1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-11-26 07:33:47 +00:00

Bindat: new macro-expansion based data layout language

Thorough redesign of the Bindat system, which makes it possible
to define new Bindat type forms, define recursive types, control
the values returned when unpacking, freely mix arbitrary computations
with type definitions, as well as support for arbitrary sized
integers.

This also reverts the recent addition of the `bindat-spec` macro and
the support for 64bit integers in the old Bindat language since that
is now considered obsolete anyway.

* doc/lispref/processes.texi (Bindat Types): Rename from `Bindat Spec`
and rewrite for the new sublanguage.
(Bindat Functions): Adjust to the new terminology.
(Bindat Computed Types): New node.

* lisp/emacs-lisp/bindat.el (bindat--type): New type.
(bindat--unpack-u64, bindat--unpack-u64r): Delete functions.
(bindat--unpack-item, bindat--pack-item, bindat--fixed-length-alist):
Revert addition of support for 64bit integers.
(bindat--unpack-group, bindat--length-group, bindat--pack-group):
Handle the new `bindat--type` values.
(bindat-spec): Revert addition of this macro.
(bindat--unpack-uint, bindat--unpack-uintr, bindat--pack-uint)
(bindat--pack-uintr): New functions.
(bindat-type, bindat-defmacro, bindat--pcase): New macros.
(bindat-type): New Edebug elem.
(bindat--type): New generic function.
(bindat--primitives): New constant.
(bindat--macroenv, bindat--op): New vars.
(bindat--make-docstring, bindat--fun, bindat--makefun, bindat--toplevel):
New functions.

* test/lisp/emacs-lisp/bindat-tests.el: Use `bindat-type`.
(ip): New Bindat type.
(header-bindat-spec, data-bindat-spec, packet-bindat-spec): Adjust to
new `bindat-type` macro.
(bindat-test-unpack): Simplify now that the order of fields is preserved.
(bindat-test--int-websocket-type, bindat-test--LEB128): New consts.
(bindat-test--pack-val, bindat-test--sint, bindat-test--recursive):
New tests.
This commit is contained in:
Stefan Monnier 2021-03-05 19:56:31 -05:00
parent 1362a9fec4
commit 533c659b6c
5 changed files with 628 additions and 329 deletions

View File

@ -1408,8 +1408,9 @@ Low-Level Network Access
Packing and Unpacking Byte Arrays
* Bindat Spec:: Describing data layout.
* Bindat Types:: Describing data layout.
* Bindat Functions:: Doing the unpacking and packing.
* Bindat Computed Types:: Advanced data layout specifications.
Emacs Display

View File

@ -3354,23 +3354,25 @@ To use the functions referred to in this section, load the
direction is also known as @dfn{serializing} or @dfn{packing}.
@menu
* Bindat Spec:: Describing data layout.
* Bindat Types:: Describing data layout.
* Bindat Functions:: Doing the unpacking and packing.
* Bindat Computed Types:: Advanced data layout specifications.
@end menu
@node Bindat Spec
@node Bindat Types
@subsection Describing Data Layout
To control unpacking and packing, you write a @dfn{data layout
specification}, a special nested list describing named and typed
@dfn{fields}. This specification controls the length of each field to be
processed, and how to pack or unpack it. We normally keep bindat specs
in variables whose names end in @samp{-bindat-spec}; that kind of name
specification}, also called a Bindat type expression.
This can be a base type or a composite type made of several fields,
where the specification controls the length of each field to be
processed, and how to pack or unpack it. We normally keep bindat type
values in variables whose names end in @samp{-bindat-spec}; that kind of name
is automatically recognized as risky.
@defmac bindat-spec &rest specs
Creates a Bindat spec object according to the data layout
specification @var{specs}.
@defmac bindat-type &rest type
Creates a Bindat type @emph{value} object according to the Bindat type
@emph{expression} @var{type}.
@end defmac
@cindex endianness
@ -3391,44 +3393,27 @@ type values:
@itemx byte
Unsigned byte, with length 1.
@item u16
@itemx word
@itemx short
Unsigned integer in network byte order, with length 2.
@item uint @var{bitlen}
Unsigned integer in network byte order, with @var{bitlen} bits.
@var{bitlen} has to be a multiple of 8.
@item u24
Unsigned integer in network byte order, with length 3.
@item u32
@itemx dword
@itemx long
Unsigned integer in network byte order, with length 4.
@item u64
Unsigned integer in network byte order, with length 8.
@item u16r
@itemx u24r
@itemx u32r
@itemx u64r
Unsigned integer in little endian order, with length 2, 3, 4, and
8, respectively.
@item uintr @var{bitlen}
Unsigned integer in little endian order, with @var{bitlen} bits.
@var{bitlen} has to be a multiple of 8.
@item str @var{len}
String of length @var{len}.
String of bytes of length @var{len}.
@item strz @var{len}
Zero-terminated string, in a fixed-size field with length @var{len}.
Zero-terminated string of bytes, in a fixed-size field with length @var{len}.
@item vec @var{len} [@var{type}]
Vector of @var{len} elements of type @var{type}, defaulting to bytes.
The @var{type} is any of the simple types above, or another vector
specified as a list of the form @code{(vec @var{len} [@var{type}])}.
The @var{type} can be any Bindat type expression.
@item ip
@c FIXME? IPv6?
Four-byte vector representing an Internet address. For example:
@code{[127 0 0 1]} for localhost.
@item repeat @var{len} [@var{type}]
Like @code{vec}, but it unpacks to and packs from lists, whereas
@code{vec} unpacks to vectors.
@item bits @var{len}
List of set bits in @var{len} bytes. The bytes are taken in big
@ -3437,121 +3422,59 @@ endian order and the bits are numbered starting with @code{8 *
2} unpacks @code{#x28} @code{#x1c} to @code{(2 3 4 11 13)} and
@code{#x1c} @code{#x28} to @code{(3 5 10 11 12)}.
@item (eval @var{form})
@var{form} is a Lisp expression evaluated at the moment the field is
unpacked or packed. The result of the evaluation should be one of the
above-listed type specifications.
@end table
For a fixed-size field, the length @var{len} is given as an integer
specifying the number of bytes in the field.
When the length of a field is not fixed, it typically depends on the
value of a preceding field. In this case, the length @var{len} can be
given either as a list @code{(@var{name} ...)} identifying a
@dfn{field name} in the format specified for @code{bindat-get-field}
below, or by an expression @code{(eval @var{form})} where @var{form}
should evaluate to an integer, specifying the field length.
A field specification generally has the form @code{([@var{name}]
@var{handler})}, where @var{name} is optional. Don't use names that
are symbols meaningful as type specifications (above) or handler
specifications (below), since that would be ambiguous. @var{name} can
be a symbol or an expression @code{(eval @var{form})}, in which case
@var{form} should evaluate to a symbol.
@var{handler} describes how to unpack or pack the field and can be one
of the following:
@table @code
@item @var{type}
Unpack/pack this field according to the type specification @var{type}.
@item eval @var{form}
Evaluate @var{form}, a Lisp expression, for side-effect only. If the
field name is specified, the value is bound to that field name.
@item fill @var{len}
Skip @var{len} bytes. In packing, this leaves them unchanged,
which normally means they remain zero. In unpacking, this means
they are ignored.
@var{len} bytes used as a mere filler. In packing, these bytes are
are left unchanged, which normally means they remain zero.
When unpacking, this just returns nil.
@item align @var{len}
Skip to the next multiple of @var{len} bytes.
Same as @code{fill} except the number of bytes is that needed to skip
to the next multiple of @var{len} bytes.
@item struct @var{spec-name}
Process @var{spec-name} as a sub-specification. This describes a
structure nested within another structure.
@item type @var{exp}
This lets you refer to a type indirectly: @var{exp} is a Lisp
expression which should return a Bindat type @emph{value}.
@item union @var{form} (@var{tag} @var{spec})@dots{}
@c ??? I don't see how one would actually use this.
@c ??? what kind of expression would be useful for @var{form}?
Evaluate @var{form}, a Lisp expression, find the first @var{tag}
that matches it, and process its associated data layout specification
@var{spec}. Matching can occur in one of three ways:
@item unit @var{exp}
This is a trivial type which uses up 0 bits of space. @var{exp}
describes the value returned when we try to ``unpack'' such a field.
@itemize
@item
If a @var{tag} has the form @code{(eval @var{expr})}, evaluate
@var{expr} with the variable @code{tag} dynamically bound to the value
of @var{form}. A non-@code{nil} result indicates a match.
@item
@var{tag} matches if it is @code{equal} to the value of @var{form}.
@item
@var{tag} matches unconditionally if it is @code{t}.
@end itemize
@item repeat @var{count} @var{field-specs}@dots{}
Process the @var{field-specs} recursively, in order, then repeat
starting from the first one, processing all the specifications @var{count}
times overall. The @var{count} is given using the same formats as a
field length---if an @code{eval} form is used, it is evaluated just once.
For correct operation, each specification in @var{field-specs} must
include a name.
@item struct @var{fields}...
Composite type made of several fields. Every field is of the form
@code{(@var{name} @var{type})} where @var{type} can be any Bindat
type expression. @var{name} can be @code{_} when the field's value
does not deserve to be named, as is often the case for @code{align}
and @code{fill} fields.
When the context makes it clear that this is a Bindat type expression,
the symbol @code{struct} can be omitted.
@end table
For the @code{(eval @var{form})} forms used in a bindat specification,
the @var{form} can access and update these dynamically bound variables
during evaluation:
In the types above, @var{len} and @var{bitlen} are given as an integer
specifying the number of bytes (or bits) in the field. When the
length of a field is not fixed, it typically depends on the value of
preceding fields. For this reason, the length @var{len} does not have
to be a constant but can be any Lisp expression and it can refer to
the value of previous fields via their name.
@table @code
@item last
Value of the last field processed.
@item bindat-raw
The data as a byte array.
@item bindat-idx
Current index (within @code{bindat-raw}) for unpacking or packing.
@item struct
The alist containing the structured data that have been unpacked so
far, or the entire structure being packed. You can use
@code{bindat-get-field} to access specific fields of this structure.
@item count
@itemx index
Inside a @code{repeat} block, these contain the maximum number of
repetitions (as specified by the @var{count} parameter), and the
current repetition number (counting from 0). Setting @code{count} to
zero will terminate the inner-most repeat block after the current
repetition has completed.
@end table
For example, the specification of a data layout where a leading byte gives
the size of a subsequent vector of 16 bit integers could be:
@example
(bindat-type
(len u8)
(payload vec (1+ len) uint 16))
@end example
@node Bindat Functions
@subsection Functions to Unpack and Pack Bytes
In the following documentation, @var{spec} refers to a Bindat spec
object as returned from @code{bindat-spec}, @code{raw} to a byte
In the following documentation, @var{type} refers to a Bindat type
value as returned from @code{bindat-type}, @code{raw} to a byte
array, and @var{struct} to an alist representing unpacked field data.
@defun bindat-unpack spec raw &optional idx
@c FIXME? Again, no multibyte?
@defun bindat-unpack type raw &optional idx
This function unpacks data from the unibyte string or byte
array @var{raw}
according to @var{spec}. Normally, this starts unpacking at the
according to @var{type}. Normally, this starts unpacking at the
beginning of the byte array, but if @var{idx} is non-@code{nil}, it
specifies a zero-based starting position to use instead.
@ -3580,13 +3503,13 @@ both pieces of information contribute to its calculation. Likewise, the
length of a string or array being unpacked may be longer than the data's
total length as described by the specification.
@defun bindat-length spec struct
@defun bindat-length type struct
This function returns the total length of the data in @var{struct},
according to @var{spec}.
according to @var{type}.
@end defun
@defun bindat-pack spec struct &optional raw idx
This function returns a byte array packed according to @var{spec} from
@defun bindat-pack type struct &optional raw idx
This function returns a byte array packed according to @var{type} from
the data in the alist @var{struct}. It normally creates and fills a
new byte array starting at the beginning. However, if @var{raw}
is non-@code{nil}, it specifies a pre-allocated unibyte string or vector to
@ -3607,3 +3530,70 @@ dotted notation.
@result{} "127.0.0.1"
@end example
@end defun
@node Bindat Computed Types
@subsection Advanced data layout specifications
Bindat type expressions are not limited to the types described
earlier. They can also be arbitrary Lisp forms returning Bindat
type expressions. For example, the type below describes data which
can either contain a 24bit error code or a vector of bytes:
@example
(bindat-type
(len u8)
(payload . (if (zerop len) (uint 24) (vec (1- len)))))
@end example
Furthermore, while composite types are normally unpacked to (and
packed from) association lists, this can be changed via the use of
the following special keyword arguments:
@table @code
@item :unpack-val @var{exp}
When the list of fields end with this keyword argument, then the value
returned when unpacking is the value of @var{exp} instead of the
standard alist. @var{exp} can refer to all the previous fields by
their name.
@item :pack-val @var{exp}
If a field's type is followed by this keyword argument, then the value
packed into this field is returned by @var{exp} instead of being
extracted from the alist.
@item :pack-var @var{name}
If the list of fields is preceded by this keyword argument, then all
the subsequent @code{:pack-val} arguments can refer to the overall
value to pack into this composite type via the variable named
@var{name}.
@end table
For example, one could describe a 16 bit signed integer as follows:
@example
(defconst sint16-bindat-spec
(let* ((max (ash 1 15))
(wrap (+ max max)))
(bindat-type :pack-var v
(n uint 16 :pack-val (if (< v 0) (+ v wrap) v))
:unpack-val (if (>= n max) (- n wrap) n))))
@end example
Which would then behave as follows:
@example
(bindat-pack sint16-bindat-spec -8)
@result{} "\377\370"
(bindat-unpack sint16-bindat-spec "\300\100")
@result{} -16320
@end example
Finally, you can define new Bindat type forms to use in Bindat type
expressions with @code{bindat-defmacro}:
@defmac bindat-defmacro name args &rest body
Define a new Bindat type expression named @var{name} and taking
arguments @var{args}. Its behavior follows that of @code{defmacro},
which the important difference that the new forms can only be used
within Bindat type expressions.
@end defmac

View File

@ -396,9 +396,11 @@ in text mode. The cursor still only actually blinks in GUI frames.
** Bindat
+++
*** New types 'u64' and 'u64r'
+++
*** New macro 'bindat-spec' to define specs, with Edebug support
*** New 'Bindat type expression' description language.
This new system is provided by the new macro 'bindat-type' and
obsoletes the old data layout specifications. It supports
arbitrary-size integers, recursive types, and more.
** pcase
+++

View File

@ -62,39 +62,40 @@
;; struct data item[/* items */];
;; };
;;
;; The corresponding Lisp bindat specification looks like this:
;; The corresponding Lisp bindat specification could look like this:
;;
;; (bindat-defmacro ip () '(vec 4 byte))
;;
;; (setq header-bindat-spec
;; (bindat-spec
;; (bindat-type
;; (dest-ip ip)
;; (src-ip ip)
;; (dest-port u16)
;; (src-port u16)))
;; (dest-port uint 16)
;; (src-port uint 16)))
;;
;; (setq data-bindat-spec
;; (bindat-spec
;; (bindat-type
;; (type u8)
;; (opcode u8)
;; (length u32r) ;; little endian order
;; (length uintr 32) ;; little endian order
;; (id strz 8)
;; (data vec (length))
;; (align 4)))
;; (data vec length)
;; (_ align 4)))
;;
;; (setq packet-bindat-spec
;; (bindat-spec
;; (header struct header-bindat-spec)
;; (items u8)
;; (fill 3)
;; (item repeat (items)
;; (struct data-bindat-spec))))
;;
;; (bindat-type
;; (header type header-bindat-spec)
;; (nitems u8)
;; (_ fill 3)
;; (items repeat nitems type data-bindat-spec)))
;;
;; A binary data representation may look like
;; [ 192 168 1 100 192 168 1 101 01 28 21 32 2 0 0 0
;; 2 3 5 0 ?A ?B ?C ?D ?E ?F 0 0 1 2 3 4 5 0 0 0
;; 1 4 7 0 ?B ?C ?D ?E ?F ?G 0 0 6 7 8 9 10 11 12 0 ]
;;
;; The corresponding decoded structure looks like
;; The corresponding decoded structure returned by `bindat-unpack' (or taken
;; by `bindat-pack') looks like:
;;
;; ((header
;; (dest-ip . [192 168 1 100])
@ -114,90 +115,24 @@
;; (type . 1))))
;;
;; To access a specific value in this structure, use the function
;; bindat-get-field with the structure as first arg followed by a list
;; `bindat-get-field' with the structure as first arg followed by a list
;; of field names and array indexes, e.g. using the data above,
;; (bindat-get-field decoded-structure 'item 1 'id)
;; returns "BCDEFG".
;; Binary Data Structure Specification Format
;; ------------------------------------------
;; We recommend using names that end in `-bindat-spec'; such names
;; are recognized automatically as "risky" variables.
;; The data specification is formatted as follows:
;; SPEC ::= ( ITEM... )
;; ITEM ::= ( FIELD TYPE )
;; | ( [FIELD] eval FORM ) -- eval FORM for side-effect only
;; | ( [FIELD] fill LEN ) -- skip LEN bytes
;; | ( [FIELD] align LEN ) -- skip to next multiple of LEN bytes
;; | ( [FIELD] struct SPEC_NAME )
;; | ( [FIELD] union TAG_VAL (TAG SPEC)... [(t SPEC)] )
;; | ( FIELD repeat ARG ITEM... )
;; -- In (eval EXPR), the value of the last field is available in
;; the dynamically bound variable `last' and all the previous
;; ones in the variable `struct'.
;; TYPE ::= ( eval EXPR ) -- interpret result as TYPE
;; | u8 | byte -- length 1
;; | u16 | word | short -- length 2, network byte order
;; | u24 -- 3-byte value
;; | u32 | dword | long -- length 4, network byte order
;; | u64 -- length 8, network byte order
;; | u16r | u24r | u32r | u64r - little endian byte order.
;; | str LEN -- LEN byte string
;; | strz LEN -- LEN byte (zero-terminated) string
;; | vec LEN [TYPE] -- vector of LEN items of TYPE (default: u8)
;; | ip -- 4 byte vector
;; | bits LEN -- bit vector using LEN bytes.
;;
;; -- Example: `bits 2' will unpack 0x28 0x1c to (2 3 4 11 13)
;; and 0x1c 0x28 to (3 5 10 11 12).
;; FIELD ::= ( eval EXPR ) -- use result as NAME
;; | NAME
;; LEN ::= ARG
;; | <omitted> | nil -- LEN = 1
;; TAG_VAL ::= ARG
;; TAG ::= LISP_CONSTANT
;; | ( eval EXPR ) -- return non-nil if tag match;
;; current TAG_VAL in `tag'.
;; ARG ::= ( eval EXPR ) -- interpret result as ARG
;; | INTEGER_CONSTANT
;; | DEREF
;; DEREF ::= ( [NAME | INTEGER]... ) -- Field NAME or Array index relative
;; to current structure spec.
;; -- see bindat-get-field
;; A `union' specification
;; ([FIELD] union TAG_VAL (TAG SPEC) ... [(t SPEC)])
;; is interpreted by evalling TAG_VAL and then comparing that to
;; each TAG using equal; if a match is found, the corresponding SPEC
;; is used.
;; If TAG is a form (eval EXPR), EXPR is eval'ed with `tag' bound to the
;; value of TAG_VAL; the corresponding SPEC is used if the result is non-nil.
;; Finally, if TAG is t, the corresponding SPEC is used unconditionally.
;;
;; An `eval' specification
;; ([FIELD] eval FORM)
;; is interpreted by evalling FORM for its side effects only.
;; If FIELD is specified, the value is bound to that field.
;; The FORM may access and update `bindat-raw' and `bindat-idx' (see `bindat-unpack').
;;; Code:
;; Helper functions for structure unpacking.
;; Relies on dynamic binding of `bindat-raw' and `bindat-idx'.
(eval-when-compile (require 'cl-lib))
(eval-when-compile (require 'subr-x)) ;For `named-let'.
(cl-defstruct (bindat--type
(:predicate nil)
(:constructor bindat--make))
le ue pe)
(defvar bindat-raw)
(defvar bindat-idx)
@ -215,9 +150,6 @@
(defun bindat--unpack-u32 ()
(logior (ash (bindat--unpack-u16) 16) (bindat--unpack-u16)))
(defun bindat--unpack-u64 ()
(logior (ash (bindat--unpack-u32) 32) (bindat--unpack-u32)))
(defun bindat--unpack-u16r ()
(logior (bindat--unpack-u8) (ash (bindat--unpack-u8) 8)))
@ -227,9 +159,6 @@
(defun bindat--unpack-u32r ()
(logior (bindat--unpack-u16r) (ash (bindat--unpack-u16r) 16)))
(defun bindat--unpack-u64r ()
(logior (bindat--unpack-u32r) (ash (bindat--unpack-u32r) 32)))
(defun bindat--unpack-str (len)
(let ((s (substring bindat-raw bindat-idx (+ bindat-idx len))))
(setq bindat-idx (+ bindat-idx len))
@ -266,11 +195,9 @@
((or 'u16 'word 'short) (bindat--unpack-u16))
('u24 (bindat--unpack-u24))
((or 'u32 'dword 'long) (bindat--unpack-u32))
('u64 (bindat--unpack-u64))
('u16r (bindat--unpack-u16r))
('u24r (bindat--unpack-u24r))
('u32r (bindat--unpack-u32r))
('u64r (bindat--unpack-u64r))
('bits (bindat--unpack-bits len))
('str (bindat--unpack-str len))
('strz (bindat--unpack-strz len))
@ -290,6 +217,11 @@
(* len (/ (+ n (1- len)) len))) ;Isn't there a simpler way?
(defun bindat--unpack-group (spec)
;; FIXME: Introduce a new primitive so we can mark `bindat-unpack'
;; as obsolete (maybe that primitive should be a macro which takes
;; a bindat type *expression* as argument).
(if (cl-typep spec 'bindat--type)
(funcall (bindat--type-ue spec))
(with-suppressed-warnings ((lexical struct last))
(defvar struct) (defvar last))
(let (struct last)
@ -350,7 +282,7 @@
(setq struct (if field
(cons (cons field data) struct)
(append data struct))))))
struct))
struct)))
(defun bindat-unpack (spec raw &optional idx)
"Return structured data according to SPEC for binary data in RAW.
@ -383,10 +315,11 @@ e.g. corresponding to STRUCT.FIELD1[INDEX2].FIELD3..."
(u16 . 2) (u16r . 2) (word . 2) (short . 2)
(u24 . 3) (u24r . 3)
(u32 . 4) (u32r . 4) (dword . 4) (long . 4)
(u64 . 8) (u64r . 8)
(ip . 4)))
(defun bindat--length-group (struct spec)
(if (cl-typep spec 'bindat--type)
(funcall (bindat--type-le spec) struct)
(with-suppressed-warnings ((lexical struct last))
(defvar struct) (defvar last))
(let ((struct struct) last)
@ -452,7 +385,7 @@ e.g. corresponding to STRUCT.FIELD1[INDEX2].FIELD3..."
(setq len (* len (cdr type))))
(if field
(setq last (bindat-get-field struct field)))
(setq bindat-idx (+ bindat-idx len))))))))
(setq bindat-idx (+ bindat-idx len)))))))))
(defun bindat-length (spec struct)
"Calculate `bindat-raw' length for STRUCT according to bindat SPEC."
@ -529,11 +462,9 @@ e.g. corresponding to STRUCT.FIELD1[INDEX2].FIELD3..."
((or 'u16 'word 'short) (bindat--pack-u16 v))
('u24 (bindat--pack-u24 v))
((or 'u32 'dword 'long) (bindat--pack-u32 v))
('u64 (bindat--pack-u64 v))
('u16r (bindat--pack-u16r v))
('u24r (bindat--pack-u24r v))
('u32r (bindat--pack-u32r v))
('u64r (bindat--pack-u64r v))
('bits (bindat--pack-bits len v))
((or 'str 'strz) (bindat--pack-str len v))
('vec
@ -550,6 +481,8 @@ e.g. corresponding to STRUCT.FIELD1[INDEX2].FIELD3..."
(setq bindat-idx (+ bindat-idx len)))))
(defun bindat--pack-group (struct spec)
(if (cl-typep spec 'bindat--type)
(funcall (bindat--type-pe spec) struct)
(with-suppressed-warnings ((lexical struct last))
(defvar struct) (defvar last))
(let ((struct struct) last)
@ -607,7 +540,7 @@ e.g. corresponding to STRUCT.FIELD1[INDEX2].FIELD3..."
(_
(setq last (bindat-get-field struct field))
(bindat--pack-item last type len vectype)
))))))
)))))))
(defun bindat-pack (spec struct &optional raw idx)
"Return binary data packed according to SPEC for structured data STRUCT.
@ -623,52 +556,6 @@ Optional fourth arg IDX is the starting offset into RAW."
(bindat--pack-group struct spec)
(if raw nil bindat-raw)))
;;;; Debugging support
(def-edebug-elem-spec 'bindat-spec '(&rest bindat-item))
(def-edebug-elem-spec 'bindat--item-aux
;; Field types which can come without a field label.
'(&or ["eval" form]
["fill" bindat-len]
["align" bindat-len]
["struct" form] ;A reference to another bindat-spec.
["union" bindat-tag-val &rest (bindat-tag bindat-spec)]))
(def-edebug-elem-spec 'bindat-item
'((&or bindat--item-aux ;Without label..
[bindat-field ;..or with label
&or bindat--item-aux
["repeat" bindat-arg bindat-spec]
bindat-type])))
(def-edebug-elem-spec 'bindat-type
'(&or ("eval" form)
["str" bindat-len]
["strz" bindat-len]
["vec" bindat-len &optional bindat-type]
["bits" bindat-len]
symbolp))
(def-edebug-elem-spec 'bindat-field
'(&or ("eval" form) symbolp))
(def-edebug-elem-spec 'bindat-len '(&or [] "nil" bindat-arg))
(def-edebug-elem-spec 'bindat-tag-val '(bindat-arg))
(def-edebug-elem-spec 'bindat-tag '(&or ("eval" form) atom))
(def-edebug-elem-spec 'bindat-arg
'(&or ("eval" form) integerp (&rest symbolp integerp)))
(defmacro bindat-spec (&rest fields)
"Build the bindat spec described by FIELDS."
(declare (indent 0) (debug (bindat-spec)))
;; FIXME: We should really "compile" this to a triplet of functions!
`',fields)
;;;; Misc. format conversions
(defun bindat-format-vector (vect fmt sep &optional len)
@ -697,6 +584,384 @@ The port (if any) is omitted. IP can be a string, as well."
(format "%d.%d.%d.%d"
(aref ip 0) (aref ip 1) (aref ip 2) (aref ip 3))))
;;;; New approach based on macro-expansion
;; Further improvements suggested by reading websocket.el:
;; - Support for bit-sized fields?
;;
;; - Add some way to verify redundant/checksum fields's contents without
;; having to provide a complete `:unpack-val' expression.
;; The `:pack-val' thingy can work nicely to compute checksum fields
;; based on previous fields's contents (without impacting or being impacted
;; by the unpacked representation), but if we want to verify
;; those checksums when unpacking, we have to use the :unpack-val
;; and build the whole object by hand instead of being able to focus
;; just on the checksum field.
;; Maybe this could be related to `unit' type fields where we might like
;; to make sure that the "value" we write into it is the same as the
;; value it holds (tho those checks don't happen at the same time (pack
;; vs unpack).
;;
;; - Support for packing/unpacking to/from something else than
;; a unibyte string, e.g. from a buffer. Problems to do that are:
;; - the `str' and `strz' types which use `substring' rather than reading
;; one byte at a time.
;; - the `align' and `fill' which just want to skip without reading/writing
;; - the `pack-uint' case, which would prefer writing the LSB first.
;; - the `align' case needs to now the current position in order to know
;; how far to advance
;;
;; - Don't write triple code when the type is only ever used at a single place
;; (e.g. to unpack).
(defun bindat--unpack-uint (bitlen)
(let ((v 0) (bitsdone 0))
(while (< bitsdone bitlen)
(setq v (logior (ash v 8) (bindat--unpack-u8)))
(setq bitsdone (+ bitsdone 8)))
v))
(defun bindat--unpack-uintr (bitlen)
(let ((v 0) (bitsdone 0))
(while (< bitsdone bitlen)
(setq v (logior v (ash (bindat--unpack-u8) bitsdone)))
(setq bitsdone (+ bitsdone 8)))
v))
(defun bindat--pack-uint (bitlen v)
(let* ((len (/ bitlen 8))
(shift (- (* 8 (1- len)))))
(dotimes (_ len)
(bindat--pack-u8 (logand 255 (ash v shift)))
(setq shift (+ 8 shift)))))
(defun bindat--pack-uintr (bitlen v)
(let* ((len (/ bitlen 8)))
(dotimes (_ len)
(bindat--pack-u8 (logand v 255))
(setq v (ash v -8)))))
(defmacro bindat--pcase (&rest args)
"Like `pcase' but optimize the code under the assumption that it's exhaustive."
(declare (indent 1) (debug pcase))
`(pcase ,@args (pcase--dontcare nil)))
(cl-defgeneric bindat--type (op head &rest args)
"Return the code for the operation OP of the Bindat type (HEAD . ARGS).
OP can be one of: unpack', (pack VAL), or (length VAL) where VAL
is the name of a variable that will hold the value we need to pack.")
(cl-defmethod bindat--type (op (_ (eql byte)))
(bindat--pcase op
('unpack `(bindat--unpack-u8))
(`(length . ,_) `(cl-incf bindat-idx 1))
(`(pack . ,args) `(bindat--pack-u8 . ,args))))
(cl-defmethod bindat--type (op (_ (eql uint)) n)
(if (eq n 8) (bindat--type op 'byte)
(bindat--pcase op
('unpack `(bindat--unpack-uint ,n))
(`(length . ,_) `(cl-incf bindat-idx (/ ,n 8)))
(`(pack . ,args) `(bindat--pack-uint ,n . ,args)))))
(cl-defmethod bindat--type (op (_ (eql uintr)) n)
(if (eq n 8) (bindat--type op 'byte)
(bindat--pcase op
('unpack `(bindat--unpack-uintr ,n))
(`(length . ,_) `(cl-incf bindat-idx (/ ,n 8)))
(`(pack . ,args) `(bindat--pack-uintr ,n . ,args)))))
(cl-defmethod bindat--type (op (_ (eql str)) len)
(bindat--pcase op
('unpack `(bindat--unpack-str ,len))
(`(length . ,_) `(cl-incf bindat-idx ,len))
(`(pack . ,args) `(bindat--pack-str ,len . ,args))))
(cl-defmethod bindat--type (op (_ (eql strz)) len)
(bindat--pcase op
('unpack `(bindat--unpack-strz ,len))
(`(length . ,_) `(cl-incf bindat-idx ,len))
;; Here we don't add the terminating zero because we rely
;; on the fact that `bindat-raw' was presumably initialized with
;; all-zeroes before we started.
(`(pack . ,args) `(bindat--pack-str ,len . ,args))))
(cl-defmethod bindat--type (op (_ (eql bits)) len)
(bindat--pcase op
('unpack `(bindat--unpack-bits ,len))
(`(length . ,_) `(cl-incf bindat-idx ,len))
(`(pack . ,args) `(bindat--pack-bits ,len . ,args))))
(cl-defmethod bindat--type (_op (_ (eql fill)) len)
`(progn (cl-incf bindat-idx ,len) nil))
(cl-defmethod bindat--type (_op (_ (eql align)) len)
`(progn (cl-callf bindat--align bindat-idx ,len) nil))
(cl-defmethod bindat--type (op (_ (eql type)) exp)
(bindat--pcase op
('unpack `(funcall (bindat--type-ue ,exp)))
(`(length . ,args) `(funcall (bindat--type-le ,exp) . ,args))
(`(pack . ,args) `(funcall (bindat--type-pe ,exp) . ,args))))
(cl-defmethod bindat--type (op (_ (eql vec)) count &rest type)
(unless type (setq type '(byte)))
(let ((fun (macroexpand-all (bindat--fun type) macroexpand-all-environment)))
(bindat--pcase op
('unpack
`(let* ((bindat--len ,count)
(bindat--v (make-vector bindat--len 0)))
(dotimes (bindat--i bindat--len)
(aset bindat--v bindat--i (funcall ,fun)))
bindat--v))
((and `(length . ,_)
;; FIXME: Improve the pattern match to recognize more complex
;; "constant" functions?
(let `#'(lambda (,val) (setq bindat-idx (+ bindat-idx ,len))) fun)
(guard (not (macroexp--fgrep `((,val)) len))))
;; Optimize the case where the size of each element is constant.
`(cl-incf bindat-idx (* ,count ,len)))
;; FIXME: It's tempting to use `(mapc (lambda (,val) ,exp) ,val)'
;; which would be more efficient when `val' is a list,
;; but that's only right if length of `val' is indeed `count'.
(`(,_ ,val)
`(dotimes (bindat--i ,count)
(funcall ,fun (elt ,val bindat--i)))))))
(cl-defmethod bindat--type (op (_ (eql unit)) val)
(pcase op ('unpack val) (_ nil)))
(cl-defmethod bindat--type (op (_ (eql struct)) &rest args)
(apply #'bindat--type op args))
(cl-defmethod bindat--type (op (_ (eql :pack-var)) var &rest fields)
(unless (consp (cdr fields))
(error "`:pack-var VAR' needs to be followed by fields"))
(bindat--pcase op
((or 'unpack (guard (null var)))
(apply #'bindat--type op fields))
(`(,_ ,val)
`(let ((,var ,val)) ,(apply #'bindat--type op fields)))))
(cl-defmethod bindat--type (op (field cons) &rest fields)
(named-let loop
((fields (cons field fields))
(labels ()))
(bindat--pcase fields
('nil
(bindat--pcase op
('unpack
(let ((exp ()))
(pcase-dolist (`(,label . ,labelvar) labels)
(setq exp
(if (eq label '_)
(if exp `(nconc ,labelvar ,exp) labelvar)
`(cons (cons ',label ,labelvar) ,exp))))
exp))
(_ nil)))
(`(:unpack-val ,exp)
;; Make it so `:kwd nil' is the same as the absence of the keyword arg.
(if exp (pcase op ('unpack exp)) (loop nil labels)))
(`((,label . ,type) . ,fields)
(let* ((get-field-val
(let ((tail (memq :pack-val type)))
;; FIXME: This `TYPE.. :pack EXP' syntax doesn't work well
;; when TYPE is a struct (a list of fields) or with extensions
;; such as allowing TYPE to be `if ...'.
(if tail
(prog1 (cadr tail)
(setq type (butlast type (length tail)))))))
(fieldvar (make-symbol (format "field%d" (length fields))))
(labelvar
(cond
((eq label '_) fieldvar)
((keywordp label)
(intern (substring (symbol-name label) 1)))
(t label)))
(field-fun (bindat--fun type))
(rest-exp (loop fields `((,label . ,labelvar) . ,labels))))
(bindat--pcase op
('unpack
(let ((code
`(let ((,labelvar (funcall ,field-fun)))
,rest-exp)))
(if (or (eq label '_) (not (assq label labels)))
code
(macroexp-warn-and-return
(format "Duplicate label: %S" label)
code))))
(`(,_ ,val)
;; `cdr-safe' is easier to optimize (can't signal an error).
`(let ((,fieldvar ,(or get-field-val
(if (eq label '_) val
`(cdr-safe (assq ',label ,val))))))
(funcall ,field-fun ,fieldvar)
,@(when rest-exp
`((let ,(unless (eq labelvar fieldvar)
`((,labelvar ,fieldvar)))
(ignore ,labelvar)
,rest-exp))))))))
(_ (error "Unrecognized format in bindat fields: %S" fields)))))
(def-edebug-elem-spec 'bindat-struct
[[&rest (symbolp bindat-type &optional ":pack-val" def-form)]
&optional ":unpack-val" def-form])
(def-edebug-elem-spec 'bindat-type
'(&or ["uint" def-form]
["uintr" def-form]
["str" def-form]
["strz" def-form]
["bits" def-form]
["fill" def-form]
["align" def-form]
["vec" def-form bindat-type]
["repeat" def-form bindat-type]
["type" def-form]
["struct" bindat-struct]
["unit" def-form]
[":pack-var" symbolp bindat-type]
symbolp ;; u8, u16, etc...
bindat-struct))
(defmacro bindat-type (&rest type)
"Return the Bindat type value to pack&unpack TYPE.
TYPE is a Bindat type expression. It can take the following forms:
uint BITLEN - Big-endian unsigned integer
uintr BITLEN - Little-endian unsigned integer
str LEN - Byte string
strz LEN - Zero-terminated byte-string
bits LEN - Bit vector (LEN is counted in bytes)
fill LEN - Just a filler
align LEN - Fill up to the next multiple of LEN bytes
vec COUNT TYPE - COUNT repetitions of TYPE
type EXP - Indirection; EXP should return a Bindat type value
unit EXP - 0-width type holding the value returned by EXP
struct FIELDS... - A composite type
When the context makes it clear, the symbol `struct' can be omitted.
A composite type is a list of FIELDS where each FIELD is of the form
(LABEL TYPE)
where LABEL can be `_' if the field should not deserve a name.
Composite types get normally packed/unpacked to/from alists, but this can be
controlled in the following way:
- If the list of fields ends with `:unpack-val EXP', then unpacking will
return the value of EXP (which has the previous fields in its scope).
- If a field's TYPE is followed by `:pack-val EXP', then the value placed
into this field will be that returned by EXP instead of looking up the alist.
- If the list of fields is preceded with `:pack-var VAR' then the object to
be packed is bound to VAR when evaluating the EXPs of `:pack-val'.
All the above BITLEN, LEN, COUNT, and EXP are ELisp expressions evaluated
in the current lexical context extended with the previous fields.
TYPE can additionally be one of the Bindat type macros defined with
`bindat-defmacro' (and listed below) or an ELisp expression which returns
a bindat type expression."
(declare (indent 0) (debug (bindat-type)))
`(progn
(defvar bindat-idx)
(bindat--make :ue ,(bindat--toplevel 'unpack type)
:le ,(bindat--toplevel 'length type)
:pe ,(bindat--toplevel 'pack type))))
(eval-and-compile
(defconst bindat--primitives '(byte uint uintr str strz bits fill align
struct type vec unit)))
(eval-and-compile
(defvar bindat--macroenv
(mapcar (lambda (s) (cons s (lambda (&rest args)
(bindat--makefun (cons s args)))))
bindat--primitives)))
(defmacro bindat-defmacro (name args &rest body)
"Define a new Bindat type as a macro."
(declare (indent 2) (doc-string 3) (debug (&define name sexp def-body)))
(let ((leaders ()))
(while (and (cdr body)
(or (stringp (car body))
(memq (car-safe (car body)) '(:documentation declare))))
(push (pop body) leaders))
;; FIXME: Add support for Edebug decls to those macros.
`(eval-and-compile ;; Yuck! But needed to define types where you use them!
(setf (alist-get ',name bindat--macroenv)
(lambda ,args ,@(nreverse leaders)
(bindat--fun ,(macroexp-progn body)))))))
(put 'bindat-type 'function-documentation '(bindat--make-docstring))
(defun bindat--make-docstring ()
;; Largely inspired from `pcase--make-docstring'.
(let* ((main (documentation (symbol-function 'bindat-type) 'raw))
(ud (help-split-fundoc main 'bindat-type)))
(require 'help-fns)
(declare-function help-fns--signature "help-fns")
(with-temp-buffer
(insert (or (cdr ud) main))
(pcase-dolist (`(,name . ,me) (reverse bindat--macroenv))
(unless (memq name bindat--primitives)
(let ((doc (documentation me 'raw)))
(insert "\n\n-- ")
(setq doc (help-fns--signature name doc me
(indirect-function me)
nil))
(insert "\n" (or doc "Not documented.")))))
(let ((combined-doc (buffer-string)))
(if ud (help-add-fundoc-usage combined-doc (car ud)) combined-doc)))))
(bindat-defmacro u8 () "Unsigned 8bit integer." '(byte))
(bindat-defmacro sint (bitlen r)
"Signed integer of size BITLEN.
Bigendian if R is nil and little endian if not."
(let ((bl (make-symbol "bitlen"))
(max (make-symbol "max"))
(wrap (make-symbol "wrap")))
`(let* ((,bl ,bitlen)
(,max (ash 1 (1- ,bl)))
(,wrap (+ ,max ,max)))
(struct :pack-var v
(n if ,r (uintr ,bl) (uint ,bl)
:pack-val (if (< v 0) (+ v ,wrap) v))
:unpack-val (if (>= n ,max) (- n ,wrap) n)))))
(bindat-defmacro repeat (count &rest type)
"Like `vec', but unpacks to a list rather than a vector."
`(:pack-var v
(v vec ,count ,@type :pack-val v)
:unpack-val (append v nil)))
(defvar bindat--op nil
"The operation we're currently building.
This is a simple symbol and can be one of: `unpack', `pack', or `length'.
This is used during macroexpansion of `bindat-type' so that the
macros know which code to generate.
FIXME: this is closely related and very similar to the `op' argument passed
to `bindat--type', yet it's annoyingly different.")
(defun bindat--fun (type)
(if (or (keywordp (car type)) (consp (car type))) (cons 'struct type)
type))
(defun bindat--makefun (type)
(let* ((v (make-symbol "v"))
(args (pcase bindat--op ('unpack ()) (_ (list v)))))
(pcase (apply #'bindat--type
(pcase bindat--op ('unpack 'unpack) (op `(,op . ,args)))
type)
(`(funcall ,f . ,(pred (equal args))) f) ;η-reduce.
(exp `(lambda ,args ,exp)))))
(defun bindat--toplevel (op type)
(let* ((bindat--op op)
(env `(,@bindat--macroenv
,@macroexpand-all-environment)))
(macroexpand-all (bindat--fun type) env)))
(provide 'bindat)
;;; bindat.el ends here

View File

@ -23,29 +23,32 @@
(require 'bindat)
(require 'cl-lib)
(bindat-defmacro ip () "An IPv4 address" '(vec 4 byte))
(defconst header-bindat-spec
(bindat-spec
(bindat-type
(dest-ip ip)
(src-ip ip)
(dest-port u16)
(src-port u16)))
(dest-port uint 16)
(src-port uint 16)))
(defconst data-bindat-spec
(bindat-spec
(bindat-type
(type u8)
(opcode u8)
(length u16r) ;; little endian order
(length uintr 16) ;; little endian order
(id strz 8)
(data vec (length))
(align 4)))
(data vec length)
(_ align 4)))
(defconst packet-bindat-spec
(bindat-spec
(header struct header-bindat-spec)
(bindat-type
(header type header-bindat-spec)
(items u8)
(fill 3)
(item repeat (items)
(struct data-bindat-spec))))
(_ fill 3)
(item repeat items
(_ type data-bindat-spec))))
(defconst struct-bindat
'((header
@ -77,27 +80,7 @@
(should (equal
(bindat-unpack packet-bindat-spec
(bindat-pack packet-bindat-spec struct-bindat))
'((item
((data .
[1 2 3 4 5])
(id . "ABCDEF")
(length . 5)
(opcode . 3)
(type . 2))
((data .
[6 7 8 9 10 11 12])
(id . "BCDEFG")
(length . 7)
(opcode . 4)
(type . 1)))
(items . 2)
(header
(src-port . 5408)
(dest-port . 284)
(src-ip .
[192 168 1 101])
(dest-ip .
[192 168 1 100]))))))
struct-bindat)))
(ert-deftest bindat-test-pack/multibyte-string-fails ()
(should-error (bindat-pack nil nil "ö")))
@ -121,4 +104,62 @@
(should (equal (bindat-ip-to-string [192 168 0 1]) "192.168.0.1"))
(should (equal (bindat-ip-to-string "\300\250\0\1") "192.168.0.1")))
(defconst bindat-test--int-websocket-type
(bindat-type
:pack-var value
(n1 u8
:pack-val (if (< value 126) value (if (< value 65536) 126 127)))
(n2 uint (pcase n1 (127 64) (126 16) (_ 0))
:pack-val value)
:unpack-val (if (< n1 126) n1 n2)))
(ert-deftest bindat-test--pack-val ()
;; This is intended to test the :(un)pack-val feature that offers
;; control over the unpacked representation of the data.
(dolist (n '(0 42 125 126 127 128 150 255 5000 65535 65536 8769786876))
(should
(equal (bindat-unpack bindat-test--int-websocket-type
(bindat-pack bindat-test--int-websocket-type n))
n))))
(ert-deftest bindat-test--sint ()
(dotimes (kind 32)
(let ((bitlen (* 8 (/ kind 2)))
(r (zerop (% kind 2))))
(dotimes (_ 100)
(let* ((n (random (ash 1 bitlen)))
(i (- n (ash 1 (1- bitlen)))))
(should (equal (bindat-unpack
(bindat-type sint bitlen r)
(bindat-pack (bindat-type sint bitlen r) i))
i))
(when (>= i 0)
(should (equal (bindat-pack
(bindat-type if r (uintr bitlen) (uint bitlen)) i)
(bindat-pack (bindat-type sint bitlen r) i)))
(should (equal (bindat-unpack
(bindat-type if r (uintr bitlen) (uint bitlen))
(bindat-pack (bindat-type sint bitlen r) i))
i))))))))
(defconst bindat-test--LEB128
(bindat-type
letrec ((loop
(struct :pack-var n
(head u8
:pack-val (+ (logand n 127) (if (> n 127) 128 0)))
(tail if (< head 128) (unit 0) loop
:pack-val (ash n -7))
:unpack-val (+ (logand head 127) (ash tail 7)))))
loop))
(ert-deftest bindat-test--recursive ()
(dotimes (n 10)
(let ((max (ash 1 (* n 10))))
(dotimes (_ 10)
(let ((n (random max)))
(should (equal (bindat-unpack bindat-test--LEB128
(bindat-pack bindat-test--LEB128 n))
n)))))))
;;; bindat-tests.el ends here