1
0
mirror of https://git.savannah.gnu.org/git/emacs.git synced 2024-11-26 07:33:47 +00:00

Update from GMP

* admin/update-copyright (updatable_files):
Don’t update copyright year on files copied from GMP, so that
they’re identical to upstream.
* src/mini-gmp.c, src/mini-gmp.h: Copy from GMP development
versions as of 2019-01-01 20:15:39 UTC.
This commit is contained in:
Paul Eggert 2019-04-28 13:14:49 -07:00
parent 4d97e1a9ea
commit 9469d58ebe
3 changed files with 338 additions and 229 deletions

View File

@ -50,6 +50,7 @@ repo_files=$(git ls-files) &&
# Do not update the copyright of files that have one or more of the
# following problems:
# . They are license files, maintained by the FSF, with their own dates.
# . They are GMP files, maintained by the GMP project, with their own dates.
# . Their format cannot withstand changing the contents of copyright strings.
updatable_files=$(find $repo_files \
@ -70,6 +71,7 @@ updatable_files=$(find $repo_files \
! -name hand.cur \
! -name key.pub \
! -name key.sec \
! -name 'mini-gmp.[ch]' \
-print) &&
build-aux/update-copyright $updatable_files

View File

@ -2,7 +2,7 @@
Contributed to the GNU project by Niels Möller
Copyright 1991-1997, 1999-2019 Free Software Foundation, Inc.
Copyright 1991-1997, 1999-2018 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
@ -58,7 +58,7 @@ see https://www.gnu.org/licenses/. */
/* Macros */
#define GMP_LIMB_BITS (sizeof(mp_limb_t) * CHAR_BIT)
#define GMP_LIMB_MAX (~ (mp_limb_t) 0)
#define GMP_LIMB_MAX ((mp_limb_t) ~ (mp_limb_t) 0)
#define GMP_LIMB_HIGHBIT ((mp_limb_t) 1 << (GMP_LIMB_BITS - 1))
#define GMP_HLIMB_BIT ((mp_limb_t) 1 << (GMP_LIMB_BITS / 2))
@ -129,6 +129,20 @@ see https://www.gnu.org/licenses/. */
#define gmp_umul_ppmm(w1, w0, u, v) \
do { \
int LOCAL_GMP_LIMB_BITS = GMP_LIMB_BITS; \
if (sizeof(unsigned int) * CHAR_BIT >= 2 * GMP_LIMB_BITS) \
{ \
unsigned int __ww = (unsigned int) (u) * (v); \
w0 = (mp_limb_t) __ww; \
w1 = (mp_limb_t) (__ww >> LOCAL_GMP_LIMB_BITS); \
} \
else if (GMP_ULONG_BITS >= 2 * GMP_LIMB_BITS) \
{ \
unsigned long int __ww = (unsigned long int) (u) * (v); \
w0 = (mp_limb_t) __ww; \
w1 = (mp_limb_t) (__ww >> LOCAL_GMP_LIMB_BITS); \
} \
else { \
mp_limb_t __x0, __x1, __x2, __x3; \
unsigned __ul, __vl, __uh, __vh; \
mp_limb_t __u = (u), __v = (v); \
@ -150,6 +164,7 @@ see https://www.gnu.org/licenses/. */
\
(w1) = __x3 + (__x1 >> (GMP_LIMB_BITS / 2)); \
(w0) = (__x1 << (GMP_LIMB_BITS / 2)) + (__x0 & GMP_LLIMB_MASK); \
} \
} while (0)
#define gmp_udiv_qrnnd_preinv(q, r, nh, nl, d, di) \
@ -753,6 +768,18 @@ mpn_neg (mp_ptr rp, mp_srcptr up, mp_size_t n)
mp_limb_t
mpn_invert_3by2 (mp_limb_t u1, mp_limb_t u0)
{
int GMP_LIMB_BITS_MUL_3 = GMP_LIMB_BITS * 3;
if (sizeof (unsigned) * CHAR_BIT > GMP_LIMB_BITS * 3)
{
return (((unsigned) 1 << GMP_LIMB_BITS_MUL_3) - 1) /
(((unsigned) u1 << GMP_LIMB_BITS_MUL_3 / 3) + u0);
}
else if (GMP_ULONG_BITS > GMP_LIMB_BITS * 3)
{
return (((unsigned long) 1 << GMP_LIMB_BITS_MUL_3) - 1) /
(((unsigned long) u1 << GMP_LIMB_BITS_MUL_3 / 3) + u0);
}
else {
mp_limb_t r, p, m, ql;
unsigned ul, uh, qh;
@ -827,7 +854,7 @@ mpn_invert_3by2 (mp_limb_t u1, mp_limb_t u0)
r -= u1;
}
/* Now m is the 2/1 invers of u1. If u0 > 0, adjust it to become a
/* Now m is the 2/1 inverse of u1. If u0 > 0, adjust it to become a
3/2 inverse. */
if (u0 > 0)
{
@ -854,6 +881,7 @@ mpn_invert_3by2 (mp_limb_t u1, mp_limb_t u0)
}
return m;
}
}
struct gmp_div_inverse
@ -964,36 +992,6 @@ mpn_div_qr_1_preinv (mp_ptr qp, mp_srcptr np, mp_size_t nn,
return r >> inv->shift;
}
static mp_limb_t
mpn_div_qr_1 (mp_ptr qp, mp_srcptr np, mp_size_t nn, mp_limb_t d)
{
assert (d > 0);
/* Special case for powers of two. */
if ((d & (d-1)) == 0)
{
mp_limb_t r = np[0] & (d-1);
if (qp)
{
if (d <= 1)
mpn_copyi (qp, np, nn);
else
{
unsigned shift;
gmp_ctz (shift, d);
mpn_rshift (qp, np, nn, shift);
}
}
return r;
}
else
{
struct gmp_div_inverse inv;
mpn_div_qr_1_invert (&inv, d);
return mpn_div_qr_1_preinv (qp, np, nn, &inv);
}
}
static void
mpn_div_qr_2_preinv (mp_ptr qp, mp_ptr np, mp_size_t nn,
const struct gmp_div_inverse *inv)
@ -1029,7 +1027,7 @@ mpn_div_qr_2_preinv (mp_ptr qp, mp_ptr np, mp_size_t nn,
if (shift > 0)
{
assert ((r0 << (GMP_LIMB_BITS - shift)) == 0);
assert ((r0 & (GMP_LIMB_MAX >> (GMP_LIMB_BITS - shift))) == 0);
r0 = (r0 >> shift) | (r1 << (GMP_LIMB_BITS - shift));
r1 >>= shift;
}
@ -1252,7 +1250,7 @@ mpn_limb_get_str (unsigned char *sp, mp_limb_t w,
l = w << binv->shift;
gmp_udiv_qrnnd_preinv (w, r, h, l, binv->d1, binv->di);
assert ( (r << (GMP_LIMB_BITS - binv->shift)) == 0);
assert ((r & (GMP_LIMB_MAX >> (GMP_LIMB_BITS - binv->shift))) == 0);
r >>= binv->shift;
sp[i] = r;
@ -1420,7 +1418,7 @@ mpn_set_str (mp_ptr rp, const unsigned char *sp, size_t sn, int base)
void
mpz_init (mpz_t r)
{
static const mp_limb_t dummy_limb = 0xc1a0;
static const mp_limb_t dummy_limb = GMP_LIMB_MAX & 0xc1a0;
r->_mp_alloc = 0;
r->_mp_size = 0;
@ -1478,6 +1476,12 @@ mpz_set_si (mpz_t r, signed long int x)
if (x >= 0)
mpz_set_ui (r, x);
else /* (x < 0) */
if (GMP_LIMB_BITS < GMP_ULONG_BITS)
{
mpz_set_ui (r, GMP_NEG_CAST (unsigned long int, x));
mpz_neg (r, r);
}
else
{
r->_mp_size = -1;
MPZ_REALLOC (r, 1)[0] = GMP_NEG_CAST (unsigned long int, x);
@ -1491,6 +1495,15 @@ mpz_set_ui (mpz_t r, unsigned long int x)
{
r->_mp_size = 1;
MPZ_REALLOC (r, 1)[0] = x;
if (GMP_LIMB_BITS < GMP_ULONG_BITS)
{
int LOCAL_GMP_LIMB_BITS = GMP_LIMB_BITS;
while (x >>= LOCAL_GMP_LIMB_BITS)
{
++ r->_mp_size;
MPZ_REALLOC (r, r->_mp_size)[r->_mp_size - 1] = x;
}
}
}
else
r->_mp_size = 0;
@ -1537,14 +1550,20 @@ mpz_init_set (mpz_t r, const mpz_t x)
int
mpz_fits_slong_p (const mpz_t u)
{
mp_size_t us = u->_mp_size;
return (LONG_MAX + LONG_MIN == 0 || mpz_cmp_ui (u, LONG_MAX) <= 0) &&
mpz_cmpabs_ui (u, GMP_NEG_CAST (unsigned long int, LONG_MIN)) <= 0;
}
if (us == 1)
return u->_mp_d[0] < GMP_LIMB_HIGHBIT;
else if (us == -1)
return u->_mp_d[0] <= GMP_LIMB_HIGHBIT;
else
return (us == 0);
static int
mpn_absfits_ulong_p (mp_srcptr up, mp_size_t un)
{
int ulongsize = GMP_ULONG_BITS / GMP_LIMB_BITS;
mp_limb_t ulongrem = 0;
if (GMP_ULONG_BITS % GMP_LIMB_BITS != 0)
ulongrem = (mp_limb_t) (ULONG_MAX >> GMP_LIMB_BITS * ulongsize) + 1;
return un <= ulongsize || (up[ulongsize] < ulongrem && un == ulongsize + 1);
}
int
@ -1552,22 +1571,36 @@ mpz_fits_ulong_p (const mpz_t u)
{
mp_size_t us = u->_mp_size;
return (us == (us > 0));
return us >= 0 && mpn_absfits_ulong_p (u->_mp_d, us);
}
long int
mpz_get_si (const mpz_t u)
{
unsigned long r = mpz_get_ui (u);
unsigned long c = -LONG_MAX - LONG_MIN;
if (u->_mp_size < 0)
/* This expression is necessary to properly handle 0x80000000 */
return -1 - (long) ((u->_mp_d[0] - 1) & ~GMP_LIMB_HIGHBIT);
/* This expression is necessary to properly handle -LONG_MIN */
return -(long) c - (long) ((r - c) & LONG_MAX);
else
return (long) (mpz_get_ui (u) & ~GMP_LIMB_HIGHBIT);
return (long) (r & LONG_MAX);
}
unsigned long int
mpz_get_ui (const mpz_t u)
{
if (GMP_LIMB_BITS < GMP_ULONG_BITS)
{
int LOCAL_GMP_LIMB_BITS = GMP_LIMB_BITS;
unsigned long r = 0;
mp_size_t n = GMP_ABS (u->_mp_size);
n = GMP_MIN (n, 1 + (GMP_ULONG_BITS - 1) / GMP_LIMB_BITS);
while (--n >= 0)
r = (r << LOCAL_GMP_LIMB_BITS) + u->_mp_d[n];
return r;
}
return u->_mp_size == 0 ? 0 : u->_mp_d[0];
}
@ -1665,7 +1698,7 @@ mpz_set_d (mpz_t r, double x)
r->_mp_size = 0;
return;
}
B = 2.0 * (double) GMP_LIMB_HIGHBIT;
B = 4.0 * (double) (GMP_LIMB_HIGHBIT >> 1);
Bi = 1.0 / B;
for (rn = 1; x >= B; rn++)
x *= Bi;
@ -1703,7 +1736,7 @@ mpz_get_d (const mpz_t u)
mp_limb_t l;
mp_size_t un;
double x;
double B = 2.0 * (double) GMP_LIMB_HIGHBIT;
double B = 4.0 * (double) (GMP_LIMB_HIGHBIT >> 1);
un = GMP_ABS (u->_mp_size);
@ -1748,7 +1781,7 @@ mpz_cmpabs_d (const mpz_t x, double d)
{
xn = GMP_ABS (xn);
B = 2.0 * (double) GMP_LIMB_HIGHBIT;
B = 4.0 * (double) (GMP_LIMB_HIGHBIT >> 1);
Bi = 1.0 / B;
/* Scale d so it can be compared with the top limb. */
@ -1807,14 +1840,12 @@ mpz_cmp_si (const mpz_t u, long v)
{
mp_size_t usize = u->_mp_size;
if (usize < -1)
return -1;
else if (v >= 0)
if (v >= 0)
return mpz_cmp_ui (u, v);
else if (usize >= 0)
return 1;
else /* usize == -1 */
return GMP_CMP (GMP_NEG_CAST (mp_limb_t, v), u->_mp_d[0]);
else
return - mpz_cmpabs_ui (u, GMP_NEG_CAST (unsigned long int, v));
}
int
@ -1822,12 +1853,10 @@ mpz_cmp_ui (const mpz_t u, unsigned long v)
{
mp_size_t usize = u->_mp_size;
if (usize > 1)
return 1;
else if (usize < 0)
if (usize < 0)
return -1;
else
return GMP_CMP (mpz_get_ui (u), v);
return mpz_cmpabs_ui (u, v);
}
int
@ -1847,10 +1876,15 @@ mpz_cmp (const mpz_t a, const mpz_t b)
int
mpz_cmpabs_ui (const mpz_t u, unsigned long v)
{
if (GMP_ABS (u->_mp_size) > 1)
mp_size_t un = GMP_ABS (u->_mp_size);
if (! mpn_absfits_ulong_p (u->_mp_d, un))
return 1;
else
return GMP_CMP (mpz_get_ui (u), v);
{
unsigned long uu = mpz_get_ui (u);
return GMP_CMP(uu, v);
}
}
int
@ -1885,81 +1919,28 @@ mpz_swap (mpz_t u, mpz_t v)
/* MPZ addition and subtraction */
/* Adds to the absolute value. Returns new size, but doesn't store it. */
static mp_size_t
mpz_abs_add_ui (mpz_t r, const mpz_t a, unsigned long b)
{
mp_size_t an;
mp_ptr rp;
mp_limb_t cy;
an = GMP_ABS (a->_mp_size);
if (an == 0)
{
MPZ_REALLOC (r, 1)[0] = b;
return b > 0;
}
rp = MPZ_REALLOC (r, an + 1);
cy = mpn_add_1 (rp, a->_mp_d, an, b);
rp[an] = cy;
an += cy;
return an;
}
/* Subtract from the absolute value. Returns new size, (or -1 on underflow),
but doesn't store it. */
static mp_size_t
mpz_abs_sub_ui (mpz_t r, const mpz_t a, unsigned long b)
{
mp_size_t an = GMP_ABS (a->_mp_size);
mp_ptr rp;
if (an == 0)
{
MPZ_REALLOC (r, 1)[0] = b;
return -(b > 0);
}
rp = MPZ_REALLOC (r, an);
if (an == 1 && a->_mp_d[0] < b)
{
rp[0] = b - a->_mp_d[0];
return -1;
}
else
{
gmp_assert_nocarry (mpn_sub_1 (rp, a->_mp_d, an, b));
return mpn_normalized_size (rp, an);
}
}
void
mpz_add_ui (mpz_t r, const mpz_t a, unsigned long b)
{
if (a->_mp_size >= 0)
r->_mp_size = mpz_abs_add_ui (r, a, b);
else
r->_mp_size = -mpz_abs_sub_ui (r, a, b);
mpz_t bb;
mpz_init_set_ui (bb, b);
mpz_add (r, a, bb);
mpz_clear (bb);
}
void
mpz_sub_ui (mpz_t r, const mpz_t a, unsigned long b)
{
if (a->_mp_size < 0)
r->_mp_size = -mpz_abs_add_ui (r, a, b);
else
r->_mp_size = mpz_abs_sub_ui (r, a, b);
mpz_ui_sub (r, b, a);
mpz_neg (r, r);
}
void
mpz_ui_sub (mpz_t r, unsigned long a, const mpz_t b)
{
if (b->_mp_size < 0)
r->_mp_size = mpz_abs_add_ui (r, b, a);
else
r->_mp_size = -mpz_abs_sub_ui (r, b, a);
mpz_neg (r, b);
mpz_add_ui (r, r, a);
}
static mp_size_t
@ -2046,32 +2027,17 @@ mpz_mul_si (mpz_t r, const mpz_t u, long int v)
mpz_neg (r, r);
}
else
mpz_mul_ui (r, u, (unsigned long int) v);
mpz_mul_ui (r, u, v);
}
void
mpz_mul_ui (mpz_t r, const mpz_t u, unsigned long int v)
{
mp_size_t un, us;
mp_ptr tp;
mp_limb_t cy;
us = u->_mp_size;
if (us == 0 || v == 0)
{
r->_mp_size = 0;
return;
}
un = GMP_ABS (us);
tp = MPZ_REALLOC (r, un + 1);
cy = mpn_mul_1 (tp, u->_mp_d, un, v);
tp[un] = cy;
un += (cy > 0);
r->_mp_size = (us < 0) ? - un : un;
mpz_t vv;
mpz_init_set_ui (vv, v);
mpz_mul (r, u, vv);
mpz_clear (vv);
return;
}
void
@ -2150,8 +2116,8 @@ void
mpz_addmul_ui (mpz_t r, const mpz_t u, unsigned long int v)
{
mpz_t t;
mpz_init (t);
mpz_mul_ui (t, u, v);
mpz_init_set_ui (t, v);
mpz_mul (t, u, t);
mpz_add (r, r, t);
mpz_clear (t);
}
@ -2160,8 +2126,8 @@ void
mpz_submul_ui (mpz_t r, const mpz_t u, unsigned long int v)
{
mpz_t t;
mpz_init (t);
mpz_mul_ui (t, u, v);
mpz_init_set_ui (t, v);
mpz_mul (t, u, t);
mpz_sub (r, r, t);
mpz_clear (t);
}
@ -2557,56 +2523,20 @@ static unsigned long
mpz_div_qr_ui (mpz_t q, mpz_t r,
const mpz_t n, unsigned long d, enum mpz_div_round_mode mode)
{
mp_size_t ns, qn;
mp_ptr qp;
mp_limb_t rl;
mp_size_t rs;
unsigned long ret;
mpz_t rr, dd;
ns = n->_mp_size;
if (ns == 0)
{
if (q)
q->_mp_size = 0;
if (r)
r->_mp_size = 0;
return 0;
}
qn = GMP_ABS (ns);
if (q)
qp = MPZ_REALLOC (q, qn);
else
qp = NULL;
rl = mpn_div_qr_1 (qp, n->_mp_d, qn, d);
assert (rl < d);
rs = rl > 0;
rs = (ns < 0) ? -rs : rs;
if (rl > 0 && ( (mode == GMP_DIV_FLOOR && ns < 0)
|| (mode == GMP_DIV_CEIL && ns >= 0)))
{
if (q)
gmp_assert_nocarry (mpn_add_1 (qp, qp, qn, 1));
rl = d - rl;
rs = -rs;
}
mpz_init (rr);
mpz_init_set_ui (dd, d);
mpz_div_qr (q, rr, n, dd, mode);
mpz_clear (dd);
ret = mpz_get_ui (rr);
if (r)
{
MPZ_REALLOC (r, 1)[0] = rl;
r->_mp_size = rs;
}
if (q)
{
qn -= (qp[qn-1] == 0);
assert (qn == 0 || qp[qn-1] > 0);
mpz_swap (r, rr);
mpz_clear (rr);
q->_mp_size = (ns < 0) ? - qn : qn;
}
return rl;
return ret;
}
unsigned long
@ -2745,22 +2675,16 @@ mpn_gcd_11 (mp_limb_t u, mp_limb_t v)
unsigned long
mpz_gcd_ui (mpz_t g, const mpz_t u, unsigned long v)
{
mp_size_t un;
mpz_t t;
mpz_init_set_ui(t, v);
mpz_gcd (t, u, t);
if (v > 0)
v = mpz_get_ui (t);
if (v == 0)
{
if (g)
mpz_abs (g, u);
}
else
{
un = GMP_ABS (u->_mp_size);
if (un != 0)
v = mpn_gcd_11 (mpn_div_qr_1 (NULL, u->_mp_d, un, v), v);
if (g)
mpz_swap (t, g);
if (g)
mpz_set_ui (g, v);
}
mpz_clear (t);
return v;
}
@ -2854,7 +2778,7 @@ mpz_gcdext (mpz_t g, mpz_t s, mpz_t t, const mpz_t u, const mpz_t v)
signed long sign = mpz_sgn (v);
mpz_abs (g, v);
if (s)
mpz_set_ui (s, 0);
s->_mp_size = 0;
if (t)
mpz_set_si (t, sign);
return;
@ -2868,7 +2792,7 @@ mpz_gcdext (mpz_t g, mpz_t s, mpz_t t, const mpz_t u, const mpz_t v)
if (s)
mpz_set_si (s, sign);
if (t)
mpz_set_ui (t, 0);
t->_mp_size = 0;
return;
}
@ -2993,8 +2917,9 @@ mpz_gcdext (mpz_t g, mpz_t s, mpz_t t, const mpz_t u, const mpz_t v)
mpz_sub (s0, s0, s1);
mpz_add (t0, t0, t1);
}
mpz_divexact_ui (s0, s0, 2);
mpz_divexact_ui (t0, t0, 2);
assert (mpz_even_p (t0) && mpz_even_p (s0));
mpz_tdiv_q_2exp (s0, s0, 1);
mpz_tdiv_q_2exp (t0, t0, 1);
}
/* Arrange so that |s| < |u| / 2g */
@ -3119,7 +3044,10 @@ void
mpz_ui_pow_ui (mpz_t r, unsigned long blimb, unsigned long e)
{
mpz_t b;
mpz_pow_ui (r, mpz_roinit_normal_n (b, &blimb, blimb != 0), e);
mpz_init_set_ui (b, blimb);
mpz_pow_ui (r, b, e);
mpz_clear (b);
}
void
@ -3231,7 +3159,10 @@ void
mpz_powm_ui (mpz_t r, const mpz_t b, unsigned long elimb, const mpz_t m)
{
mpz_t e;
mpz_powm (r, b, mpz_roinit_normal_n (e, &elimb, elimb != 0), m);
mpz_init_set_ui (e, elimb);
mpz_powm (r, b, e, m);
mpz_clear (e);
}
/* x=trunc(y^(1/z)), r=y-x^z */
@ -3409,6 +3340,177 @@ mpz_bin_uiui (mpz_t r, unsigned long n, unsigned long k)
/* Primality testing */
/* Computes Kronecker (a/b) with odd b, a!=0 and GCD(a,b) = 1 */
/* Adapted from JACOBI_BASE_METHOD==4 in mpn/generic/jacbase.c */
static int
gmp_jacobi_coprime (mp_limb_t a, mp_limb_t b)
{
int c, bit = 0;
assert (b & 1);
assert (a != 0);
/* assert (mpn_gcd_11 (a, b) == 1); */
/* Below, we represent a and b shifted right so that the least
significant one bit is implicit. */
b >>= 1;
gmp_ctz(c, a);
a >>= 1;
do
{
a >>= c;
/* (2/b) = -1 if b = 3 or 5 mod 8 */
bit ^= c & (b ^ (b >> 1));
if (a < b)
{
bit ^= a & b;
a = b - a;
b -= a;
}
else
{
a -= b;
assert (a != 0);
}
gmp_ctz(c, a);
++c;
}
while (b > 0);
return bit & 1 ? -1 : 1;
}
static void
gmp_lucas_step_k_2k (mpz_t V, mpz_t Qk, const mpz_t n)
{
mpz_mod (Qk, Qk, n);
/* V_{2k} <- V_k ^ 2 - 2Q^k */
mpz_mul (V, V, V);
mpz_submul_ui (V, Qk, 2);
mpz_tdiv_r (V, V, n);
/* Q^{2k} = (Q^k)^2 */
mpz_mul (Qk, Qk, Qk);
}
/* Computes V_k, Q^k (mod n) for the Lucas' sequence */
/* with P=1, Q=Q; k = (n>>b0)|1. */
/* Requires an odd n > 4; b0 > 0; -2*Q must not overflow a long */
/* Returns (U_k == 0) and sets V=V_k and Qk=Q^k. */
static int
gmp_lucas_mod (mpz_t V, mpz_t Qk, long Q,
mp_bitcnt_t b0, const mpz_t n)
{
mp_bitcnt_t bs;
mpz_t U;
int res;
assert (b0 > 0);
assert (Q <= - (LONG_MIN / 2));
assert (Q >= - (LONG_MAX / 2));
assert (mpz_cmp_ui (n, 4) > 0);
assert (mpz_odd_p (n));
mpz_init_set_ui (U, 1); /* U1 = 1 */
mpz_set_ui (V, 1); /* V1 = 1 */
mpz_set_si (Qk, Q);
for (bs = mpz_sizeinbase (n, 2) - 1; --bs >= b0;)
{
/* U_{2k} <- U_k * V_k */
mpz_mul (U, U, V);
/* V_{2k} <- V_k ^ 2 - 2Q^k */
/* Q^{2k} = (Q^k)^2 */
gmp_lucas_step_k_2k (V, Qk, n);
/* A step k->k+1 is performed if the bit in $n$ is 1 */
/* mpz_tstbit(n,bs) or the the bit is 0 in $n$ but */
/* should be 1 in $n+1$ (bs == b0) */
if (b0 == bs || mpz_tstbit (n, bs))
{
/* Q^{k+1} <- Q^k * Q */
mpz_mul_si (Qk, Qk, Q);
/* U_{k+1} <- (U_k + V_k) / 2 */
mpz_swap (U, V); /* Keep in V the old value of U_k */
mpz_add (U, U, V);
/* We have to compute U/2, so we need an even value, */
/* equivalent (mod n) */
if (mpz_odd_p (U))
mpz_add (U, U, n);
mpz_tdiv_q_2exp (U, U, 1);
/* V_{k+1} <-(D*U_k + V_k) / 2 =
U_{k+1} + (D-1)/2*U_k = U_{k+1} - 2Q*U_k */
mpz_mul_si (V, V, -2*Q);
mpz_add (V, U, V);
mpz_tdiv_r (V, V, n);
}
mpz_tdiv_r (U, U, n);
}
res = U->_mp_size == 0;
mpz_clear (U);
return res;
}
/* Performs strong Lucas' test on x, with parameters suggested */
/* for the BPSW test. Qk is only passed to recycle a variable. */
/* Requires GCD (x,6) = 1.*/
static int
gmp_stronglucas (const mpz_t x, mpz_t Qk)
{
mp_bitcnt_t b0;
mpz_t V, n;
mp_limb_t maxD, D; /* The absolute value is stored. */
long Q;
mp_limb_t tl;
/* Test on the absolute value. */
mpz_roinit_normal_n (n, x->_mp_d, GMP_ABS (x->_mp_size));
assert (mpz_odd_p (n));
/* assert (mpz_gcd_ui (NULL, n, 6) == 1); */
if (mpz_root (Qk, n, 2))
return 0; /* A square is composite. */
/* Check Ds up to square root (in case, n is prime)
or avoid overflows */
maxD = (Qk->_mp_size == 1) ? Qk->_mp_d [0] - 1 : GMP_LIMB_MAX;
D = 3;
/* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */
/* For those Ds we have (D/n) = (n/|D|) */
do
{
if (D >= maxD)
return 1 + (D != GMP_LIMB_MAX); /* (1 + ! ~ D) */
D += 2;
tl = mpz_tdiv_ui (n, D);
if (tl == 0)
return 0;
}
while (gmp_jacobi_coprime (tl, D) == 1);
mpz_init (V);
/* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */
b0 = mpz_scan0 (n, 0);
/* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */
Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2);
if (! gmp_lucas_mod (V, Qk, Q, b0, n)) /* If Ud != 0 */
while (V->_mp_size != 0 && --b0 != 0) /* while Vk != 0 */
/* V <- V ^ 2 - 2Q^k */
/* Q^{2k} = (Q^k)^2 */
gmp_lucas_step_k_2k (V, Qk, n);
mpz_clear (V);
return (b0 != 0);
}
static int
gmp_millerrabin (const mpz_t n, const mpz_t nm1, mpz_t y,
const mpz_t q, mp_bitcnt_t k)
@ -3470,21 +3572,26 @@ mpz_probab_prime_p (const mpz_t n, int reps)
if (mpz_cmpabs_ui (n, 31*31) < 0)
return 2;
mpz_init (nm1);
mpz_init (q);
/* Find q and k, where q is odd and n = 1 + 2**k * q. */
mpz_abs (nm1, n);
nm1->_mp_d[0] -= 1;
k = mpz_scan1 (nm1, 0);
mpz_tdiv_q_2exp (q, nm1, k);
/* BPSW test */
mpz_init_set_ui (y, 2);
is_prime = gmp_millerrabin (n, nm1, y, q, k) && gmp_stronglucas (n, y);
reps -= 24; /* skip the first 24 repetitions */
/* Use Miller-Rabin, with a deterministic sequence of bases, a[j] =
j^2 + j + 41 using Euler's polynomial. We potentially stop early,
if a[j] >= n - 1. Since n >= 31*31, this can happen only if reps >
30 (a[30] == 971 > 31*31 == 961). */
mpz_init (nm1);
mpz_init (q);
mpz_init (y);
/* Find q and k, where q is odd and n = 1 + 2**k * q. */
nm1->_mp_size = mpz_abs_sub_ui (nm1, n, 1);
k = mpz_scan1 (nm1, 0);
mpz_tdiv_q_2exp (q, nm1, k);
for (j = 0, is_prime = 1; is_prime & (j < reps); j++)
for (j = 0; is_prime & (j < reps); j++)
{
mpz_set_ui (y, (unsigned long) j*j+j+41);
if (mpz_cmp (y, nm1) >= 0)
@ -3552,7 +3659,7 @@ mpz_tstbit (const mpz_t d, mp_bitcnt_t bit_index)
{
/* d < 0. Check if any of the bits below is set: If so, our bit
must be complemented. */
if (shift > 0 && (w << (GMP_LIMB_BITS - shift)) > 0)
if (shift > 0 && (mp_limb_t) (w << (GMP_LIMB_BITS - shift)) > 0)
return bit ^ 1;
while (--limb_index >= 0)
if (d->_mp_d[limb_index] > 0)
@ -3659,8 +3766,8 @@ mpz_combit (mpz_t d, mp_bitcnt_t bit_index)
void
mpz_com (mpz_t r, const mpz_t u)
{
mpz_neg (r, u);
mpz_sub_ui (r, r, 1);
mpz_add_ui (r, u, 1);
mpz_neg (r, r);
}
void
@ -4000,7 +4107,7 @@ mpz_scan1 (const mpz_t u, mp_bitcnt_t starting_bit)
}
/* Mask to 0 all bits before starting_bit, thus ignoring them. */
limb &= (GMP_LIMB_MAX << (starting_bit % GMP_LIMB_BITS));
limb &= GMP_LIMB_MAX << (starting_bit % GMP_LIMB_BITS);
}
return mpn_common_scan (limb, i, up, un, ux);
@ -4030,7 +4137,7 @@ mpz_scan0 (const mpz_t u, mp_bitcnt_t starting_bit)
limb -= mpn_zero_p (up, i); /* limb = ~(~limb + zero_p) */
/* Mask all bits before starting_bit, thus ignoring them. */
limb &= (GMP_LIMB_MAX << (starting_bit % GMP_LIMB_BITS));
limb &= GMP_LIMB_MAX << (starting_bit % GMP_LIMB_BITS);
return mpn_common_scan (limb, i, up, un, ux);
}

View File

@ -1,6 +1,6 @@
/* mini-gmp, a minimalistic implementation of a GNU GMP subset.
Copyright 2011-2015, 2017, 2019 Free Software Foundation, Inc.
Copyright 2011-2015, 2017 Free Software Foundation, Inc.
This file is part of the GNU MP Library.