||||
;; opposite direction: 0,1 -> 1,0
|
||||
(opp (avl-tree--switch-dir dir))
|
||||
;; direction 0,1 -> sign factor -1,+1
|
||||
(sgn (avl-tree--dir-to-sign dir))
|
||||
p1 b1 p2 b2)
|
||||
(cond
|
||||
((< (avl-tree--node-balance br) 0)
|
||||
((> (* sgn (avl-tree--node-balance br)) 0)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
t)
|
||||
|
||||
((= (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) +1)
|
||||
(setf (avl-tree--node-balance br) (- sgn))
|
||||
nil)
|
||||
|
||||
(t
|
||||
;; Rebalance.
|
||||
(setq p1 (avl-tree--node-right br)
|
||||
(setq p1 (avl-tree--node-branch br opp)
|
||||
b1 (avl-tree--node-balance p1))
|
||||
(if (>= b1 0)
|
||||
;; Single RR rotation.
|
||||
(if (<= (* sgn b1) 0)
|
||||
;; Single rotation.
|
||||
(progn
|
||||
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
|
||||
(setf (avl-tree--node-left p1) br)
|
||||
(setf (avl-tree--node-branch br opp)
|
||||
(avl-tree--node-branch p1 dir)
|
||||
(avl-tree--node-branch p1 dir) br
|
||||
(avl-tree--node-branch node branch) p1)
|
||||
(if (= 0 b1)
|
||||
(progn
|
||||
(setf (avl-tree--node-balance br) +1)
|
||||
(setf (avl-tree--node-balance p1) -1)
|
||||
(setq result nil))
|
||||
(setf (avl-tree--node-balance br) (- sgn)
|
||||
(avl-tree--node-balance p1) sgn)
|
||||
nil) ; height hasn't changed
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance p1) 0)
|
||||
(setq result t))
|
||||
(setf (avl-tree--node-branch node branch) p1)
|
||||
result)
|
||||
t)) ; height has changed
|
||||
|
||||
;; Double RL rotation.
|
||||
(setq p2 (avl-tree--node-left p1)
|
||||
b2 (avl-tree--node-balance p2))
|
||||
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
|
||||
(setf (avl-tree--node-right p2) p1)
|
||||
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
|
||||
(setf (avl-tree--node-left p2) br)
|
||||
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
|
||||
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
|
||||
(setf (avl-tree--node-branch node branch) p2)
|
||||
(setf (avl-tree--node-balance p2) 0)
|
||||
t)))))
|
||||
|
||||
(defun avl-tree--del-balance2 (node branch)
|
||||
(let ((br (avl-tree--node-branch node branch))
|
||||
p1 b1 p2 b2 result)
|
||||
(cond
|
||||
((> (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
t)
|
||||
|
||||
((= (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) -1)
|
||||
nil)
|
||||
|
||||
(t
|
||||
;; Rebalance.
|
||||
(setq p1 (avl-tree--node-left br)
|
||||
b1 (avl-tree--node-balance p1))
|
||||
(if (<= b1 0)
|
||||
;; Single LL rotation.
|
||||
(progn
|
||||
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
|
||||
(setf (avl-tree--node-right p1) br)
|
||||
(if (= 0 b1)
|
||||
(progn
|
||||
(setf (avl-tree--node-balance br) -1)
|
||||
(setf (avl-tree--node-balance p1) +1)
|
||||
(setq result nil))
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance p1) 0)
|
||||
(setq result t))
|
||||
(setf (avl-tree--node-branch node branch) p1)
|
||||
result)
|
||||
|
||||
;; Double LR rotation.
|
||||
(setq p2 (avl-tree--node-right p1)
|
||||
b2 (avl-tree--node-balance p2))
|
||||
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
|
||||
(setf (avl-tree--node-left p2) p1)
|
||||
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
|
||||
(setf (avl-tree--node-right p2) br)
|
||||
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
|
||||
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
|
||||
(setf (avl-tree--node-branch node branch) p2)
|
||||
(setf (avl-tree--node-balance p2) 0)
|
||||
;; Double rotation.
|
||||
(setf p2 (avl-tree--node-branch p1 dir)
|
||||
b2 (avl-tree--node-balance p2)
|
||||
(avl-tree--node-branch p1 dir)
|
||||
(avl-tree--node-branch p2 opp)
|
||||
(avl-tree--node-branch p2 opp) p1
|
||||
(avl-tree--node-branch br opp)
|
||||
(avl-tree--node-branch p2 dir)
|
||||
(avl-tree--node-branch p2 dir) br
|
||||
(avl-tree--node-balance br)
|
||||
(if (< (* sgn b2) 0) sgn 0)
|
||||
(avl-tree--node-balance p1)
|
||||
(if (> (* sgn b2) 0) (- sgn) 0)
|
||||
(avl-tree--node-branch node branch) p2
|
||||
(avl-tree--node-balance p2) 0)
|
||||
t)))))
|
||||
|
||||
(defun avl-tree--do-del-internal (node branch q)
|
||||
(let ((br (avl-tree--node-branch node branch)))
|
||||
(if (avl-tree--node-right br)
|
||||
(if (avl-tree--do-del-internal br +1 q)
|
||||
(avl-tree--del-balance2 node branch))
|
||||
(setf (avl-tree--node-data q) (avl-tree--node-data br))
|
||||
(setf (avl-tree--node-branch node branch)
|
||||
(avl-tree--node-left br))
|
||||
(if (avl-tree--do-del-internal br 1 q)
|
||||
(avl-tree--del-balance node branch 1))
|
||||
(setf (avl-tree--node-data q) (avl-tree--node-data br)
|
||||
(avl-tree--node-branch node branch)
|
||||
(avl-tree--node-left br))
|
||||
t)))
|
||||
|
||||
(defun avl-tree--do-delete (cmpfun root branch data)
|
||||
@ -203,102 +209,79 @@ NODE is the node, and BRANCH is the branch.
|
||||
|
||||
((funcall cmpfun data (avl-tree--node-data br))
|
||||
(if (avl-tree--do-delete cmpfun br 0 data)
|
||||
(avl-tree--del-balance1 root branch)))
|
||||
(avl-tree--del-balance root branch 0)))
|
||||
|
||||
((funcall cmpfun (avl-tree--node-data br) data)
|
||||
(if (avl-tree--do-delete cmpfun br 1 data)
|
||||
(avl-tree--del-balance2 root branch)))
|
||||
(avl-tree--del-balance root branch 1)))
|
||||
|
||||
(t
|
||||
;; Found it. Let's delete it.
|
||||
(cond
|
||||
((null (avl-tree--node-right br))
|
||||
(setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
|
||||
t)
|
||||
(setf (avl-tree--node-branch root branch) (avl-tree--node-left br))
|
||||
t)
|
||||
|
||||
((null (avl-tree--node-left br))
|
||||
(setf (avl-tree--node-branch root branch) (avl-tree--node-right br))
|
||||
t)
|
||||
(setf (avl-tree--node-branch root branch)
|
||||
(avl-tree--node-right br))
|
||||
t)
|
||||
|
||||
(t
|
||||
(if (avl-tree--do-del-internal br 0 br)
|
||||
(avl-tree--del-balance1 root branch))))))))
|
||||
(if (avl-tree--do-del-internal br 0 br)
|
||||
(avl-tree--del-balance root branch 0))))))))
|
||||
|
||||
;; ----------------------------------------------------------------
|
||||
;; Entering data
|
||||
|
||||
(defun avl-tree--enter-balance1 (node branch)
|
||||
;; Rebalance a tree and return t if the height of the tree has grown.
|
||||
(defun avl-tree--enter-balance (node branch dir)
|
||||
"Rebalance tree after an insertion
|
||||
into the left (DIR=0) or right (DIR=1) sub-tree of the
|
||||
left (BRANCH=0) or right (BRANCH=1) child of NODE.
|
||||
Return t if the height of the tree has grown."
|
||||
(let ((br (avl-tree--node-branch node branch))
|
||||
;; opposite direction: 0,1 -> 1,0
|
||||
(opp (avl-tree--switch-dir dir))
|
||||
;; direction 0,1 -> sign factor -1,+1
|
||||
(sgn (avl-tree--dir-to-sign dir))
|
||||
p1 p2 b2 result)
|
||||
(cond
|
||||
((< (avl-tree--node-balance br) 0)
|
||||
((< (* sgn (avl-tree--node-balance br)) 0)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
nil)
|
||||
|
||||
((= (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) +1)
|
||||
(setf (avl-tree--node-balance br) sgn)
|
||||
t)
|
||||
|
||||
(t
|
||||
;; Tree has grown => Rebalance.
|
||||
(setq p1 (avl-tree--node-right br))
|
||||
(if (> (avl-tree--node-balance p1) 0)
|
||||
;; Single RR rotation.
|
||||
(setq p1 (avl-tree--node-branch br dir))
|
||||
(if (> (* sgn (avl-tree--node-balance p1)) 0)
|
||||
;; Single rotation.
|
||||
(progn
|
||||
(setf (avl-tree--node-right br) (avl-tree--node-left p1))
|
||||
(setf (avl-tree--node-left p1) br)
|
||||
(setf (avl-tree--node-branch br dir)
|
||||
(avl-tree--node-branch p1 opp))
|
||||
(setf (avl-tree--node-branch p1 opp) br)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-branch node branch) p1))
|
||||
|
||||
;; Double RL rotation.
|
||||
(setq p2 (avl-tree--node-left p1)
|
||||
b2 (avl-tree--node-balance p2))
|
||||
(setf (avl-tree--node-left p1) (avl-tree--node-right p2))
|
||||
(setf (avl-tree--node-right p2) p1)
|
||||
(setf (avl-tree--node-right br) (avl-tree--node-left p2))
|
||||
(setf (avl-tree--node-left p2) br)
|
||||
(setf (avl-tree--node-balance br) (if (> b2 0) -1 0))
|
||||
(setf (avl-tree--node-balance p1) (if (< b2 0) +1 0))
|
||||
(setf (avl-tree--node-branch node branch) p2))
|
||||
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
|
||||
nil))))
|
||||
|
||||
(defun avl-tree--enter-balance2 (node branch)
|
||||
;; Return t if the tree has grown.
|
||||
(let ((br (avl-tree--node-branch node branch))
|
||||
p1 p2 b2)
|
||||
(cond
|
||||
((> (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
nil)
|
||||
|
||||
((= (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-balance br) -1)
|
||||
t)
|
||||
|
||||
(t
|
||||
;; Balance was -1 => Rebalance.
|
||||
(setq p1 (avl-tree--node-left br))
|
||||
(if (< (avl-tree--node-balance p1) 0)
|
||||
;; Single LL rotation.
|
||||
(progn
|
||||
(setf (avl-tree--node-left br) (avl-tree--node-right p1))
|
||||
(setf (avl-tree--node-right p1) br)
|
||||
(setf (avl-tree--node-balance br) 0)
|
||||
(setf (avl-tree--node-branch node branch) p1))
|
||||
|
||||
;; Double LR rotation.
|
||||
(setq p2 (avl-tree--node-right p1)
|
||||
b2 (avl-tree--node-balance p2))
|
||||
(setf (avl-tree--node-right p1) (avl-tree--node-left p2))
|
||||
(setf (avl-tree--node-left p2) p1)
|
||||
(setf (avl-tree--node-left br) (avl-tree--node-right p2))
|
||||
(setf (avl-tree--node-right p2) br)
|
||||
(setf (avl-tree--node-balance br) (if (< b2 0) +1 0))
|
||||
(setf (avl-tree--node-balance p1) (if (> b2 0) -1 0))
|
||||
(setf (avl-tree--node-branch node branch) p2))
|
||||
(setf (avl-tree--node-balance (avl-tree--node-branch node branch)) 0)
|
||||
;; Double rotation.
|
||||
(setf p2 (avl-tree--node-branch p1 opp)
|
||||
b2 (avl-tree--node-balance p2)
|
||||
(avl-tree--node-branch p1 opp)
|
||||
(avl-tree--node-branch p2 dir)
|
||||
(avl-tree--node-branch p2 dir) p1
|
||||
(avl-tree--node-branch br dir)
|
||||
(avl-tree--node-branch p2 opp)
|
||||
(avl-tree--node-branch p2 opp) br
|
||||
(avl-tree--node-balance br)
|
||||
(if (> (* sgn b2) 0) (- sgn) 0)
|
||||
(avl-tree--node-balance p1)
|
||||
(if (< (* sgn b2) 0) sgn 0)
|
||||
(avl-tree--node-branch node branch) p2
|
||||
(avl-tree--node-balance
|
||||
(avl-tree--node-branch node branch)) 0))
|
||||
nil))))
|
||||
|
||||
(defun avl-tree--do-enter (cmpfun root branch data)
|
||||
@ -313,11 +296,11 @@ NODE is the node, and BRANCH is the branch.
|
||||
|
||||
((funcall cmpfun data (avl-tree--node-data br))
|
||||
(and (avl-tree--do-enter cmpfun br 0 data)
|
||||
(avl-tree--enter-balance2 root branch)))
|
||||
(avl-tree--enter-balance root branch 0)))
|
||||
|
||||
((funcall cmpfun (avl-tree--node-data br) data)
|
||||
(and (avl-tree--do-enter cmpfun br 1 data)
|
||||
(avl-tree--enter-balance1 root branch)))
|
||||
(avl-tree--enter-balance root branch 1)))
|
||||
|
||||
(t
|
||||
(setf (avl-tree--node-data br) data)
|
||||
@ -325,33 +308,38 @@ NODE is the node, and BRANCH is the branch.
|
||||
|
||||
;; ----------------------------------------------------------------
|
||||
|
||||
(defun avl-tree--mapc (map-function root)
|
||||
;; Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
|
||||
;; The function is applied in-order.
|
||||
;;
|
||||
;; Note: MAP-FUNCTION is applied to the node and not to the data itself.
|
||||
;; INTERNAL USE ONLY.
|
||||
|
||||
;;; INTERNAL USE ONLY
|
||||
(defun avl-tree--mapc (map-function root dir)
|
||||
"Apply MAP-FUNCTION to all nodes in the tree starting with ROOT.
|
||||
The function is applied in-order, either ascending (DIR=0) or
|
||||
descending (DIR=1).
|
||||
|
||||
Note: MAP-FUNCTION is applied to the node and not to the data
|
||||
itself."
|
||||
(let ((node root)
|
||||
(stack nil)
|
||||
(go-left t))
|
||||
(go-dir t))
|
||||
(push nil stack)
|
||||
(while node
|
||||
(if (and go-left
|
||||
(avl-tree--node-left node))
|
||||
;; Do the left subtree first.
|
||||
(if (and go-dir
|
||||
(avl-tree--node-branch node dir))
|
||||
;; Do the DIR subtree first.
|
||||
(progn
|
||||
(push node stack)
|
||||
(setq node (avl-tree--node-left node)))
|
||||
(setq node (avl-tree--node-branch node dir)))
|
||||
;; Apply the function...
|
||||
(funcall map-function node)
|
||||
;; and do the right subtree.
|
||||
(setq node (if (setq go-left (avl-tree--node-right node))
|
||||
(avl-tree--node-right node)
|
||||
;; and do the opposite subtree.
|
||||
(setq node (if (setq go-dir (avl-tree--node-branch
|
||||
node (avl-tree--switch-dir dir)))
|
||||
(avl-tree--node-branch
|
||||
node (avl-tree--switch-dir dir))
|
||||
(pop stack)))))))
|
||||
|
||||
;;; INTERNAL USE ONLY
|
||||
(defun avl-tree--do-copy (root)
|
||||
;; Copy the avl tree with ROOT as root.
|
||||
;; Highly recursive. INTERNAL USE ONLY.
|
||||
"Copy the avl tree with ROOT as root. Highly recursive."
|
||||
(if (null root)
|
||||
nil
|
||||
(avl-tree--node-create
|
||||
@ -360,10 +348,16 @@ NODE is the node, and BRANCH is the branch.
|
||||
(avl-tree--node-data root)
|
||||
(avl-tree--node-balance root))))
|
||||
|
||||
|
||||
|
||||
;; ================================================================
|
||||
;;; The public functions which operate on AVL trees.
|
||||
|
||||
;; define public alias for constructors so that we can set docstring
|
||||
(defalias 'avl-tree-create 'avl-tree--create
|
||||
"Create an empty avl tree.
|
||||
COMPARE-FUNCTION is a function which takes two arguments, A and B,
|
||||
and returns non-nil if A is less than B, and nil otherwise.")
|
||||
|
||||
(defalias 'avl-tree-compare-function 'avl-tree--cmpfun
|
||||
"Return the comparison function for the avl tree TREE.
|
||||
|
||||
@ -377,9 +371,9 @@ NODE is the node, and BRANCH is the branch.
|
||||
"In the avl tree TREE insert DATA.
|
||||
Return DATA."
|
||||
(avl-tree--do-enter (avl-tree--cmpfun tree)
|
||||
(avl-tree--dummyroot tree)
|
||||
0
|
||||
data)
|
||||
(avl-tree--dummyroot tree)
|
||||
0
|
||||
data)
|
||||
data)
|
||||
|
||||
(defun avl-tree-delete (tree data)
|
||||
@ -398,28 +392,31 @@ Matching uses the compare function previously specified in
|
||||
|
||||
If there is no such element in the tree, the value is nil."
|
||||
(let ((node (avl-tree--root tree))
|
||||
(compare-function (avl-tree--cmpfun tree))
|
||||
found)
|
||||
(while (and node
|
||||
(not found))
|
||||
(cond
|
||||
((funcall compare-function data (avl-tree--node-data node))
|
||||
(setq node (avl-tree--node-left node)))
|
||||
((funcall compare-function (avl-tree--node-data node) data)
|
||||
(setq node (avl-tree--node-right node)))
|
||||
(t
|
||||
(setq found t))))
|
||||
(if node
|
||||
(avl-tree--node-data node)
|
||||
(compare-function (avl-tree--cmpfun tree)))
|
||||
(catch 'found
|
||||
(while node
|
||||
(cond
|
||||
((funcall compare-function data (avl-tree--node-data node))
|
||||
(setq node (avl-tree--node-left node)))
|
||||
((funcall compare-function (avl-tree--node-data node) data)
|
||||
(setq node (avl-tree--node-right node)))
|
||||
(t (throw 'found (avl-tree--node-data node)))))
|
||||
nil)))
|
||||
|
||||
(defun avl-tree-map (__map-function__ tree)
|
||||
"Apply __MAP-FUNCTION__ to all elements in the avl tree TREE."
|
||||
(defun avl-tree-map (__map-function__ tree &optional reverse)
|
||||
"Modify all elements in the avl tree TREE by applying FUNCTION.
|
||||
|
||||
Each element is replaced by the return value of FUNCTION applied
|
||||
to that element.
|
||||
|
||||
FUNCTION is applied to the elements in ascending order, or
|
||||
descending order if REVERSE is non-nil."
|
||||
(avl-tree--mapc
|
||||
(lambda (node)
|
||||
(setf (avl-tree--node-data node)
|
||||
(funcall __map-function__ (avl-tree--node-data node))))
|
||||
(avl-tree--root tree)))
|
||||
(avl-tree--root tree)
|
||||
(if reverse 1 0)))
|
||||
|
||||
(defun avl-tree-first (tree)
|
||||
"Return the first element in TREE, or nil if TREE is empty."
|
||||
@ -445,19 +442,18 @@ If there is no such element in the tree, the value is nil."
|
||||
|
||||
(defun avl-tree-flatten (tree)
|
||||
"Return a sorted list containing all elements of TREE."
|
||||
(nreverse
|
||||
(let ((treelist nil))
|
||||
(avl-tree--mapc
|
||||
(lambda (node) (push (avl-tree--node-data node) treelist))
|
||||
(avl-tree--root tree))
|
||||
treelist)))
|
||||
(avl-tree--root tree) 1)
|
||||
treelist))
|
||||
|
||||
(defun avl-tree-size (tree)
|
||||
"Return the number of elements in TREE."
|
||||
(let ((treesize 0))
|
||||
(avl-tree--mapc
|
||||
(lambda (data) (setq treesize (1+ treesize)))
|
||||
(avl-tree--root tree))
|
||||
(avl-tree--root tree) 0)
|
||||
treesize))
|
||||
|
||||
(defun avl-tree-clear (tree)
|
||||
|
Loading…
Reference in New Issue
Block a user